/* * Low-level subroutines for Cronyx-Sigma adapter. * * Copyright (C) 1994-95 Cronyx Ltd. * Author: Serge Vakulenko, * * This software is distributed with NO WARRANTIES, not even the implied * warranties for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Authors grant any other persons or organisations permission to use * or modify this software as long as this message is kept with the software, * all derivative works or modified versions. * * Version 1.6, Wed May 31 16:03:20 MSD 1995 */ #if defined (MSDOS) || defined (__MSDOS__) # include # include # define inb(port) inportb(port) # define inw(port) inport(port) # define outb(port,b) outportb(port,b) # define outw(port,w) outport(port,w) # define vtophys(a) (((unsigned long)(a)>>12 & 0xffff0) +\ ((unsigned)(a) & 0xffff)) # include "cronyx.h" # include "cxreg.h" #else # include # include # include # include # include # include # include # ifndef __FreeBSD__ # include # endif # include # include #endif #define DMA_MASK 0xd4 /* DMA mask register */ #define DMA_MASK_CLEAR 0x04 /* DMA clear mask */ #define DMA_MODE 0xd6 /* DMA mode register */ #define DMA_MODE_MASTER 0xc0 /* DMA master mode */ #define BYTE *(unsigned char*)& static unsigned char irqmask [] = { BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_3, BCR0_IRQ_DIS, BCR0_IRQ_5, BCR0_IRQ_DIS, BCR0_IRQ_7, BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_10, BCR0_IRQ_11, BCR0_IRQ_12, BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_15, }; static unsigned char dmamask [] = { BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_5, BCR0_DMA_6, BCR0_DMA_7, }; static long cx_rxbaud = CX_SPEED_DFLT; /* receiver baud rate */ static long cx_txbaud = CX_SPEED_DFLT; /* transmitter baud rate */ static int cx_univ_mode = M_ASYNC; /* univ. chan. mode: async or sync */ static int cx_sync_mode = M_HDLC; /* sync. chan. mode: HDLC, Bisync or X.21 */ static int cx_iftype = 0; /* univ. chan. interface: upper/lower */ static cx_chan_opt_t chan_opt_dflt = { /* mode-independent options */ { /* cor4 */ 7, /* FIFO threshold, odd is better */ 0, 0, /* don't detect 1 to 0 on CTS */ 1, /* detect 1 to 0 on CD */ 0, /* detect 1 to 0 on DSR */ }, { /* cor5 */ 0, /* receive flow control FIFO threshold */ 0, 0, /* don't detect 0 to 1 on CTS */ 1, /* detect 0 to 1 on CD */ 0, /* detect 0 to 1 on DSR */ }, { /* rcor */ 0, /* dummy clock source */ ENCOD_NRZ, /* NRZ mode */ 0, /* disable DPLL */ 0, 0, /* transmit line value */ }, { /* tcor */ 0, 0, /* local loopback mode */ 0, 1, /* external 1x clock mode */ 0, 0, /* dummy transmit clock source */ }, }; static cx_opt_async_t opt_async_dflt = { /* default async options */ { /* cor1 */ 8-1, /* 8-bit char length */ 0, /* don't ignore parity */ PARM_NOPAR, /* no parity */ PAR_EVEN, /* even parity */ }, { /* cor2 */ 0, /* disable automatic DSR */ 1, /* enable automatic CTS */ 0, /* disable automatic RTS */ 0, /* no remote loopback */ 0, 0, /* disable embedded cmds */ 0, /* disable XON/XOFF */ 0, /* disable XANY */ }, { /* cor3 */ STOPB_1, /* 1 stop bit */ 0, 0, /* disable special char detection */ FLOWCC_PASS, /* pass flow ctl chars to the host */ 0, /* range detect