/* * sound/opl3.c * * A low level driver for Yamaha YM3812 and OPL-3 -chips * * Copyright by Hannu Savolainen 1993 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. 2. * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * Major improvements to the FM handling 30AUG92 by Rob Hooft, */ /* * hooft@chem.ruu.nl */ #include "sound_config.h" #if defined(CONFIGURE_SOUNDCARD) && !defined(EXCLUDE_YM3812) #include "opl3.h" #define MAX_VOICE 18 #define OFFS_4OP 11 /* * * * Definitions for the operators OP3 and * * OP4 * * begin here */ static int opl3_enabled = 0; static int opl4_enabled = 0; static int left_address = 0x388, right_address = 0x388, both_address = 0; static int nr_voices = 9; static int logical_voices[MAX_VOICE] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}; struct voice_info { unsigned char keyon_byte; long bender; long bender_range; unsigned long orig_freq; unsigned long current_freq; int mode; }; static struct voice_info voices[MAX_VOICE]; static struct voice_alloc_info *voice_alloc; static struct channel_info *chn_info; static struct sbi_instrument *instrmap; static struct sbi_instrument *active_instrument[MAX_VOICE] = {NULL}; static struct synth_info fm_info = {"OPL-2", 0, SYNTH_TYPE_FM, FM_TYPE_ADLIB, 0, 9, 0, SBFM_MAXINSTR, 0}; static int already_initialized = 0; static int opl3_ok = 0; static int opl3_busy = 0; static int fm_model = 0; /* * * * * 0=no fm, 1=mono, 2=SB Pro 1, 3=SB * Pro 2 * * */ static int store_instr (int instr_no, struct sbi_instrument *instr); static void freq_to_fnum (int freq, int *block, int *fnum); static void opl3_command (int io_addr, unsigned int addr, unsigned int val); static int opl3_kill_note (int dev, int voice, int note, int velocity); static unsigned char connection_mask = 0x00; void enable_opl3_mode (int left, int right, int both) { if (opl3_enabled) return; opl3_enabled = 1; left_address = left; right_address = right; both_address = both; fm_info.capabilities = SYNTH_CAP_OPL3; fm_info.synth_subtype = FM_TYPE_OPL3; } static void enter_4op_mode (void) { int i; static int voices_4op[MAX_VOICE] = {0, 1, 2, 9, 10, 11, 6, 7, 8, 15, 16, 17}; connection_mask = 0x3f; /* Connect all possible 4 OP voices */ opl3_command (right_address, CONNECTION_SELECT_REGISTER, 0x3f); for (i = 0; i < 3; i++) physical_voices[i].voice_mode = 4; for (i = 3; i < 6; i++) physical_voices[i].voice_mode = 0; for (i = 9; i < 12; i++) physical_voices[i].voice_mode = 4; for (i = 12; i < 15; i++) physical_voices[i].voice_mode = 0; for (i = 0; i < 12; i++) logical_voices[i] = voices_4op[i]; voice_alloc->max_voice = nr_voices = 12; } static int opl3_ioctl (int dev, unsigned int cmd, unsigned int arg) { switch (cmd) { case SNDCTL_FM_LOAD_INSTR: { struct sbi_instrument ins; IOCTL_FROM_USER ((char *) &ins, (char *) arg, 0, sizeof (ins)); if (ins.channel < 0 || ins.channel >= SBFM_MAXINSTR) { printk ("FM Error: Invalid instrument number %d\n", ins.channel); return RET_ERROR (EINVAL); } pmgr_inform (dev, PM_E_PATCH_LOADED, ins.channel, 0, 0, 0); return store_instr (ins.channel, &ins); } break; case SNDCTL_SYNTH_INFO: fm_info.nr_voices = (nr_voices == 12) ? 