/* * Copyright (c) Comtrol Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted prodived that the follwoing conditions * are met. * 1. Redistributions of source code must retain the above copyright * notive, this list of conditions and the following disclainer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials prodided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Comtrol Corporation. * 4. The name of Comtrol Corporation may not be used to endorse or * promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY COMTROL CORPORATION ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL COMTROL CORPORATION BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, LIFE OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * rp.c - for RocketPort FreeBSD */ #include "opt_compat.h" #include #include #include #include #include #include #include #include #include #include #include #define ROCKET_C #include #include #ifndef TRUE #define TRUE 1 #endif #ifndef FALSE #define FALSE 0 #endif static Byte_t RData[RDATASIZE] = { 0x00, 0x09, 0xf6, 0x82, 0x02, 0x09, 0x86, 0xfb, 0x04, 0x09, 0x00, 0x0a, 0x06, 0x09, 0x01, 0x0a, 0x08, 0x09, 0x8a, 0x13, 0x0a, 0x09, 0xc5, 0x11, 0x0c, 0x09, 0x86, 0x85, 0x0e, 0x09, 0x20, 0x0a, 0x10, 0x09, 0x21, 0x0a, 0x12, 0x09, 0x41, 0xff, 0x14, 0x09, 0x82, 0x00, 0x16, 0x09, 0x82, 0x7b, 0x18, 0x09, 0x8a, 0x7d, 0x1a, 0x09, 0x88, 0x81, 0x1c, 0x09, 0x86, 0x7a, 0x1e, 0x09, 0x84, 0x81, 0x20, 0x09, 0x82, 0x7c, 0x22, 0x09, 0x0a, 0x0a }; static Byte_t RRegData[RREGDATASIZE]= { 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */ 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */ 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */ 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */ 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */ 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */ 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */ 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */ 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */ 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */ 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */ 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */ 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */ }; static CONTROLLER_T sController[CTL_SIZE] = { {-1,-1,0,0,0,0,0,0,0,0,0,{0,0,0,0},{0,0,0,0},{-1,-1,-1,-1},{0,0,0,0}}, {-1,-1,0,0,0,0,0,0,0,0,0,{0,0,0,0},{0,0,0,0},{-1,-1,-1,-1},{0,0,0,0}}, {-1,-1,0,0,0,0,0,0,0,0,0,{0,0,0,0},{0,0,0,0},{-1,-1,-1,-1},{0,0,0,0}}, {-1,-1,0,0,0,0,0,0,0,0,0,{0,0,0,0},{0,0,0,0},{-1,-1,-1,-1},{0,0,0,0}} }; #if 0 /* IRQ number to MUDBAC register 2 mapping */ Byte_t sIRQMap[16] = { 0,0,0,0x10,0x20,0x30,0,0,0,0x40,0x50,0x60,0x70,0,0,0x80 }; #endif static Byte_t sBitMapClrTbl[8] = { 0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f }; static Byte_t sBitMapSetTbl[8] = { 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80 }; /*************************************************************************** Function: sInitController Purpose: Initialization of controller global registers and controller structure. Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize, IRQNum,Frequency,PeriodicOnly) CONTROLLER_T *CtlP; Ptr to controller structure int CtlNum; Controller number ByteIO_t MudbacIO; Mudbac base I/O address. ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. This list must be in the order the AIOPs will be found on the controller. Once an AIOP in the list is not found, it is assumed that there are no more AIOPs on the controller. int AiopIOListSize; Number of addresses in AiopIOList int IRQNum; Interrupt Request number. Can be any of the following: 0: Disable global interrupts 3: IRQ 3 4: IRQ 4 5: IRQ 5 9: IRQ 9 10: IRQ 10 11: IRQ 11 12: IRQ 12 15: IRQ 15 Byte_t Frequency: A flag identifying the frequency of the periodic interrupt, can be any one of the following: FREQ_DIS - periodic interrupt disabled FREQ_137HZ - 137 Hertz FREQ_69HZ - 69 Hertz FREQ_34HZ - 34 Hertz FREQ_17HZ - 17 Hertz FREQ_9HZ - 9 Hertz FREQ_4HZ - 4 Hertz If IRQNum is set to 0 the Frequency parameter is overidden, it is forced to a value of FREQ_DIS. int PeriodicOnly: TRUE if all interrupts except the periodic interrupt are to be blocked. FALSE is both the periodic interrupt and other channel interrupts are allowed. If IRQNum is set to 0 the PeriodicOnly parameter is overidden, it is forced to a value of FALSE. Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller initialization failed. Comments: If periodic interrupts are to be disabled but AIOP interrupts are allowed, set Frequency to FREQ_DIS and PeriodicOnly to FALSE. If interrupts are to be completely disabled set IRQNum to 0. Setting Frequency to FREQ_DIS and PeriodicOnly to TRUE is an invalid combination. This function performs initialization of global interrupt modes, but it does not actually enable global interrupts. To enable and disable global interrupts use functions sEnGlobalInt() and sDisGlobalInt(). Enabling of global interrupts is normally not done until all other initializations are complete. Even if interrupts are globally enabled, they must also be individually enabled for each channel that is to generate interrupts. Warnings: No range checking on any of the parameters is done. No context switches are allowed while executing this function. After this function all AIOPs on the controller are disabled, they can be enabled with sEnAiop(). */ int sInitController( CONTROLLER_T *CtlP, int CtlNum, ByteIO_t MudbacIO, ByteIO_t *AiopIOList, int AiopIOListSize, int IRQNum, Byte_t Frequency, int PeriodicOnly) { int i; ByteIO_t io; CtlP->CtlNum = CtlNum; CtlP->BusType = isISA; CtlP->CtlID = CTLID_0001; /* controller release 1 */ CtlP->MBaseIO = MudbacIO; CtlP->MReg1IO = MudbacIO + 1; CtlP->MReg2IO = MudbacIO + 2; CtlP->MReg3IO = MudbacIO + 3; #if 1 CtlP->MReg2 = 0; /* interrupt disable */ CtlP->MReg3 = 0; /* no periodic interrupts */ #else if(sIRQMap[IRQNum] == 0) /* interrupts globally disabled */ { CtlP->MReg2 = 0; /* interrupt disable */ CtlP->MReg3 = 0; /* no periodic interrupts */ } else { CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */ CtlP->MReg3 = Frequency; /* set frequency */ if(PeriodicOnly) /* periodic interrupt only */ { CtlP->MReg3 |= PERIODIC_ONLY; } } #endif sOutB(CtlP->MReg2IO,CtlP->MReg2); sOutB(CtlP->MReg3IO,CtlP->MReg3); sControllerEOI(CtlP); /* clear EOI if warm init */ /* Init AIOPs */ CtlP->NumAiop = 0; for(i=0; i < AiopIOListSize; i++) { io = AiopIOList[i]; CtlP->AiopIO[i] = (WordIO_t)io; CtlP->AiopIntChanIO[i] = io + _INT_CHAN; sOutB(CtlP->MReg2IO,CtlP->MReg2 | (i & 0x03)); /* AIOP index */ sOutB(MudbacIO,(Byte_t)(io >> 6)); /* set up AIOP I/O in MUDBAC */ sEnAiop(CtlP,i); /* enable the AIOP */ CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ if(CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ { sDisAiop(CtlP,i); /* disable AIOP */ break; /* done looking for AIOPs */ } CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t)io); /* num channels in AIOP */ sOutW((WordIO_t)io + _INDX_ADDR,_CLK_PRE); /* clock prescaler */ sOutB(io + _INDX_DATA,CLOCK_PRESC); CtlP->NumAiop++; /* bump count of AIOPs */ sDisAiop(CtlP,i); /* disable AIOP */ } if(CtlP->NumAiop == 0) return(-1); else return(CtlP->NumAiop); } int sPCIInitController( CONTROLLER_T *CtlP, int CtlNum, ByteIO_t *AiopIOList, int AiopIOListSize, int IRQNum, Byte_t Frequency, int PeriodicOnly) { int i; ByteIO_t io; CtlP->CtlNum = CtlNum; CtlP->BusType = isPCI; CtlP->CtlID = CTLID_0001; /* controller release 1 */ CtlP->PCIIO = (WordIO_t)((ByteIO_t)AiopIOList[0] + _PCI_INT_FUNC); sPCIControllerEOI(CtlP); /* Init AIOPs */ CtlP->NumAiop = 0; for(i=0; i < AiopIOListSize; i++) { io = AiopIOList[i]; CtlP->AiopIO[i] = (WordIO_t)io; CtlP->AiopIntChanIO[i] = io + _INT_CHAN; CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ if(CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ { break; /* done looking for AIOPs */ } CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t)io); /* num channels in AIOP */ sOutW((WordIO_t)io + _INDX_ADDR,_CLK_PRE); /* clock prescaler */ sOutB(io + _INDX_DATA,CLOCK_PRESC); CtlP->NumAiop++; /* bump count of AIOPs */ } if(CtlP->NumAiop == 0) return(-1); else return(CtlP->NumAiop); } /*************************************************************************** Function: sReadAiopID Purpose: Read the AIOP idenfication number directly from an AIOP. Call: sReadAiopID(io) ByteIO_t io: AIOP base I/O address Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X is replace by an identifying number. Flag AIOPID_NULL if no valid AIOP is found Warnings: No context switches are allowed while executing this function. */ int sReadAiopID(ByteIO_t io) { Byte_t AiopID; /* ID byte from AIOP */ sOutB(io + _CMD_REG,RESET_ALL); /* reset AIOP */ sOutB(io + _CMD_REG,0x0); AiopID = sInB(io + _CHN_STAT0) & 0x07; if(AiopID == 0x06) return(1); else /* AIOP does not exist */ return(-1); } /*************************************************************************** Function: sReadAiopNumChan Purpose: Read the number of channels available in an AIOP directly from an AIOP. Call: sReadAiopNumChan(io) WordIO_t io: AIOP base I/O address Return: int: The number of channels available Comments: The number of channels is determined by write/reads from identical offsets within the SRAM address spaces for channels 0 and 4. If the channel 4 space is mirrored to channel 0 it is a 4 channel AIOP, otherwise it is an 8 channel. Warnings: No context switches are allowed while executing this function. */ int sReadAiopNumChan(WordIO_t io) { Word_t x; sOutDW((DWordIO_t)io + _INDX_ADDR,0x12340000L); /* write to chan 0 SRAM */ sOutW(io + _INDX_ADDR,0); /* read from SRAM, chan 0 */ x = sInW(io + _INDX_DATA); sOutW(io + _INDX_ADDR,0x4000); /* read from SRAM, chan 4 */ if(x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */ return(8); else return(4); } /*************************************************************************** Function: sInitChan Purpose: Initialization of a channel and channel structure Call: sInitChan(CtlP,ChP,AiopNum,ChanNum) CONTROLLER_T *CtlP; Ptr to controller structure CHANNEL_T *ChP; Ptr to channel structure int AiopNum; AIOP number within controller int ChanNum; Channel number within AIOP Return: int: TRUE if initialization succeeded, FALSE if it fails because channel number exceeds number of channels available in AIOP. Comments: This function must be called before a channel can be used. Warnings: No range checking on any of the parameters is done. No context switches are allowed while executing this function. */ int sInitChan( CONTROLLER_T *CtlP, CHANNEL_T *ChP, int AiopNum, int ChanNum) { int i; WordIO_t AiopIO; WordIO_t ChIOOff; Byte_t *ChR; Word_t ChOff; static Byte_t R[4]; if(ChanNum >= CtlP->AiopNumChan[AiopNum]) return(FALSE); /* exceeds num chans in AIOP */ /* Channel, AIOP, and controller identifiers */ ChP->CtlP = CtlP; ChP->ChanID = CtlP->AiopID[AiopNum]; ChP->AiopNum = AiopNum; ChP->ChanNum = ChanNum; /* Global direct addresses */ AiopIO = CtlP->AiopIO[AiopNum]; ChP->Cmd = (ByteIO_t)AiopIO + _CMD_REG; ChP->IntChan = (ByteIO_t)AiopIO + _INT_CHAN; ChP->IntMask = (ByteIO_t)AiopIO + _INT_MASK; ChP->IndexAddr = (DWordIO_t)AiopIO + _INDX_ADDR; ChP->IndexData = AiopIO + _INDX_DATA; /* Channel direct addresses */ ChIOOff = AiopIO + ChP->ChanNum * 2; ChP->TxRxData = ChIOOff + _TD0; ChP->ChanStat = ChIOOff + _CHN_STAT0; ChP->TxRxCount = ChIOOff + _FIFO_CNT0; ChP->IntID = (ByteIO_t)AiopIO + ChP->ChanNum + _INT_ID0; /* Initialize the channel from the RData array */ for(i=0; i < RDATASIZE; i+=4) { R[0] = RData[i]; R[1] = RData[i+1] + 0x10 * ChanNum; R[2] = RData[i+2]; R[3] = RData[i+3]; sOutDW(ChP->IndexAddr,*((DWord_t *)&R[0])); } ChR = ChP->R; for(i=0; i < RREGDATASIZE; i+=4) { ChR[i] = RRegData[i]; ChR[i+1] = RRegData[i+1] + 0x10 * ChanNum; ChR[i+2] = RRegData[i+2]; ChR[i+3] = RRegData[i+3]; } /* Indexed registers */ ChOff = (Word_t)ChanNum * 0x1000; ChP->BaudDiv[0] = (Byte_t)(ChOff + _BAUD); ChP->BaudDiv[1] = (Byte_t)((ChOff + _BAUD) >> 8); ChP->BaudDiv[2] = (Byte_t)BRD9600; ChP->BaudDiv[3] = (Byte_t)(BRD9600 >> 8); sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->BaudDiv[0]); ChP->TxControl[0] = (Byte_t)(ChOff + _TX_CTRL); ChP->TxControl[1] = (Byte_t)((ChOff + _TX_CTRL) >> 8); ChP->TxControl[2] = 0; ChP->TxControl[3] = 0; sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxControl[0]); ChP->RxControl[0] = (Byte_t)(ChOff + _RX_CTRL); ChP->RxControl[1] = (Byte_t)((ChOff + _RX_CTRL) >> 8); ChP->RxControl[2] = 0; ChP->RxControl[3] = 0; sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->RxControl[0]); ChP->TxEnables[0] = (Byte_t)(ChOff + _TX_ENBLS); ChP->TxEnables[1] = (Byte_t)((ChOff + _TX_ENBLS) >> 8); ChP->TxEnables[2] = 0; ChP->TxEnables[3] = 0; sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxEnables[0]); ChP->TxCompare[0] = (Byte_t)(ChOff + _TXCMP1); ChP->TxCompare[1] = (Byte_t)((ChOff + _TXCMP1) >> 8); ChP->TxCompare[2] = 0; ChP->TxCompare[3] = 0; sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxCompare[0]); ChP->TxReplace1[0] = (Byte_t)(ChOff + _TXREP1B1); ChP->TxReplace1[1] = (Byte_t)((ChOff + _TXREP1B1) >> 8); ChP->TxReplace1[2] = 0; ChP->TxReplace1[3] = 0; sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxReplace1[0]); ChP->TxReplace2[0] = (Byte_t)(ChOff + _TXREP2); ChP->TxReplace2[1] = (Byte_t)((ChOff + _TXREP2) >> 8); ChP->TxReplace2[2] = 0; ChP->TxReplace2[3] = 0; sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxReplace2[0]); ChP->TxFIFOPtrs = ChOff + _TXF_OUTP; ChP->TxFIFO = ChOff + _TX_FIFO; sOutB(ChP->Cmd,(Byte_t)ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */ sOutB(ChP->Cmd,(Byte_t)ChanNum); /* remove reset Tx FIFO count */ sOutW((WordIO_t)ChP->IndexAddr,ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ sOutW(ChP->IndexData,0); ChP->RxFIFOPtrs = ChOff + _RXF_OUTP; ChP->RxFIFO = ChOff + _RX_FIFO; sOutB(ChP->Cmd,(Byte_t)ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */ sOutB(ChP->Cmd,(Byte_t)ChanNum); /* remove reset Rx FIFO count */ sOutW((WordIO_t)ChP->IndexAddr,ChP->RxFIFOPtrs); /* clear Rx out ptr */ sOutW(ChP->IndexData,0); sOutW((WordIO_t)ChP->IndexAddr,ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ sOutW(ChP->IndexData,0); ChP->TxPrioCnt = ChOff + _TXP_CNT; sOutW((WordIO_t)ChP->IndexAddr,ChP->TxPrioCnt); sOutB(ChP->IndexData,0); ChP->TxPrioPtr = ChOff + _TXP_PNTR; sOutW((WordIO_t)ChP->IndexAddr,ChP->TxPrioPtr); sOutB(ChP->IndexData,0); ChP->TxPrioBuf = ChOff + _TXP_BUF; sEnRxProcessor(ChP); /* start the Rx processor */ return(TRUE); } /*************************************************************************** Function: sStopRxProcessor Purpose: Stop the receive processor from processing a channel. Call: sStopRxProcessor(ChP) CHANNEL_T *ChP; Ptr to channel structure Comments: The receive processor can be started again with sStartRxProcessor(). This function causes the receive processor to skip over the stopped channel. It does not stop it from processing other channels. Warnings: No context switches are allowed while executing this function. Do not leave the receive processor stopped for more than one character time. After calling this function a delay of 4 uS is required to ensure that the receive processor is no longer processing this channel. */ void sStopRxProcessor(CHANNEL_T *ChP) { Byte_t R[4]; R[0] = ChP->R[0]; R[1] = ChP->R[1]; R[2] = 0x0a; R[3] = ChP->R[3]; sOutDW(ChP->IndexAddr,*(DWord_t *)&R[0]); } /*************************************************************************** Function: sFlushRxFIFO Purpose: Flush the Rx FIFO Call: sFlushRxFIFO(ChP) CHANNEL_T *ChP; Ptr to channel structure Return: void Comments: To prevent data from being enqueued or dequeued in the Tx FIFO while it is being flushed the receive processor is stopped and the transmitter is disabled. After these operations a 4 uS delay is done before clearing the pointers to allow the receive processor to stop. These items are handled inside this function. Warnings: No context switches are allowed while executing this function. */ void sFlushRxFIFO(CHANNEL_T *ChP) { int i; Byte_t Ch; /* channel number within AIOP */ int RxFIFOEnabled; /* TRUE if Rx FIFO enabled */ if(sGetRxCnt(ChP) == 0) /* Rx FIFO empty */ return; /* don't need to flush */ RxFIFOEnabled = FALSE; if(ChP->R[0x32] == 0x08) /* Rx FIFO is enabled */ { RxFIFOEnabled = TRUE; sDisRxFIFO(ChP); /* disable it */ for(i=0; i < 2000/200; i++) /* delay 2 uS to allow proc to disable FIFO*/ sInB(ChP->IntChan); /* depends on bus i/o timing */ } sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */ Ch = (Byte_t)sGetChanNum(ChP); sOutB(ChP->Cmd,Ch | RESRXFCNT); /* apply reset Rx FIFO count */ sOutB(ChP->Cmd,Ch); /* remove reset Rx FIFO count */ sOutW((WordIO_t)ChP->IndexAddr,ChP->RxFIFOPtrs); /* clear Rx out ptr */ sOutW(ChP->IndexData,0); sOutW((WordIO_t)ChP->IndexAddr,ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ sOutW(ChP->IndexData,0); if(RxFIFOEnabled) sEnRxFIFO(ChP); /* enable Rx FIFO */ } /*************************************************************************** Function: sFlushTxFIFO Purpose: Flush the Tx FIFO Call: sFlushTxFIFO(ChP) CHANNEL_T *ChP; Ptr to channel structure Return: void Comments: To prevent data from being enqueued or dequeued in the Tx FIFO while it is being flushed the receive processor is stopped and the transmitter is disabled. After these operations a 4 uS delay is done before clearing the pointers to allow the receive processor to stop. These items are handled inside this function. Warnings: No context switches are allowed while executing this function. */ void sFlushTxFIFO(CHANNEL_T *ChP) { int i; Byte_t Ch; /* channel number within AIOP */ int TxEnabled; /* TRUE if transmitter enabled */ if(sGetTxCnt(ChP) == 0) /* Tx FIFO empty */ return; /* don't need to flush */ TxEnabled = FALSE; if(ChP->TxControl[3] & TX_ENABLE) { TxEnabled = TRUE; sDisTransmit(ChP); /* disable transmitter */ } sStopRxProcessor(ChP); /* stop Rx processor */ for(i = 0; i < 4000/200; i++) /* delay 4 uS to allow proc to stop */ sInB(ChP->IntChan); /* depends on bus i/o timing */ Ch = (Byte_t)sGetChanNum(ChP); sOutB(ChP->Cmd,Ch | RESTXFCNT); /* apply reset Tx FIFO count */ sOutB(ChP->Cmd,Ch); /* remove reset