disable */ 0, /* disable extended spec. char detect */ }, { /* cor6 */ PERR_INTR, /* generate exception on parity errors */ BRK_INTR, /* generate exception on break condition */ 0, /* don't translate NL to CR on input */ 0, /* don't translate CR to NL on input */ 0, /* don't discard CR on input */ }, { /* cor7 */ 0, /* don't translate CR to NL on output */ 0, /* don't translate NL to CR on output */ 0, 0, /* don't process flow ctl err chars */ 0, /* disable LNext option */ 0, /* don't strip 8 bit on input */ }, 0, 0, 0, 0, 0, 0, 0, /* clear schr1-4, scrl, scrh, lnxt */ }; static cx_opt_hdlc_t opt_hdlc_dflt = { /* default hdlc options */ { /* cor1 */ 2, /* 2 inter-frame flags */ 0, /* no-address mode */ CLRDET_DISABLE, /* disable clear detect */ AFLO_1OCT, /* 1-byte address field length */ }, { /* cor2 */ 0, /* disable automatic DSR */ 0, /* disable automatic CTS */ 0, /* disable automatic RTS */ 0, CRC_INVERT, /* use CRC V.41 */ 0, FCS_NOTPASS, /* don't pass received CRC to the host */ 0, }, { /* cor3 */ 0, /* 0 pad characters sent */ IDLE_FLAG, /* idle in flag */ 0, /* enable FCS */ FCSP_ONES, /* FCS preset to all ones (V.41) */ SYNC_AA, /* use AAh as sync char */ 0, /* disable pad characters */ }, 0, 0, 0, 0, /* clear rfar1-4 */ POLY_V41, /* use V.41 CRC polynomial */ }; static cx_opt_bisync_t opt_bisync_dflt = { /* default bisync options */ { /* cor1 */ 8-1, /* 8-bit char length */ 0, /* don't ignore parity */ PARM_NOPAR, /* no parity */ PAR_EVEN, /* even parity */ }, { /* cor2 */ 3-2, /* send three SYN chars */ CRC_DONT_INVERT,/* don't invert CRC (CRC-16) */ 0, /* use ASCII, not EBCDIC */ 0, /* disable bcc append */ BCC_CRC16, /* user CRC16, not LRC */ }, { /* cor3 */ 0, /* send 0 pad chars */ IDLE_FLAG, /* idle in SYN */ 0, /* enable FCS */ FCSP_ZEROS, /* FCS preset to all zeros (CRC-16) */ PAD_AA, /* use AAh as pad char */ 0, /* disable pad characters */ }, { /* cor6 */ 10, /* DLE - disable special termination char */ }, POLY_16, /* use CRC-16 polynomial */ }; static cx_opt_x21_t opt_x21_dflt = { /* default x21 options */ { /* cor1 */ 8-1, /* 8-bit char length */ 0, /* don't ignore parity */ PARM_NOPAR, /* no parity */ PAR_EVEN, /* even parity */ }, { /* cor2 */ 0, 0, /* disable embedded transmitter cmds */ 0, }, { /* cor3 */ 0, 0, /* disable special character detect */ 0, /* don't treat SYN as special condition */ 0, /* disable steady state detect */ X21SYN_2, /* 2 SYN chars on receive are required */ }, { /* cor6 */ 16, /* SYN - standard SYN character */ }, 0, 0, 0, /* clear schr1-3 */ }; static int cx_probe_chip (int base); static void cx_setup_chip (cx_chip_t *c); static void cx_init_board (cx_board_t *b, int num, int port, int irq, int dma, int chain, int rev, int osc, int rev2, int osc2); static void cx_reinit_board (cx_board_t *b); /* * Wait for CCR to clear. */ void cx_cmd (int base, int cmd) { unsigned short port = CCR(base); unsigned short count; /* Wait 10 msec for the previous command to complete. */ for (count=0; inb(port) && count<20000; ++count) continue; /* Issue the command. */ outb (port, cmd); /* Wait 10 msec for the command to complete. */ for (count=0; inb(port) && count<20000; ++count) continue; } /* * Reset