6 : nr_voices; IOCTL_TO_USER ((char *) arg, 0, &fm_info, sizeof (fm_info)); return 0; break; case SNDCTL_SYNTH_MEMAVL: return 0x7fffffff; break; case SNDCTL_FM_4OP_ENABLE: if (opl3_enabled) enter_4op_mode (); return 0; break; default: return RET_ERROR (EINVAL); } } int opl3_detect (int ioaddr) { /* * This function returns 1 if the FM chicp is present at the given I/O port * The detection algorithm plays with the timer built in the FM chip and * looks for a change in the status register. * * Note! The timers of the FM chip are not connected to AdLib (and compatible) * boards. * * Note2! The chip is initialized if detected. */ unsigned char stat1, stat2, signature; int i; if (already_initialized) { return 0; /* * Do avoid duplicate initializations */ } if (opl3_enabled) ioaddr = left_address; /* Reset timers 1 and 2 */ opl3_command (ioaddr, TIMER_CONTROL_REGISTER, TIMER1_MASK | TIMER2_MASK); /* Reset the IRQ of the FM chip */ opl3_command (ioaddr, TIMER_CONTROL_REGISTER, IRQ_RESET); signature = stat1 = INB (ioaddr); /* Status register */ if ((stat1 & 0xE0) != 0x00) { return 0; /* * Should be 0x00 */ } opl3_command (ioaddr, TIMER1_REGISTER, 0xff); /* Set timer1 to 0xff */ opl3_command (ioaddr, TIMER_CONTROL_REGISTER, TIMER2_MASK | TIMER1_START); /* * Unmask and start timer 1 */ /* * Now we have to delay at least 80 usec */ for (i = 0; i < 50; i++) tenmicrosec (); stat2 = INB (ioaddr); /* * Read status after timers have expired */ /* * Stop the timers */ /* Reset timers 1 and 2 */ opl3_command (ioaddr, TIMER_CONTROL_REGISTER, TIMER1_MASK | TIMER2_MASK); /* Reset the IRQ of the FM chip */ opl3_command (ioaddr, TIMER_CONTROL_REGISTER, IRQ_RESET); if ((stat2 & 0xE0) != 0xc0) { return 0; /* * There is no YM3812 */ } /* * There is a FM chicp in this address. Detect the type (OPL2 to OPL4) */ if (signature == 0x06) /* OPL2 */ { opl3_enabled = 0; } else if (signature == 0x00) /* OPL3 or OPL4 */ { unsigned char tmp; if (!opl3_enabled) /* Was not already enabled */ { left_address = ioaddr; right_address = ioaddr + 2; opl3_enabled = 1; } /* * Detect availability of OPL4 (_experimental_). Works propably * only after a cold boot. In addition the OPL4 port * of the chip may not be connected to the PC bus at all. */ opl3_command (right_address, OPL3_MODE_REGISTER, 0x00); opl3_command (right_address, OPL3_MODE_REGISTER, OPL3_ENABLE | OPL4_ENABLE); if ((tmp = INB (ioaddr)) == 0x02) /* Have a OPL4 */ { opl4_enabled = 1; } opl3_command (right_address, OPL3_MODE_REGISTER, 0); } for (i = 0; i < 9; i++) opl3_command (ioaddr, KEYON_BLOCK + i, 0); /* * Note off */ opl3_command (ioaddr, TEST_REGISTER, ENABLE_WAVE_SELECT); opl3_command (ioaddr, PERCUSSION_REGISTER, 0x00); /* * Melodic mode. */ return 1; } static int opl3_kill_note (int dev, int voice, int note, int velocity) { struct physical_voice_info *map; if (voice < 0 || voice >= nr_voices) return 0; voice_alloc->map[voice] = 0; map = &physical_voices[logical_voices[voice]]; DEB (printk ("Kill note %d\n", voice)); if (map->voice_mode == 0) return 0; opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, voices[voice].keyon_byte & ~0x20); voices[voice].keyon_byte = 0; voices[voice].bender = 0; voices[voice].bender_range = 200; /* * 200 cents = 2 semitones */ voices[voice].orig_freq = 0; voices[voice].current_freq = 0; voices[voice].mode = 0; return 0; } #define HIHAT 0 #define CYMBAL 1 #define TOMTOM 2 #define SNARE 3 #define BDRUM 4 #define UNDEFINED TOMTOM #define DEFAULT TOMTOM static int store_instr (int instr_no, struct sbi_instrument *instr) { if (instr->key != FM_PATCH && (instr->key != OPL3_PATCH || !opl3_enabled)) printk ("FM warning: Invalid patch format field (key) 0x%x\n", instr->key); memcpy ((char *) &(instrmap[instr_no]), (char *) instr, sizeof (*instr)); return 0; } static int opl3_set_instr (int dev, int voice, int instr_no) { if (voice < 0 || voice >= nr_voices) return 0; if (instr_no < 0 || instr_no >= SBFM_MAXINSTR) return 0; active_instrument[voice] = &instrmap[instr_no]; return 0; } /* * The next table looks magical, but it certainly is not. Its values have * been calculated as table[i]=8*log(i/64)/log(2) with an obvious exception * for i=0. This log-table converts a linear volume-scaling (0..127) to a * logarithmic scaling as present in the FM-synthesizer chips. so : Volume * 64 = 0 db = relative volume 0 and: Volume 32 = -6 db = relative * volume -8 it was implemented as a table because it is only 128 bytes and * it saves a lot of log() calculations. (RH) */ char fm_volume_table[128] = {-64, -48, -40, -35, -32, -29, -27, -26, /* * 0 - 7 */ -24, -23, -21, -20, -19, -18, -18, -17, /* * 8 - 15 */ -16, -15, -15, -14, -13, -13, -12, -12, /* * 16 - 23 */ -11, -11, -10, -10, -10, -9, -9, -8, /* * 24 - 31 */ -8, -8, -7, -7, -7, -6, -6, -6, /* * 32 - 39 */ -5, -5, -5, -5, -4, -4, -4, -4, /* * 40 - 47 */ -3, -3, -3, -3, -2, -2, -2, -2, /* * 48 - 55 */ -2, -1, -1, -1, -1, 0, 0, 0, /* * 56 - 63 */ 0, 0, 0, 1, 1, 1, 1, 1, /* * 64 - 71 */ 1, 2, 2, 2, 2, 2, 2, 2, /* * 72 - 79 */ 3, 3, 3, 3, 3, 3, 3, 4, /* * 80 - 87 */ 4, 4, 4, 4, 4, 4, 4, 5, /* * 88 - 95 */ 5, 5, 5, 5, 5, 5, 5, 5, /* * 96 - 103 */ 6, 6, 6, 6, 6, 6, 6, 6, /* * 104 - 111 */ 6, 7, 7, 7, 7, 7, 7, 7, /* * 112 - 119 */ 7, 7, 7, 8, 8, 8, 8, 8}; /* * * * * 120 - 127 */ static void calc_vol (unsigned char *regbyte, int volume) { int level = (~*regbyte & 0x3f); if (level) level += fm_volume_table[volume]; if (level > 0x3f) level = 0x3f; if (level < 0) level = 0; *regbyte = (*regbyte & 0xc0) | (~level & 0x3f); } static void set_voice_volume (int voice, int volume) { unsigned char vol1, vol2, vol3, vol4; struct sbi_instrument *instr; struct physical_voice_info *map; if (voice < 0 || voice >= nr_voices) return; map = &physical_voices[logical_voices[voice]]; instr = active_instrument[voice]; if (!instr) instr = &instrmap[0]; if (instr->channel < 0) return; if (voices[voice].mode == 0) return; if (voices[voice].mode == 2) { /* * 2 OP voice */ vol1 = instr->operators[2]; vol2 = instr->operators[3]; if ((instr->operators[10] & 0x01)) { /* * Additive synthesis */ calc_vol (&vol1, volume); calc_vol (&vol2, volume); } else { /* * FM synthesis */ calc_vol (&vol2, volume); } opl3_command (map->ioaddr, KSL_LEVEL + map->op[0], vol1); /* * Modulator * volume */ opl3_command (map->ioaddr, KSL_LEVEL + map->op[1], vol2); /* * Carrier * volume */ } else { /* * 4 OP voice */ int connection; vol1 = instr->operators[2]; vol2 = instr->operators[3]; vol3 = instr->operators[OFFS_4OP + 2]; vol4 = instr->operators[OFFS_4OP + 3]; /* * The connection method for 4 OP voices is defined by the rightmost * bits at the offsets 10 and 10+OFFS_4OP */ connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01); switch (connection) { case 0: calc_vol (&vol4, volume); /* * Just the OP 4 is carrier */ break; case 1: calc_vol (&vol2, volume); calc_vol (&vol4, volume); break; case 2: calc_vol (&vol1, volume); calc_vol (&vol4, volume); break; case 3: calc_vol (&vol1, volume); calc_vol (&vol3, volume); calc_vol (&vol4, volume); break; default: /* * Why ?? */ ; } opl3_command (map->ioaddr, KSL_LEVEL + map->op[0], vol1); opl3_command (map->ioaddr, KSL_LEVEL + map->op[1], vol2); opl3_command (map->ioaddr, KSL_LEVEL + map->op[2], vol3); opl3_command (map->ioaddr, KSL_LEVEL + map->op[3], vol4); } } static int opl3_start_note (int dev, int voice, int note, int volume) { unsigned char data, fpc; int block, fnum, freq, voice_mode; struct sbi_instrument *instr; struct physical_voice_info *map; if (voice < 0 || voice >= nr_voices) return 0; map = &physical_voices[logical_voices[voice]]; if (map->voice_mode == 0) return 0; if (note == 255) /* * Just change the volume */ { set_voice_volume (voice, volume); return 0; } /* * Kill previous note before playing */ opl3_command (map->ioaddr, KSL_LEVEL + map->op[1], 0xff); /* * Carrier * volume to * min */ opl3_command (map->ioaddr, KSL_LEVEL + map->op[0], 0xff); /* * Modulator * volume to */ if (map->voice_mode == 4) { opl3_command (map->ioaddr, KSL_LEVEL + map->op[2], 0xff); opl3_command (map->ioaddr, KSL_LEVEL + map->op[3], 0xff); } opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, 0x00); /* * Note * off */ instr = active_instrument[voice]; if (!instr) instr = &instrmap[0]; if (instr->channel < 0) { printk ( "OPL3: Initializing voice %d with undefined instrument\n", voice); return 0; } if (map->voice_mode == 2 && instr->key == OPL3_PATCH) return 0; /* * Cannot play */ voice_mode = map->voice_mode; if (voice_mode == 4) { int voice_shift; voice_shift = (map->ioaddr == left_address) ? 0 : 3; voice_shift += map->voice_num; if (instr->key != OPL3_PATCH) /* * Just 2 OP patch */ { voice_mode = 2; connection_mask &= ~(1 << voice_shift); } else { connection_mask |= (1 << voice_shift); } opl3_command (right_address, CONNECTION_SELECT_REGISTER, connection_mask); } /* * Set Sound Characteristics */ opl3_command (map->ioaddr, AM_VIB + map->op[0], instr->operators[0]); opl3_command (map->ioaddr, AM_VIB + map->op[1], instr->operators[1]); /* * Set Attack/Decay */ opl3_command (map->ioaddr, ATTACK_DECAY + map->op[0], instr->operators[4]); opl3_command (map->ioaddr, ATTACK_DECAY + map->op[1], instr->operators[5]); /* * Set Sustain/Release */ opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[0], instr->operators[6]); opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[1], instr->operators[7]); /* * Set Wave Select */ opl3_command (map->ioaddr, WAVE_SELECT + map->op[0], instr->operators[8]); opl3_command (map->ioaddr, WAVE_SELECT + map->op[1], instr->operators[9]); /* * Set Feedback/Connection */ fpc = instr->operators[10]; if (!(fpc & 0x30)) fpc |= 0x30; /* * Ensure that at least one chn is enabled */ opl3_command (map->ioaddr, FEEDBACK_CONNECTION + map->voice_num, fpc); /* * If the voice is a 4 OP one, initialize the operators 3 and 4 also */ if (voice_mode == 4) { /* * Set Sound Characteristics */ opl3_command (map->ioaddr, AM_VIB + map->op[2], instr->operators[OFFS_4OP + 0]); opl3_command (map->ioaddr, AM_VIB + map->op[3], instr->operators[OFFS_4OP + 1]); /* * Set Attack/Decay */ opl3_command (map->ioaddr, ATTACK_DECAY + map->op[2], instr->operators[OFFS_4OP + 4]); opl3_command (map->ioaddr, ATTACK_DECAY + map->op[3], instr->operators[OFFS_4OP + 5]); /* * Set Sustain/Release */ opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[2], instr->operators[OFFS_4OP + 6]); opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[3], instr->operators[OFFS_4OP + 7]); /* * Set Wave Select */ opl3_command (map->ioaddr, WAVE_SELECT + map->op[2], instr->operators[OFFS_4OP + 8]); opl3_command (map->ioaddr, WAVE_SELECT + map->op[3], instr->operators[OFFS_4OP + 9]); /* * Set Feedback/Connection */ fpc = instr->operators[OFFS_4OP + 10]; if (!