Tx FIFO count */ sOutW((WordIO_t)ChP->IndexAddr,ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ sOutW(ChP->IndexData,0); if(TxEnabled) sEnTransmit(ChP); /* enable transmitter */ sStartRxProcessor(ChP); /* restart Rx processor */ } /*************************************************************************** Function: sWriteTxPrioByte Purpose: Write a byte of priority transmit data to a channel Call: sWriteTxPrioByte(ChP,Data) CHANNEL_T *ChP; Ptr to channel structure Byte_t Data; The transmit data byte Return: int: 1 if the bytes is successfully written, otherwise 0. Comments: The priority byte is transmitted before any data in the Tx FIFO. Warnings: No context switches are allowed while executing this function. */ int sWriteTxPrioByte(CHANNEL_T *ChP, Byte_t Data) { Byte_t DWBuf[4]; /* buffer for double word writes */ Word_t *WordPtr; /* must be far because Win SS != DS */ register DWordIO_t IndexAddr; if(sGetTxCnt(ChP) > 1) /* write it to Tx priority buffer */ { IndexAddr = ChP->IndexAddr; sOutW((WordIO_t)IndexAddr,ChP->TxPrioCnt); /* get priority buffer status */ if(sInB((ByteIO_t)ChP->IndexData) & PRI_PEND) /* priority buffer busy */ return(0); /* nothing sent */ WordPtr = (Word_t *)(&DWBuf[0]); *WordPtr = ChP->TxPrioBuf; /* data byte address */ DWBuf[2] = Data; /* data byte value */ sOutDW(IndexAddr,*((DWord_t *)(&DWBuf[0]))); /* write it out */ *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */ DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */ DWBuf[3] = 0; /* priority buffer pointer */ sOutDW(IndexAddr,*((DWord_t *)(&DWBuf[0]))); /* write it out */ } else /* write it to Tx FIFO */ { sWriteTxByte(sGetTxRxDataIO(ChP),Data); } return(1); /* 1 byte sent */ } /*************************************************************************** Function: sEnInterrupts Purpose: Enable one or more interrupts for a channel Call: sEnInterrupts(ChP,Flags) CHANNEL_T *ChP; Ptr to channel structure Word_t Flags: Interrupt enable flags, can be any combination of the following flags: TXINT_EN: Interrupt on Tx FIFO empty RXINT_EN: Interrupt on Rx FIFO at trigger level (see sSetRxTrigger()) SRCINT_EN: Interrupt on SRC (Special Rx Condition) MCINT_EN: Interrupt on modem input change CHANINT_EN: Allow channel interrupt signal to the AIOP's Interrupt Channel Register. Return: void Comments: If an interrupt enable flag is set in Flags, that interrupt will be enabled. If an interrupt enable flag is not set in Flags, that interrupt will not be changed. Interrupts can be disabled with function sDisInterrupts(). This function sets the appropriate bit for the channel in the AIOP's Interrupt Mask Register if the CHANINT_EN flag is set. This allows this channel's bit to be set in the AIOP's Interrupt Channel Register. Interrupts must also be globally enabled before channel interrupts will be passed on to the host. This is done with function sEnGlobalInt(). In some cases it may be desirable to disable interrupts globally but enable channel interrupts. This would allow the global interrupt status register to be used to determine which AIOPs need service. */ void sEnInterrupts(CHANNEL_T *ChP,Word_t Flags) { Byte_t Mask; /* Interrupt Mask Register */ ChP->RxControl[2] |= ((Byte_t)Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->RxControl[0]); ChP->TxControl[2] |= ((Byte_t)Flags & TXINT_EN); sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxControl[0]); if(Flags & CHANINT_EN) { Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum]; sOutB(ChP->IntMask,Mask); } } /*************************************************************************** Function: sDisInterrupts Purpose: Disable one or more interrupts for a channel Call: sDisInterrupts(ChP,Flags) CHANNEL_T *ChP; Ptr to channel structure Word_t Flags: Interrupt flags, can be any combination of the following flags: TXINT_EN: Interrupt on Tx FIFO empty RXINT_EN: Interrupt on Rx FIFO at trigger level (see sSetRxTrigger()) SRCINT_EN: Interrupt on SRC (Special Rx Condition) MCINT_EN: Interrupt on modem input change CHANINT_EN: Disable channel interrupt signal to the AIOP's Interrupt Channel Register. Return: void Comments: If an interrupt flag is set in Flags, that interrupt will be disabled. If an interrupt flag is not set in Flags, that interrupt will not be changed. Interrupts can be enabled with function sEnInterrupts(). This function clears the appropriate bit for the channel in the AIOP's Interrupt Mask Register if the CHANINT_EN flag is set. This blocks this channel's bit from being set in the AIOP's Interrupt Channel Register. */ void sDisInterrupts(CHANNEL_T *ChP,Word_t Flags) { Byte_t Mask; /* Interrupt Mask Register */ ChP->RxControl[2] &= ~((Byte_t)Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->RxControl[0]); ChP->TxControl[2] &= ~((Byte_t)Flags & TXINT_EN); sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxControl[0]); if(Flags & CHANINT_EN) { Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum]; sOutB(ChP->IntMask,Mask); } } /********************************************************************* Begin FreeBsd-specific driver code **********************************************************************/ static int rpprobe __P((struct isa_device *)); static int rpattach __P((struct isa_device *)); static const char* rp_pciprobe(pcici_t tag, pcidi_t type); static void rp_pciattach(pcici_t tag, int unit); static u_long rp_pcicount; static struct pci_device rp_pcidevice = { "rp", rp_pciprobe, rp_pciattach, &rp_pcicount, NULL }; COMPAT_PCI_DRIVER (rp_pci, rp_pcidevice); static timeout_t rpdtrwakeup; struct isa_driver rpdriver = { INTR_TYPE_TTY, rpprobe, rpattach, "rp" }; COMPAT_ISA_DRIVER(rp, rpdriver); static char driver_name[] = "rp"; static d_open_t rpopen; static d_close_t rpclose; static d_write_t rpwrite; static d_ioctl_t rpioctl; #define CDEV_MAJOR 81 static struct cdevsw rp_cdevsw = { /* open */ rpopen, /* close */ rpclose, /* read */ ttyread, /* write */ rpwrite, /* ioctl */ rpioctl, /* poll */ ttypoll, /* mmap */ nommap, /* strategy */ nostrategy, /* name */ driver_name, /* maj */ CDEV_MAJOR, /* dump */ nodump, /* psize */ nopsize, /* flags */ D_TTY | D_KQFILTER, /* bmaj */ -1, /* kqfilter */ ttykqfilter, }; static int rp_controller_port = 0; static int rp_num_ports_open = 0; static int ndevs = 0; static int minor_to_unit[128]; #if 0 static struct tty rp_tty[128]; #endif static int rp_num_ports[4]; /* Number of ports on each controller */ #define _INLINE_ __inline #define POLL_INTERVAL 1 #define CALLOUT_MASK 0x80 #define CONTROL_MASK 0x60 #define CONTROL_INIT_STATE 0x20 #define CONTROL_LOCK_STATE 0x40 #define DEV_UNIT(dev) (MINOR_TO_UNIT(minor(dev)) #define MINOR_MAGIC_MASK (CALLOUT_MASK | CONTROL_MASK) #define MINOR_MAGIC(dev) ((minor(dev)) & ~MINOR_MAGIC_MASK) #define IS_CALLOUT(dev) (minor(dev) & CALLOUT_MASK) #define IS_CONTROL(dev) (minor(dev) & CONTROL_MASK) #define RP_ISMULTIPORT(dev) ((dev)->id_flags & 0x1) #define RP_MPMASTER(dev) (((dev)->id_flags >> 8) & 0xff) #define RP_NOTAST4(dev) ((dev)->id_flags & 0x04) static struct rp_port *p_rp_addr[4]; static struct rp_port *p_rp_table[MAX_RP_PORTS]; #define rp_addr(unit) (p_rp_addr[unit]) #define rp_table(port) (p_rp_table[port]) /* * The top-level routines begin here */ static int rpparam __P((struct tty *, struct termios *)); static void rpstart __P((struct tty *)); static void rpstop __P((struct tty *, int)); static void rphardclose __P((struct rp_port *)); static void rp_disc_optim __P((struct tty *tp, struct termios *t, struct rp_port *rp)); static _INLINE_ void rp_do_receive(struct rp_port *rp, struct tty *tp, CHANNEL_t *cp, unsigned int ChanStatus) { int spl; unsigned int CharNStat; int ToRecv, ch; ToRecv = sGetRxCnt(cp); if(ToRecv == 0) return; /* If status indicates there are errored characters in the FIFO, then enter status mode (a word in FIFO holds characters and status) */ if(ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) { if(!(ChanStatus & STATMODE)) { ChanStatus |= STATMODE; sEnRxStatusMode(cp); } } /* if we previously entered status mode then read down the FIFO one word at a time, pulling apart the character and the status. Update error counters depending on status. */ if(ChanStatus & STATMODE) { while(ToRecv) { if(tp->t_state & TS_TBLOCK) { break; } CharNStat = sInW(sGetTxRxDataIO(cp)); ch = CharNStat & 0xff; if((CharNStat & STMBREAK) || (CharNStat & STMFRAMEH)) ch |= TTY_FE; else if (CharNStat & STMPARITYH) ch |= TTY_PE; else if (CharNStat & STMRCVROVRH) rp->rp_overflows++; (*linesw[tp->t_line].l_rint)(ch, tp); ToRecv--; } /* After emtying FIFO in status mode, turn off status mode */ if(sGetRxCnt(cp) == 0) sDisRxStatusMode(cp); } else { while (ToRecv) { if(tp->t_state & TS_TBLOCK) { break; } ch = (u_char) sInB(sGetTxRxDataIO(cp)); spl = spltty(); (*linesw[tp->t_line].l_rint)(ch, tp); splx(spl); ToRecv--; } } } static _INLINE_ void rp_handle_port(struct rp_port *rp) { CHANNEL_t *cp; struct tty *tp; unsigned int IntMask, ChanStatus; /* int oldcts; */ if(!rp) return; cp = &rp->rp_channel; tp = rp->rp_tty; IntMask = sGetChanIntID(cp); IntMask = IntMask & rp->rp_intmask; ChanStatus = sGetChanStatus(cp); if(IntMask & RXF_TRIG) if(!(tp->t_state & TS_TBLOCK) && (tp->t_state & TS_CARR_ON) && (tp->t_state & TS_ISOPEN)) { rp_do_receive(rp, tp, cp, ChanStatus); } if(IntMask & DELTA_CD) { if(ChanStatus & CD_ACT) { if(!(tp->t_state & TS_CARR_ON) ) { (void)(*linesw[tp->t_line].l_modem)(tp, 1); } } else { if((tp->t_state & TS_CARR_ON)) { (void)(*linesw[tp->t_line].l_modem)(tp, 0); if((*linesw[tp->t_line].l_modem)(tp, 0) == 0) { rphardclose(rp); } } } } /* oldcts = rp->rp_cts; rp->rp_cts = ((ChanStatus & CTS_ACT) != 0); if(oldcts != rp->rp_cts) { printf("CTS change (now %s)... on port %d\n", rp->rp_cts ? "on" : "off", rp->rp_port); } */ } static void rp_do_poll(void *not_used) { CONTROLLER_t *ctl; struct rp_port *rp; struct tty *tp; int unit, aiop, ch, line, count; unsigned char CtlMask, AiopMask; for(unit = 0; unit <= ndevs; unit++) { rp = rp_addr(unit); ctl = rp->rp_ctlp; if(ctl->BusType == isPCI) CtlMask = sPCIGetControllerIntStatus(ctl); else CtlMask = sGetControllerIntStatus(ctl); for(aiop=0; CtlMask; CtlMask >>=1, aiop++) { if(CtlMask & 1) { AiopMask = sGetAiopIntStatus(ctl, aiop); for(ch = 0; AiopMask; AiopMask >>=1, ch++) { if(AiopMask & 1) { line = (unit << 5) | (aiop << 3) | ch; rp = rp_table(line); rp_handle_port(rp); } } } } for(line = 0, rp = rp_addr(unit); line < rp_num_ports[unit]; line++, rp++) { tp = rp->rp_tty; if((tp->t_state & TS_BUSY) && (tp->t_state & TS_ISOPEN)) { count = sGetTxCnt(&rp->rp_channel); if(count == 0) tp->t_state &= ~(TS_BUSY); if(!(tp->t_state & TS_TTSTOP) && (count <= rp->rp_restart)) { (*linesw[tp->t_line].l_start)(tp); } } } } if(rp_num_ports_open) timeout(rp_do_poll, (void *)NULL, POLL_INTERVAL); } static const char* rp_pciprobe(pcici_t tag, pcidi_t type) { int vendor_id; vendor_id = type & 0xffff; switch(vendor_id) case 0x11fe: return("rp"); return(NULL); } static int rpprobe(dev) struct isa_device *dev; { int controller, unit; int aiop, num_aiops; unsigned int aiopio[MAX_AIOPS_PER_BOARD]; CONTROLLER_t *ctlp; unit = dev->id_unit; if (dev->id_unit >= 4) { printf("rpprobe: unit number %d invalid.\n", dev->id_unit); return 1; } printf("probing for RocketPort(ISA) unit %d\n", unit); if (rp_controller_port) controller = rp_controller_port; else { controller = dev->id_iobase + 0x40; } for (aiop=0; aiopid_iobase + (aiop * 0x400); ctlp = sCtlNumToCtlPtr(dev->id_unit); num_aiops = sInitController(ctlp, dev->id_unit, controller + ((unit-rp_pcicount)*0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0); if (num_aiops <= 0) { printf("board%d init failed\n", unit); return 0; } if (rp_controller_port) { dev->id_msize = 64; } else { dev->id_msize = 68; rp_controller_port = controller; } dev->id_irq = 0; return 1; } static void rp_pciattach(pcici_t tag, int unit) { int success, oldspl; u_short iobase; int num_ports, num_chan, num_aiops; int aiop, chan, port; int ChanStatus, line, i, count; unsigned int aiopio[MAX_AIOPS_PER_BOARD]; struct rp_port *rp; struct tty *tty; CONTROLLER_t *ctlp; success = pci_map_port(tag, 0x10, &iobase); if(!success) printf("ioaddr