the chip. */ static int cx_reset (unsigned short port) { int count; /* Wait up to 10 msec for revision code to appear after reset. */ for (count=0; count<20000; ++count) if (inb(GFRCR(port)) != 0) break; cx_cmd (port, CCR_RSTALL); /* Firmware revision code should clear imediately. */ /* Wait up to 10 msec for revision code to appear again. */ for (count=0; count<20000; ++count) if (inb(GFRCR(port)) != 0) return (1); /* Reset failed. */ return (0); } /* * Check if the CD2400 board is present at the given base port. */ static int cx_probe_chained_board (int port, int *c0, int *c1) { int rev, i; /* Read and check the board revision code. */ rev = inb (BSR(port)); *c0 = *c1 = 0; switch (rev & BSR_VAR_MASK) { case CRONYX_100: *c0 = 1; break; case CRONYX_400: *c1 = 1; break; case CRONYX_500: *c0 = *c1 = 1; break; case CRONYX_410: *c0 = 1; break; case CRONYX_810: *c0 = *c1 = 1; break; case CRONYX_410s: *c0 = 1; break; case CRONYX_810s: *c0 = *c1 = 1; break; case CRONYX_440: *c0 = 1; break; case CRONYX_840: *c0 = *c1 = 1; break; case CRONYX_401: *c0 = 1; break; case CRONYX_801: *c0 = *c1 = 1; break; case CRONYX_401s: *c0 = 1; break; case CRONYX_801s: *c0 = *c1 = 1; break; case CRONYX_404: *c0 = 1; break; case CRONYX_703: *c0 = *c1 = 1; break; default: return (0); /* invalid variant code */ } switch (rev & BSR_OSC_MASK) { case BSR_OSC_20: /* 20 MHz */ case BSR_OSC_18432: /* 18.432 MHz */ break; default: return (0); /* oscillator frequency does not match */ } for (i=2; i<0x10; i+=2) if ((inb (BSR(port)+i) & BSR_REV_MASK) != (rev & BSR_REV_MASK)) return (0); /* status changed? */ return (1); } /* * Check if the CD2400 board is present at the given base port. */ int cx_probe_board (int port) { int c0, c1, c2=0, c3=0, result; if (! cx_probe_chained_board (port, &c0, &c1)) return (0); /* no board detected */ if (! (inb (BSR(port)) & BSR_NOCHAIN)) { /* chained board attached */ if (! cx_probe_chained_board (port + 0x10, &c2, &c3)) return (0); /* invalid chained board? */ if (! (inb (BSR(port+0x10)) & BSR_NOCHAIN)) return (0); /* invalid chained board flag? */ } /* Turn off the reset bit. */ outb (BCR0(port), BCR0_NORESET); if (c2 || c3) outb (BCR0(port + 0x10), BCR0_NORESET); result = 1; if (c0 && ! cx_probe_chip (CS0(port))) result = 0; /* no CD2400 chip here */ else if (c1 && ! cx_probe_chip (CS1(port))) result = 0; /* no second CD2400 chip */ else if (c2 && ! cx_probe_chip (CS0(port + 0x10))) result = 0; /* no CD2400 chip on the slave board */ else if (c3 && ! cx_probe_chip (CS1(port + 0x10))) result = 0; /* no second CD2400 chip on the slave board */ /* Reset the controller. */ outb (BCR0(port), 0); if (c2 || c3) outb (BCR0(port + 0x10), 0); /* Yes, we really have valid CD2400 board. */ return (result); } /* * Check if the CD2400 chip is present at the given base port. */ static int cx_probe_chip (int base) { int rev, newrev, count; /* Wait up to 10 msec for revision code to appear after reset. */ for (count=0; inb(GFRCR(base))==0; ++count) if (count >= 20000) return (0); /* reset failed */ /* Read and check the global firmware revision code. */ rev = inb (GFRCR(base)); if (revREVCL_MAX) return (0); /* CD2400 revision does not match */ /* Reset the chip. */ if (! cx_reset (base)) return (0); /* Read and check the new global firmware revision code. */ newrev = inb (GFRCR(base)); if (newrev != rev) return (0); /* revision changed */ /* Yes, we really have CD2400 chip here. */ return (1); } /* * Probe and initialize the board structure. */ void cx_init (cx_board_t *b, int num, int port, int irq, int dma) { int rev, chain, rev2; rev = inb (BSR(port)); chain = !(rev & BSR_NOCHAIN); rev2 = chain ? inb (BSR(port+0x10)) : 0; cx_init_board (b, num, port, irq, dma, chain, (rev & BSR_VAR_MASK), (rev & BSR_OSC_MASK), (rev2 & BSR_VAR_MASK), (rev2 & BSR_OSC_MASK)); } /* * Initialize the board structure, given the type of the board. */ static void cx_init_board (cx_board_t *b, int num, int port, int irq, int dma, int chain, int rev, int osc, int rev2, int osc2) { cx_chan_t *c; int i, c0, c1; /* Initialize board structure. */ b->port = port; b->num = num; b->irq = irq; b->dma = dma; b->if0type = b->if8type = cx_iftype; /* Set channels 0 and 8 mode, set DMA and IRQ. */ b->bcr0 = b->bcr0b = BCR0_NORESET | dmamask[b->dma] | irqmask[b->irq]; /* Clear DTR[0..3] and DTR[8..12]. */ b->bcr1 = b->bcr1b = 0; /* Initialize chip structures. */ for (i=0; ichip[i].num = i; b->chip[i].board = b; } b->chip[0].port = CS0(port); b->chip[1].port = CS1(port); b->chip[2].port = CS0(port+0x10); b->chip[3].port = CS1(port+0x10); /*------------------ Master board -------------------*/ /* Read and check the board revision code. */ c0 = c1 = 0; b->name[0] = 0; switch (rev) { case CRONYX_100: strcpy (b->name, "100"); c0 = 1; break; case CRONYX_400: strcpy (b->name, "400"); c1 = 1; break; case CRONYX_500: strcpy (b->name, "500"); c0 = c1 = 1; break; case CRONYX_410: strcpy (b->name, "410"); c0 = 1; break; case CRONYX_810: strcpy (b->name, "810"); c0 = c1 = 1; break; case CRONYX_410s: strcpy (b->name, "410s"); c0 = 1; break; case CRONYX_810s: strcpy (b->name, "810s"); c0 = c1 = 1; break; case CRONYX_440: strcpy (b->name, "440"); c0 = 1; break; case CRONYX_840: strcpy (b->name, "840"); c0 = c1 = 1; break; case CRONYX_401: strcpy (b->name, "401"); c0 = 1; break; case CRONYX_801: strcpy (b->name, "801"); c0 = c1 = 1; break; case CRONYX_401s: strcpy (b->name, "401s"); c0 = 1; break; case CRONYX_801s: strcpy (b->name, "801s"); c0 = c1 = 1; break; case CRONYX_404: strcpy (b->name, "404"); c0 = 1; break; case CRONYX_703: strcpy (b->name, "703"); c0 = c1 = 1; break; } switch (osc) { default: case BSR_OSC_20: /* 20 MHz */ b->chip[0].oscfreq = b->chip[1].oscfreq = 20000000L; strcat (b->name, "a"); break; case BSR_OSC_18432: /* 18.432 MHz */ b->chip[0].oscfreq = b->chip[1].oscfreq = 18432000L; strcat (b->name, "b"); break; } if (! c0) b->chip[0].port = 0; if (! c1) b->chip[1].port = 0; /*------------------ Slave board -------------------*/ if (! chain) { b->chip[2].oscfreq = b->chip[3].oscfreq = 0L; b->chip[2].port = b->chip[3].port = 0; } else { /* Read and check the board revision code. */ c0 = c1 = 0; strcat (b->name, "/"); switch (rev2) { case CRONYX_100: strcat(b->name,"100"); c0=1; break; case CRONYX_400: strcat(b->name,"400"); c1=1; break; case