(fpc & 0x30)) fpc |= 0x30; /* * Ensure that at least one chn is enabled */ opl3_command (map->ioaddr, FEEDBACK_CONNECTION + map->voice_num + 3, fpc); } voices[voice].mode = voice_mode; set_voice_volume (voice, volume); freq = voices[voice].orig_freq = note_to_freq (note) / 1000; /* * Since the pitch bender may have been set before playing the note, we * have to calculate the bending now. */ freq = compute_finetune (voices[voice].orig_freq, voices[voice].bender, voices[voice].bender_range); voices[voice].current_freq = freq; freq_to_fnum (freq, &block, &fnum); /* * Play note */ data = fnum & 0xff; /* * Least significant bits of fnumber */ opl3_command (map->ioaddr, FNUM_LOW + map->voice_num, data); data = 0x20 | ((block & 0x7) << 2) | ((fnum >> 8) & 0x3); voices[voice].keyon_byte = data; opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, data); if (voice_mode == 4) opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num + 3, data); return 0; } static void freq_to_fnum (int freq, int *block, int *fnum) { int f, octave; /* * Converts the note frequency to block and fnum values for the FM chip */ /* * First try to compute the block -value (octave) where the note belongs */ f = freq; octave = 5; if (f == 0) octave = 0; else if (f < 261) { while (f < 261) { octave--; f <<= 1; } } else if (f > 493) { while (f > 493) { octave++; f >>= 1; } } if (octave > 7) octave = 7; *fnum = freq * (1 << (20 - octave)) / 49716; *block = octave; } static void opl3_command (int io_addr, unsigned int addr, unsigned int val) { int i; /* * The original 2-OP synth requires a quite long delay after writing to a * register. The OPL-3 survives with just two INBs */ OUTB ((unsigned char) (addr & 0xff), io_addr); /* * Select register * */ if (!opl3_enabled) tenmicrosec (); else for (i = 0; i < 2; i++) INB (io_addr); OUTB ((unsigned char) (val & 0xff), io_addr + 1); /* * Write to register * */ if (!opl3_enabled) { tenmicrosec (); tenmicrosec (); tenmicrosec (); } else for (i = 0; i < 2; i++) INB (io_addr); } static void opl3_reset (int dev) { int i; for (i = 0; i < nr_voices; i++) { opl3_command (physical_voices[logical_voices[i]].ioaddr, KSL_LEVEL + physical_voices[logical_voices[i]].op[0], 0xff); opl3_command (physical_voices[logical_voices[i]].ioaddr, KSL_LEVEL + physical_voices[logical_voices[i]].op[1], 0xff); if (physical_voices[logical_voices[i]].voice_mode == 4) { opl3_command (physical_voices[logical_voices[i]].ioaddr, KSL_LEVEL + physical_voices[logical_voices[i]].op[2], 0xff); opl3_command (physical_voices[logical_voices[i]].ioaddr, KSL_LEVEL + physical_voices[logical_voices[i]].op[3], 0xff); } opl3_kill_note (dev, i, 0, 64); } if (opl3_enabled) { voice_alloc->max_voice = nr_voices = 18; for (i = 0; i < 18; i++) logical_voices[i] = i; for (i = 0; i < 18; i++) physical_voices[i].voice_mode = 2; } } static int opl3_open (int dev, int mode) { int i; if (!opl3_ok) return RET_ERROR (ENXIO); if (opl3_busy) return RET_ERROR (EBUSY); opl3_busy = 1; voice_alloc->max_voice = nr_voices = opl3_enabled ? 