mapping failed for RocketPort(PCI)\n"); for(aiop=0; aiop < MAX_AIOPS_PER_BOARD; aiop++) aiopio[aiop] = iobase + (aiop * 0x40); ctlp = sCtlNumToCtlPtr(unit); num_aiops = sPCIInitController(ctlp, unit, aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0); num_ports = 0; for(aiop=0; aiop < num_aiops; aiop++) { sResetAiopByNum(ctlp, aiop); num_ports += sGetAiopNumChan(ctlp, aiop); } printf("RocketPort%d = %d ports\n", unit, num_ports); rp_num_ports[unit] = num_ports; rp = (struct rp_port *) malloc(sizeof(struct rp_port) * num_ports, M_TTYS, M_NOWAIT|M_ZERO); if(rp == 0) { printf("rp_attach: Could not malloc rp_ports structures\n"); return; } count = unit * 32; /* board times max ports per card SG */ for(i=count;i < (count + rp_num_ports[unit]);i++) minor_to_unit[i] = unit; tty = (struct tty *) malloc(sizeof(struct tty) * num_ports, M_TTYS, M_NOWAIT|M_ZERO); if(tty == 0) { printf("rp_attach: Could not malloc tty structures\n"); return; } oldspl = spltty(); rp_addr(unit) = rp; splx(oldspl); cdevsw_add(&rp_cdevsw); port = 0; for(aiop=0; aiop < num_aiops; aiop++) { num_chan = sGetAiopNumChan(ctlp, aiop); for(chan=0; chan < num_chan; chan++, port++, rp++, tty++) { rp->rp_tty = tty; rp->rp_port = port; rp->rp_ctlp = ctlp; rp->rp_unit = unit; rp->rp_chan = chan; rp->rp_aiop = aiop; tty->t_line = 0; /* tty->t_termios = deftermios; */ rp->dtr_wait = 3 * hz; rp->it_in.c_iflag = 0; rp->it_in.c_oflag = 0; rp->it_in.c_cflag = TTYDEF_CFLAG; rp->it_in.c_lflag = 0; termioschars(&rp->it_in); /* termioschars(&tty->t_termios); */ rp->it_in.c_ispeed = rp->it_in.c_ospeed = TTYDEF_SPEED; rp->it_out = rp->it_in; rp->rp_intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR; ChanStatus = sGetChanStatus(&rp->rp_channel); if(sInitChan(ctlp, &rp->rp_channel, aiop, chan) == 0) { printf("RocketPort sInitChan(%d, %d, %d) failed \n", unit, aiop, chan); return; } ChanStatus = sGetChanStatus(&rp->rp_channel); rp->rp_cts = (ChanStatus & CTS_ACT) != 0; line = (unit << 5) | (aiop << 3) | chan; rp_table(line) = rp; } } } static int rpattach(dev) struct isa_device *dev; { int iobase, unit, /*rpmajor,*/ oldspl; int num_ports, num_chan, num_aiops; int aiop, chan, port; int ChanStatus, line, i, count; unsigned int aiopio[MAX_AIOPS_PER_BOARD]; struct rp_port *rp; struct tty *tty; CONTROLLER_t *ctlp; iobase = dev->id_iobase; unit = dev->id_unit; ndevs = unit; for(aiop=0; aiop < MAX_AIOPS_PER_BOARD; aiop++) aiopio[aiop] = iobase + (aiop * 0x400); ctlp = sCtlNumToCtlPtr(unit); num_aiops = sInitController(ctlp, unit, rp_controller_port + ((unit-rp_pcicount) * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0); num_ports = 0; for(aiop=0; aiop < num_aiops; aiop++) { sResetAiopByNum(ctlp, aiop); sEnAiop(ctlp, aiop); num_ports += sGetAiopNumChan(ctlp, aiop); } printf("RocketPort%d = %d ports\n", unit, num_ports); rp_num_ports[unit] = num_ports; rp = (struct rp_port *) malloc(sizeof(struct rp_port) * num_ports, M_TTYS, M_NOWAIT|M_ZERO); if(rp == 0) { printf("rp_attach: Could not malloc rp_ports structures\n"); return(0); } count = unit * 32; /* board # times max ports per card SG */ for(i=count;i < (count + rp_num_ports[unit]);i++) minor_to_unit[i] = unit; tty = (struct tty *) malloc(sizeof(struct tty) * num_ports, M_TTYS, M_NOWAIT|M_ZERO); if(tty == 0) { printf("rp_attach: Could not malloc tty structures\n"); return(0); } oldspl = spltty(); rp_addr(unit) = rp; splx(oldspl); cdevsw_add(&rp_cdevsw); port = 0; for(aiop=0; aiop < num_aiops; aiop++) { num_chan = sGetAiopNumChan(ctlp, aiop); for(chan=0; chan < num_chan; chan++, port++, rp++, tty++) { rp->rp_tty = tty; rp->rp_port = port; rp->rp_ctlp = ctlp; rp->rp_unit = unit; rp->rp_chan = chan; rp->rp_aiop = aiop; tty->t_line = 0; /* tty->t_termios = deftermios; */ rp->dtr_wait = 3 * hz; rp->it_in.c_iflag = 0; rp->it_in.c_oflag = 0; rp->it_in.c_cflag = TTYDEF_CFLAG; rp->it_in.c_lflag = 0; termioschars(&rp->it_in); /* termioschars(&tty->t_termios); */ rp->it_in.c_ispeed = rp->it_in.c_ospeed = TTYDEF_SPEED; rp->it_out = rp->it_in; rp->rp_intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR; ChanStatus = sGetChanStatus(&rp->rp_channel); if(sInitChan(ctlp, &rp->rp_channel, aiop, chan) == 0) { printf("RocketPort sInitChan(%d, %d, %d) failed \n", unit, aiop, chan); return(0); } ChanStatus = sGetChanStatus(&rp->rp_channel); rp->rp_cts = (ChanStatus & CTS_ACT) != 0; line = (unit << 5) | (aiop << 3) | chan; rp_table(line) = rp; } } return(1); } int rpopen(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { struct rp_port *rp; int unit, port, mynor, umynor, flags; /* SG */ struct tty *tp; int oldspl, error; unsigned int IntMask, ChanStatus; umynor = (((minor(dev) >> 16) -1) * 32); /* SG */ port = (minor(dev) & 0x1f); /* SG */ mynor = (port + umynor); /* SG */ unit = minor_to_unit[mynor]; if (rp_addr(unit) == NULL) return (ENXIO); if(IS_CONTROL(dev)) return(0); rp = rp_addr(unit) + port; /* rp->rp_tty = &rp_tty[rp->rp_port]; */ tp = rp->rp_tty; dev->si_tty = tp; oldspl = spltty(); open_top: while(rp->state & ~SET_DTR) { error = tsleep(&rp->dtr_wait, TTIPRI | PCATCH, "rpdtr", 0); if(error != 0) goto out; } if(tp->t_state & TS_ISOPEN) { if(IS_CALLOUT(dev)) { if(!rp->active_out) { error = EBUSY; goto out; } } else { if(rp->active_out) { if(flag & O_NONBLOCK) { error = EBUSY; goto out; } error = tsleep(&rp->active_out, TTIPRI | PCATCH, "rpbi", 0); if(error != 0) goto out; goto open_top; } } if(tp->t_state & TS_XCLUDE && suser(p)) { splx(oldspl); return(EBUSY); } } else { tp->t_dev = dev; tp->t_param = rpparam; tp->t_oproc = rpstart; tp->t_stop = rpstop; tp->t_line = 0; tp->t_termios = IS_CALLOUT(dev) ? rp->it_out : rp->it_in; flags = 0; flags |= SET_RTS; flags |= SET_DTR; rp->rp_channel.TxControl[3] = ((rp->rp_channel.TxControl[3] & ~(SET_RTS | SET_DTR)) | flags); sOutDW(rp->rp_channel.IndexAddr, *(DWord_t *) &(rp->rp_channel.TxControl[0])); sSetRxTrigger(&rp->rp_channel, TRIG_1); sDisRxStatusMode(&rp->rp_channel); sFlushRxFIFO(&rp->rp_channel); sFlushTxFIFO(&rp->rp_channel); sEnInterrupts(&rp->rp_channel, (TXINT_EN|MCINT_EN|RXINT_EN|SRCINT_EN|CHANINT_EN)); sSetRxTrigger(&rp->rp_channel, TRIG_1); sDisRxStatusMode(&rp->rp_channel); sClrTxXOFF(&rp->rp_channel); /* sDisRTSFlowCtl(&rp->rp_channel); sDisCTSFlowCtl(&rp->rp_channel); */ sDisTxSoftFlowCtl(&rp->rp_channel); sStartRxProcessor(&rp->rp_channel); sEnRxFIFO(&rp->rp_channel); sEnTransmit(&rp->rp_channel); /* sSetDTR(&rp->rp_channel); sSetRTS(&rp->rp_channel); */ ++rp->wopeners; error = rpparam(tp, &tp->t_termios); --rp->wopeners; if(error != 0) { splx(oldspl); return(error); } rp_num_ports_open++; IntMask = sGetChanIntID(&rp->rp_channel); IntMask = IntMask & rp->rp_intmask; ChanStatus = sGetChanStatus(&rp->rp_channel); if((IntMask & DELTA_CD) || IS_CALLOUT(dev)) { if((ChanStatus & CD_ACT) || IS_CALLOUT(dev)) { (void)(*linesw[tp->t_line].l_modem)(tp, 1); } } if(rp_num_ports_open == 1) timeout(rp_do_poll, (void *)NULL, POLL_INTERVAL); } if(!