18 : 9; voice_alloc->timestamp = 0; for (i = 0; i < 18; i++) { voice_alloc->map[i] = 0; voice_alloc->alloc_times[i] = 0; } connection_mask = 0x00; /* * Just 2 OP voices */ if (opl3_enabled) opl3_command (right_address, CONNECTION_SELECT_REGISTER, connection_mask); return 0; } static void opl3_close (int dev) { opl3_busy = 0; voice_alloc->max_voice = nr_voices = opl3_enabled ? 18 : 9; fm_info.nr_drums = 0; fm_info.perc_mode = 0; opl3_reset (dev); } static void opl3_hw_control (int dev, unsigned char *event) { } static int opl3_load_patch (int dev, int format, snd_rw_buf * addr, int offs, int count, int pmgr_flag) { struct sbi_instrument ins; if (count < sizeof (ins)) { printk ("FM Error: Patch record too short\n"); return RET_ERROR (EINVAL); } COPY_FROM_USER (&((char *) &ins)[offs], (char *) addr, offs, sizeof (ins) - offs); if (ins.channel < 0 || ins.channel >= SBFM_MAXINSTR) { printk ("FM Error: Invalid instrument number %d\n", ins.channel); return RET_ERROR (EINVAL); } ins.key = format; return store_instr (ins.channel, &ins); } static void opl3_panning (int dev, int voice, int pressure) { } static void opl3_volume_method (int dev, int mode) { } #define SET_VIBRATO(cell) { \ tmp = instr->operators[(cell-1)+(((cell-1)/2)*OFFS_4OP)]; \ if (pressure > 110) \ tmp |= 0x40; /* Vibrato on */ \ opl3_command (map->ioaddr, AM_VIB + map->op[cell-1], tmp);} static void opl3_aftertouch (int dev, int voice, int pressure) { int tmp; struct sbi_instrument *instr; struct physical_voice_info *map; if (voice < 0 || voice >= nr_voices) return; map = &physical_voices[logical_voices[voice]]; DEB (printk ("Aftertouch %d\n", voice)); if (map->voice_mode == 0) return; /* * Adjust the amount of vibrato depending the pressure */ instr = active_instrument[voice]; if (!instr) instr = &instrmap[0]; if (voices[voice].mode == 4) { int connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01); switch (connection) { case 0: SET_VIBRATO (4); break; case 1: SET_VIBRATO (2); SET_VIBRATO (4); break; case 2: SET_VIBRATO (1); SET_VIBRATO (4); break; case 3: SET_VIBRATO (1); SET_VIBRATO (3); SET_VIBRATO (4); break; } /* * Not implemented yet */ } else { SET_VIBRATO (1); if ((instr->operators[10] & 0x01)) /* * Additive synthesis */ SET_VIBRATO (2); } } #undef SET_VIBRATO static void bend_pitch (int dev, int voice, int value) { unsigned char data; int block, fnum, freq; struct physical_voice_info *map; map = &physical_voices[logical_voices[voice]]; if (map->voice_mode == 0) return; voices[voice].bender = value; if (!value) return; if (!(voices[voice].keyon_byte & 0x20)) return; /* * Not keyed on */ freq = compute_finetune (voices[voice].orig_freq, voices[voice].bender, voices[voice].bender_range); voices[voice].current_freq = freq; freq_to_fnum (freq, &block, &fnum); data = fnum & 0xff; /* * Least significant bits of fnumber */ opl3_command (map->ioaddr, FNUM_LOW + map->voice_num, data); data = 0x20 | ((block & 0x7) << 2) | ((fnum >> 8) & 0x3); /* * * * KEYON|OCTAVE|MS * * * bits * * * of * f-num * */ voices[voice].keyon_byte = data; opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, data); } static void opl3_controller (int dev, int voice, int ctrl_num, int value) { if (voice < 0 || voice >= nr_voices) return; switch (ctrl_num) { case CTRL_PITCH_BENDER: bend_pitch (dev, voice, value); break; case CTRL_PITCH_BENDER_RANGE: voices[voice].bender_range = value; break; } } static int opl3_patchmgr (int dev, struct patmgr_info *rec) { return RET_ERROR (EINVAL); } static void opl3_bender (int dev, int voice, int value) { if (voice < 0 || voice >= nr_voices) return; bend_pitch (dev, voice, value); } static int opl3_alloc_voice (int dev, int chn, int note, struct voice_alloc_info *alloc) { int i, p, best, first, avail_voices, best_time = 0x7fffffff; struct sbi_instrument *instr; int is4op; int instr_no; if (chn < 0 || chn > 15) instr_no = 0; else instr_no = chn_info[chn].pgm_num; instr = &instrmap[instr_no]; if (instr->channel < 0 || /* Instrument not loaded */ nr_voices != 12) /* Not in 4 OP mode */ is4op = 0; else if (nr_voices == 12) /* 4 OP mode */ is4op = (instr->key == OPL3_PATCH); else is4op = 0; if (is4op) { first = p = 0; avail_voices = 6; } else { if (nr_voices == 12) /* 4 OP mode. Use the '2 OP only' voices first */ first = p = 6; else first = p = 0; avail_voices = nr_voices; } /* * Now try to find a free voice */ best = first; for (i = 0; i < avail_voices; i++) { if (alloc->map[p] == 0) { return p; } if (alloc->alloc_times[p] < best_time) /* Find oldest playing note */ { best_time = alloc->alloc_times[p]; best = p; } p = (p + 1) % avail_voices; } /* * Insert some kind of priority mechanism here. */ if (best < 0) best = 0; if (best > nr_voices) best -= nr_voices; return best; /* All voices in use. Select the first one. */ } static void opl3_setup_voice (int dev, int voice, int chn) { struct channel_info *info = &synth_devs[dev]->chn_info[chn]; opl3_set_instr (dev, voice, info->pgm_num); voices[voice].bender = info->bender_value; } static struct synth_operations opl3_operations = { &fm_info, 0, SYNTH_TYPE_FM, FM_TYPE_ADLIB, opl3_open, opl3_close, opl3_ioctl, opl3_kill_note, opl3_start_note, opl3_set_instr, opl3_reset, opl3_hw_control, opl3_load_patch, opl3_aftertouch, opl3_controller, opl3_panning, opl3_volume_method, opl3_patchmgr, opl3_bender, opl3_alloc_voice, opl3_setup_voice }; long opl3_init (long mem_start) { int i; PERMANENT_MALLOC (struct sbi_instrument *, instrmap, SBFM_MAXINSTR * sizeof (*instrmap), mem_start); if (num_synths >= MAX_SYNTH_DEV) printk ("OPL3 Error: Too many synthesizers\n"); else { synth_devs[num_synths++] = &opl3_operations; voice_alloc = &opl3_operations.alloc; chn_info = &opl3_operations.chn_info[0]; } fm_model = 0; opl3_ok = 1; if (opl3_enabled) { if (opl4_enabled) #if defined(__FreeBSD__) printk ("opl0: "); else printk ("opl0: "); #else printk (" "); else printk (" "); #endif fm_model = 2; voice_alloc->max_voice = nr_voices = 18; fm_info.nr_drums = 0; fm_info.capabilities |= SYNTH_CAP_OPL3; strcpy (fm_info.name, "Yamaha OPL-3"); for (i = 0; i < 18; i++) if (physical_voices[i].ioaddr == USE_LEFT) physical_voices[i].ioaddr = left_address; else physical_voices[i].ioaddr = right_address; opl3_command (right_address, OPL3_MODE_REGISTER, OPL3_ENABLE); /* * Enable * OPL-3 * mode */ opl3_command (right_address, CONNECTION_SELECT_REGISTER, 0x00); /* * Select * all * 2-OP * * * voices */ } else { #if defined(__FreeBSD__) printk ("opl0: "); #else printk (" "); #endif fm_model = 1; voice_alloc->max_voice = nr_voices = 9; fm_info.nr_drums = 0; for (i = 0; i < 18; i++) physical_voices[i].ioaddr = left_address; }; already_initialized = 1; for (i = 0; i < SBFM_MAXINSTR; i++) instrmap[i].channel = -1; return mem_start; } #endif