(flag&O_NONBLOCK) && !(tp->t_cflag&CLOCAL) && !(tp->t_state & TS_CARR_ON) && !(IS_CALLOUT(dev))) { ++rp->wopeners; error = tsleep(TSA_CARR_ON(tp), TTIPRI | PCATCH, "rpdcd", 0); --rp->wopeners; if(error != 0) goto out; goto open_top; } error = (*linesw[tp->t_line].l_open)(dev, tp); rp_disc_optim(tp, &tp->t_termios, rp); if(tp->t_state & TS_ISOPEN && IS_CALLOUT(dev)) rp->active_out = TRUE; /* if(rp_num_ports_open == 1) timeout(rp_do_poll, (void *)NULL, POLL_INTERVAL); */ out: splx(oldspl); if(!(tp->t_state & TS_ISOPEN) && rp->wopeners == 0) { rphardclose(rp); } return(error); } int rpclose(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { int oldspl, unit, mynor, umynor, port; /* SG */ struct rp_port *rp; struct tty *tp; CHANNEL_t *cp; umynor = (((minor(dev) >> 16) -1) * 32); /* SG */ port = (minor(dev) & 0x1f); /* SG */ mynor = (port + umynor); /* SG */ unit = minor_to_unit[mynor]; /* SG */ if(IS_CONTROL(dev)) return(0); rp = rp_addr(unit) + port; cp = &rp->rp_channel; tp = rp->rp_tty; oldspl = spltty(); (*linesw[tp->t_line].l_close)(tp, flag); rp_disc_optim(tp, &tp->t_termios, rp); rpstop(tp, FREAD | FWRITE); rphardclose(rp); tp->t_state &= ~TS_BUSY; ttyclose(tp); splx(oldspl); return(0); } static void rphardclose(struct rp_port *rp) { int mynor; struct tty *tp; CHANNEL_t *cp; cp = &rp->rp_channel; tp = rp->rp_tty; mynor = MINOR_MAGIC(tp->t_dev); sFlushRxFIFO(cp); sFlushTxFIFO(cp); sDisTransmit(cp); sDisInterrupts(cp, TXINT_EN|MCINT_EN|RXINT_EN|SRCINT_EN|CHANINT_EN); sDisRTSFlowCtl(cp); sDisCTSFlowCtl(cp); sDisTxSoftFlowCtl(cp); sClrTxXOFF(cp); if(tp->t_cflag&HUPCL || !(tp->t_state&TS_ISOPEN) || !rp->active_out) { sClrDTR(cp); } if(IS_CALLOUT(tp->t_dev)) { sClrDTR(cp); } if(rp->dtr_wait != 0) { timeout(rpdtrwakeup, rp, rp->dtr_wait); rp->state |= ~SET_DTR; } rp->active_out = FALSE; wakeup(&rp->active_out); wakeup(TSA_CARR_ON(tp)); } static int rpwrite(dev, uio, flag) dev_t dev; struct uio *uio; int flag; { struct rp_port *rp; struct tty *tp; int unit, mynor, port, umynor, error = 0; /* SG */ umynor = (((minor(dev) >> 16) -1) * 32); /* SG */ port = (minor(dev) & 0x1f); /* SG */ mynor = (port + umynor); /* SG */ unit = minor_to_unit[mynor]; /* SG */ if(IS_CONTROL(dev)) return(ENODEV); rp = rp_addr(unit) + port; tp = rp->rp_tty; while(rp->rp_disable_writes) { rp->rp_waiting = 1; error = ttysleep(tp, (caddr_t)rp, TTOPRI|PCATCH, "rp_write", 0); if (error) return(error); } error = (*linesw[tp->t_line].l_write)(tp, uio, flag); return error; } static void rpdtrwakeup(void *chan) { struct rp_port *rp; rp = (struct rp_port *)chan; rp->state &= SET_DTR; wakeup(&rp->dtr_wait); } int rpioctl(dev, cmd, data, flag, p) dev_t dev; u_long cmd; caddr_t data; int flag; struct proc *p; { struct rp_port *rp; CHANNEL_t *cp; struct tty *tp; int unit, mynor, port, umynor; /* SG */ int oldspl; int error = 0; int arg, flags, result, ChanStatus; int oldcmd; struct termios term, *t; umynor = (((minor(dev) >> 16) -1) * 32); /* SG */ port = (minor(dev) & 0x1f); /* SG */ mynor = (port + umynor); /* SG */ unit = minor_to_unit[mynor]; rp = rp_addr(unit) + port; if(IS_CONTROL(dev)) { struct termios *ct; switch (IS_CONTROL(dev)) { case CONTROL_INIT_STATE: ct = IS_CALLOUT(dev) ? &rp->it_out : &rp->it_in; break; case CONTROL_LOCK_STATE: ct = IS_CALLOUT(dev) ? &rp->lt_out : &rp->lt_in; break; default: return(ENODEV); /* /dev/nodev */ } switch (cmd) { case TIOCSETA: error = suser(p); if(error != 0) return(error); *ct = *(struct termios *)data; return(0); case TIOCGETA: *(struct termios *)data = *ct; return(0); case TIOCGETD: *(int *)data = TTYDISC; return(0); case TIOCGWINSZ: bzero(data, sizeof(struct winsize)); return(0); default: return(ENOTTY); } } tp = rp->rp_tty; cp = &rp->rp_channel; #if defined(COMPAT_43) || defined(COMPAT_SUNOS) term = tp->t_termios; oldcmd = cmd; error = ttsetcompat(tp, &cmd, data, &term); if(error != 0) return(error); if(cmd != oldcmd) { data = (caddr_t)&term; } #endif if((cmd == TIOCSETA) || (cmd == TIOCSETAW) || (cmd == TIOCSETAF)) { int cc; struct termios *dt = (struct termios *)data; struct termios *lt = IS_CALLOUT(dev) ? &rp->lt_out : &rp->lt_in; dt->c_iflag = (tp->t_iflag & lt->c_iflag) | (dt->c_iflag & ~lt->c_iflag); dt->c_oflag = (tp->t_oflag & lt->c_oflag) | (dt->c_oflag & ~lt->c_oflag); dt->c_cflag = (tp->t_cflag & lt->c_cflag) | (dt->c_cflag & ~lt->c_cflag); dt->c_lflag = (tp->t_lflag & lt->c_lflag) | (dt->c_lflag & ~lt->c_lflag); for(cc = 0; cc < NCCS; ++cc) if(lt->c_cc[cc] != 0) dt->c_cc[cc] = tp->t_cc[cc]; if(lt->c_ispeed != 0) dt->c_ispeed = tp->t_ispeed; if(lt->c_ospeed != 0) dt->c_ospeed = tp->t_ospeed; } t = &tp->t_termios; error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p); if(error != ENOIOCTL) { return(error); } oldspl = spltty(); flags = rp->rp_channel.TxControl[3]; error = ttioctl(tp, cmd, data, flag); flags = rp->rp_channel.TxControl[3]; rp_disc_optim(tp, &tp->t_termios, rp); if(error != ENOIOCTL) { splx(oldspl); return(error); } switch(cmd) { case TIOCSBRK: sSendBreak(&rp->rp_channel); break; case TIOCCBRK: sClrBreak(&rp->rp_channel); break; case TIOCSDTR: sSetDTR(&rp->rp_channel); sSetRTS(&rp->rp_channel); break; case TIOCCDTR: sClrDTR(&rp->rp_channel); break; case TIOCMSET: arg = *(int *) data; flags = 0; if(arg & TIOCM_RTS) flags |= SET_RTS; if(arg & TIOCM_DTR) flags |= SET_DTR; rp->rp_channel.TxControl[3] = ((rp->rp_channel.TxControl[3] & ~(SET_RTS | SET_DTR)) | flags); sOutDW(rp->rp_channel.IndexAddr, *(DWord_t *) &(rp->rp_channel.TxControl[0])); break; case TIOCMBIS: arg = *(int *) data; flags = 0; if(arg & TIOCM_RTS) flags |= SET_RTS; if(arg & TIOCM_DTR) flags |= SET_DTR; rp->rp_channel.TxControl[3] |= flags; sOutDW(rp->rp_channel.IndexAddr, *(DWord_t *) &(rp->rp_channel.TxControl[0])); break; case TIOCMBIC: arg = *(int *) data; flags = 0; if(arg & TIOCM_RTS) flags |= SET_RTS; if(arg & TIOCM_DTR) flags |= SET_DTR; rp->rp_channel.TxControl[3] &= ~flags; sOutDW(rp->rp_channel.IndexAddr, *(DWord_t *) &(rp->rp_channel.TxControl[0])); break; case TIOCMGET: ChanStatus = sGetChanStatusLo(&rp->rp_channel); flags = rp->rp_channel.TxControl[3]; result = TIOCM_LE; /* always on while open for some reason */ result |= (((flags & SET_DTR) ? TIOCM_DTR : 0) | ((flags & SET_RTS) ? TIOCM_RTS : 0) | ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) | ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) | ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0)); if(rp->rp_channel.RxControl[2] & RTSFC_EN) { result |= TIOCM_RTS; } *(int *)data = result; break; case TIOCMSDTRWAIT: error = suser(p); if(error != 0) { splx(oldspl); return(error); } rp->dtr_wait = *(int *)data * hz/100; break; case TIOCMGDTRWAIT: *(int *)data = rp->dtr_wait * 100/hz; break; default: splx(oldspl); return ENOTTY; } splx(oldspl); return(0); } static struct speedtab baud_table[] = { {B0, 0}, {B50, BRD50}, {B75, BRD75}, {B110, BRD110}, {B134, BRD134}, {B150, BRD150}, {B200, BRD200}, {B300, BRD300}, {B600, BRD600}, {B1200, BRD1200}, {B1800, BRD1800}, {B2400, BRD2400}, {B4800, BRD4800}, {B9600, BRD9600}, {B19200, BRD19200}, {B38400, BRD38400}, {B7200, BRD7200}, {B14400, BRD14400}, {B57600, BRD57600}, {B76800, BRD76800}, {B115200, BRD115200}, {B230400, BRD230400}, -1, -1 }; static int rpparam(tp, t) struct tty *tp; struct termios *t; { struct rp_port *rp; CHANNEL_t *cp; int unit, mynor, port, umynor; /* SG */ int oldspl, cflag, iflag, oflag, lflag; int ospeed; umynor = (((minor(tp->t_dev) >> 16) -1) * 32); /* SG */ port = (minor(tp->t_dev) & 0x1f); /* SG */ mynor = (port + umynor); /* SG */ unit = minor_to_unit[mynor]; rp = rp_addr(unit) + port; cp = &rp->rp_channel; oldspl = spltty(); cflag = t->c_cflag; iflag = t->c_iflag; oflag = t->c_oflag; lflag = t->c_lflag; ospeed = ttspeedtab(t->c_ispeed, baud_table); if(ospeed < 0 || t->c_ispeed != t->c_ospeed) return(EINVAL); tp->t_ispeed = t->c_ispeed; tp->t_ospeed = t->c_ospeed; tp->t_cflag = cflag; tp->t_iflag = iflag; tp->t_oflag = oflag; tp->t_lflag = lflag; if(t->c_ospeed == 0) { sClrDTR(cp); return(0); } rp->rp_fifo_lw = ((t->c_ospeed*2) / 1000) +1; /* Set baud rate ----- we only pay attention to ispeed */ sSetDTR(cp); sSetRTS(cp); sSetBaud(cp, ospeed); if(cflag & CSTOPB) { sSetStop2(cp); } else { sSetStop1(cp); } if(cflag & PARENB) { sEnParity(cp); if(cflag & PARODD) { sSetOddParity(cp); } else { sSetEvenParity(cp); } } else { sDisParity(cp); } if((cflag & CSIZE) == CS8) { sSetData8(cp); rp->rp_imask = 0xFF; } else { sSetData7(cp); rp->rp_imask = 0x7F; } if(iflag & ISTRIP) { rp->rp_imask &= 0x7F; } if(cflag & CLOCAL) { rp->rp_intmask &= ~DELTA_CD; } else { rp->rp_intmask |= DELTA_CD; } /* Put flow control stuff here */ if(cflag & CCTS_OFLOW) { sEnCTSFlowCtl(cp); } else { sDisCTSFlowCtl(cp); } if(cflag & CRTS_IFLOW) { rp->rp_rts_iflow = 1; } else { rp->rp_rts_iflow = 0; } if(cflag & CRTS_IFLOW) { sEnRTSFlowCtl(cp); } else { sDisRTSFlowCtl(cp); } rp_disc_optim(tp, t, rp); if((cflag & CLOCAL) || (sGetChanStatusLo(cp) & CD_ACT)) { tp->t_state |= TS_CARR_ON; wakeup(TSA_CARR_ON(tp)); } /* tp->t_state |= TS_CAN_BYPASS_L_RINT; flags = rp->rp_channel.TxControl[3]; if(flags & SET_DTR) else if(flags & SET_RTS) else */ splx(oldspl); return(0); } static void rp_disc_optim(tp, t, rp) struct tty *tp; struct termios *t; struct rp_port *rp; { if(!(t->c_iflag & (ICRNL | IGNCR | IMAXBEL | INLCR | ISTRIP | IXON)) &&(!(t->c_iflag & BRKINT) || (t->c_iflag & IGNBRK)) &&(!(t->c_iflag & PARMRK) ||(t->c_iflag & (IGNPAR | IGNBRK)) == (IGNPAR | IGNBRK)) && !(t->c_lflag & (ECHO | ICANON | IEXTEN | ISIG | PENDIN)) && linesw[tp->t_line].l_rint == ttyinput) tp->t_state |= TS_CAN_BYPASS_L_RINT; else tp->t_state &= ~TS_CAN_BYPASS_L_RINT; } static void rpstart(tp) struct tty *tp; { struct rp_port *rp; CHANNEL_t *cp; struct clist *qp; int unit, mynor, port, umynor; /* SG */ char ch, flags; int spl, xmit_fifo_room; int count; umynor = (((minor(tp->t_dev) >> 16) -1) * 32); /* SG */ port = (minor(tp->t_dev) & 0x1f); /* SG */ mynor = (port + umynor); /* SG */ unit = minor_to_unit[mynor]; rp = rp_addr(unit) + port; cp = &rp->rp_channel; flags = rp->rp_channel.TxControl[3]; spl = spltty(); if(tp->t_state & (TS_TIMEOUT | TS_TTSTOP)) { ttwwakeup(tp); splx(spl); return; } if(rp->rp_xmit_stopped) { sEnTransmit(cp); rp->rp_xmit_stopped = 0; } count = sGetTxCnt(cp); if(tp->t_outq.c_cc == 0) { if((tp->t_state & TS_BUSY) && (count == 0)) { tp->t_state &= ~TS_BUSY; } ttwwakeup(tp); splx(spl); return; } xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); qp = &tp->t_outq; count = 0; if(xmit_fifo_room > 0 && qp->c_cc > 0) { tp->t_state |= TS_BUSY; } while(xmit_fifo_room > 0 && qp->c_cc > 0) { ch = getc(qp); sOutB(sGetTxRxDataIO(cp), ch); xmit_fifo_room--; count++; } rp->rp_restart = (qp->c_cc > 0) ? rp->rp_fifo_lw : 0; ttwwakeup(tp); splx(spl); } static void rpstop(tp, flag) register struct tty *tp; int flag; { struct rp_port *rp; CHANNEL_t *cp; int unit, mynor, port, umynor; /* SG */ int spl; umynor = (((minor(tp->t_dev) >> 16) -1) * 32); /* SG */ port = (minor(tp->t_dev) & 0x1f); /* SG */ mynor = (port + umynor); /* SG */ unit = minor_to_unit[mynor]; rp = rp_addr(unit) + port; cp = &rp->rp_channel; spl = spltty(); if(tp->t_state & TS_BUSY) { if((tp->t_state&TS_TTSTOP) == 0) { sFlushTxFIFO(cp); } else { if(rp->rp_xmit_stopped == 0) { sDisTransmit(cp); rp->rp_xmit_stopped = 1; } } } splx(spl); rpstart(tp); }