CRONYX_500: strcat(b->name,"500"); c0=c1=1; break; case CRONYX_410: strcat(b->name,"410"); c0=1; break; case CRONYX_810: strcat(b->name,"810"); c0=c1=1; break; case CRONYX_410s: strcat(b->name,"410s"); c0=1; break; case CRONYX_810s: strcat(b->name,"810s"); c0=c1=1; break; case CRONYX_440: strcat(b->name,"440"); c0=1; break; case CRONYX_840: strcat(b->name,"840"); c0=c1=1; break; case CRONYX_401: strcat(b->name,"401"); c0=1; break; case CRONYX_801: strcat(b->name,"801"); c0=c1=1; break; case CRONYX_401s: strcat(b->name,"401s"); c0=1; break; case CRONYX_801s: strcat(b->name,"801s"); c0=c1=1; break; case CRONYX_404: strcat(b->name,"404"); c0=1; break; case CRONYX_703: strcat(b->name,"703"); c0=c1=1; break; } switch (osc2) { default: case BSR_OSC_20: /* 20 MHz */ b->chip[2].oscfreq = b->chip[3].oscfreq = 20000000L; strcat (b->name, "a"); break; case BSR_OSC_18432: /* 18.432 MHz */ b->chip[2].oscfreq = b->chip[3].oscfreq = 18432000L; strcat (b->name, "b"); break; } if (! c0) b->chip[2].port = 0; if (! c1) b->chip[3].port = 0; } /* Initialize channel structures. */ for (i=0; ichan + i; c->num = i; c->board = b; c->chip = b->chip + i*NCHIP/NCHAN; c->stat = b->stat + i; c->type = T_NONE; } /*------------------ Master board -------------------*/ switch (rev) { case CRONYX_400: break; case CRONYX_100: case CRONYX_500: b->chan[0].type = T_UNIV_RS232; break; case CRONYX_410: case CRONYX_810: b->chan[0].type = T_UNIV_V35; for (i=1; i<4; ++i) b->chan[i].type = T_UNIV_RS232; break; case CRONYX_410s: case CRONYX_810s: b->chan[0].type = T_UNIV_V35; for (i=1; i<4; ++i) b->chan[i].type = T_SYNC_RS232; break; case CRONYX_440: case CRONYX_840: b->chan[0].type = T_UNIV_V35; for (i=1; i<4; ++i) b->chan[i].type = T_SYNC_V35; break; case CRONYX_401: case CRONYX_801: b->chan[0].type = T_UNIV_RS449; for (i=1; i<4; ++i) b->chan[i].type = T_UNIV_RS232; break; case CRONYX_401s: case CRONYX_801s: b->chan[0].type = T_UNIV_RS449; for (i=1; i<4; ++i) b->chan[i].type = T_SYNC_RS232; break; case CRONYX_404: b->chan[0].type = T_UNIV_RS449; for (i=1; i<4; ++i) b->chan[i].type = T_SYNC_RS449; break; case CRONYX_703: b->chan[0].type = T_UNIV_RS449; for (i=1; i<3; ++i) b->chan[i].type = T_SYNC_RS449; break; } /* If the second controller is present, * then we have 4..7 channels in async. mode */ if (b->chip[1].port) for (i=4; i<8; ++i) b->chan[i].type = T_UNIV_RS232; /*------------------ Slave board -------------------*/ if (chain) { switch (rev2) { case CRONYX_400: break; case CRONYX_100: case CRONYX_500: b->chan[8].type = T_UNIV_RS232; break; case CRONYX_410: case CRONYX_810: b->chan[8].type = T_UNIV_V35; for (i=9; i<12; ++i) b->chan[i].type = T_UNIV_RS232; break; case CRONYX_410s: case CRONYX_810s: b->chan[8].type = T_UNIV_V35; for (i=9; i<12; ++i) b->chan[i].type = T_SYNC_RS232; break; case CRONYX_440: case CRONYX_840: b->chan[8].type = T_UNIV_V35; for (i=9; i<12; ++i) b->chan[i].type = T_SYNC_V35; break; case CRONYX_401: case CRONYX_801: b->chan[8].type = T_UNIV_RS449; for (i=9; i<12; ++i) b->chan[i].type = T_UNIV_RS232; break; case CRONYX_401s: case CRONYX_801s: b->chan[8].type = T_UNIV_RS449; for (i=9; i<12; ++i) b->chan[i].type = T_UNIV_RS232; break; case CRONYX_404: b->chan[8].type = T_UNIV_RS449; for (i=9; i<12; ++i) b->chan[i].type = T_SYNC_RS449; break; case CRONYX_703: b->chan[8].type = T_UNIV_RS449; for (i=9; i<11; ++i) b->chan[i].type = T_SYNC_RS449; break; } /* If the second controller is present, * then we have 4..7 channels in async. mode */ if (b->chip[3].port) for (i=12; i<16; ++i) b->chan[i].type = T_UNIV_RS232; } b->nuniv = b->nsync = b->nasync = 0; for (c=b->chan; cchan+NCHAN; ++c) switch (c->type) { case T_ASYNC: ++b->nasync; break; case T_UNIV_RS232: case T_UNIV_RS449: case T_UNIV_V35: ++b->nuniv; break; case T_SYNC_RS232: case T_SYNC_V35: case T_SYNC_RS449: ++b->nsync; break; } cx_reinit_board (b); } /* * Reinitialize all channels, using new options and baud rate. */ static void cx_reinit_board (cx_board_t *b) { cx_chan_t *c; b->if0type = b->if8type = cx_iftype; for (c=b->chan; cchan+NCHAN; ++c) { switch (c->type) { default: case T_NONE: continue; case T_UNIV_RS232: case T_UNIV_RS449: case T_UNIV_V35: c->mode = (cx_univ_mode == M_ASYNC) ? M_ASYNC : cx_sync_mode; break; case T_SYNC_RS232: case T_SYNC_V35: case T_SYNC_RS449: c->mode = cx_sync_mode; break; case T_ASYNC: c->mode = M_ASYNC; break; } c->rxbaud = cx_rxbaud; c->txbaud = cx_txbaud; c->opt = chan_opt_dflt; c->aopt = opt_async_dflt; c->hopt = opt_hdlc_dflt; c->bopt = opt_bisync_dflt; c->xopt = opt_x21_dflt; } } /* * Set up the board. */ void cx_setup_board (cx_board_t *b) { int i; /* Disable DMA channel. */ outb (DMA_MASK, (b->dma & 3) | DMA_MASK_CLEAR); /* Reset the controller. */ outb (BCR0(b->port), 0); if (b->chip[2].port || b->chip[3].port) outb (BCR0(b->port+0x10), 0); /* * Set channels 0 and 8 to RS232 async. mode. * Enable DMA and IRQ. */ outb (BCR0(b->port), b->bcr0); if (b->chip[2].port || b->chip[3].port) outb (BCR0(b->port+0x10), b->bcr0b); /* Clear DTR[0..3] and DTR[8..12]. */ outw (BCR1(b->port), b->bcr1); if (b->chip[2].port || b->chip[3].port) outw (BCR1(b->port+0x10), b->bcr1b); /* Initialize all controllers. */ for (i=0; ichip[i].port) cx_setup_chip (b->chip + i); /* Set up DMA channel to master mode. */ outb (DMA_MODE, (b->dma & 3) | DMA_MODE_MASTER); /* Enable DMA channel. */ outb (DMA_MASK, b->dma & 3); /* Initialize all channels. */ for (i=0; ichan[i].type != T_NONE) cx_setup_chan (b->chan + i); } /* * Initialize the board. */ static void cx_setup_chip (cx_chip_t *c) { /* Reset the chip. */ cx_reset (c->port); /* * Set all interrupt level registers to the same value. * This enables the internal CD2400 priority scheme. */ outb (RPILR(c->port), BRD_INTR_LEVEL); outb (TPILR(c->port), BRD_INTR_LEVEL); outb (MPILR(c->port), BRD_INTR_LEVEL); /* Set bus error count to zero. */ outb (BERCNT(c->port), 0); /* Set 16-bit DMA mode. */ outb (DMR(c->port), 0); /* Set timer period register to 1 msec (approximately). */ outb (TPR(c->port), 10); } /* * Initialize the CD2400 channel. */ void cx_setup_chan (cx_chan_t *c) { unsigned short port = c->chip->port; int clock, period; if (c->num == 0) { c->board->bcr0 &= ~BCR0_UMASK; if (c->mode != M_ASYNC) c->board->bcr0 |= BCR0_UM_SYNC; if (c->board->if0type && (c->type==T_UNIV_RS449 || c->type==T_UNIV_V35)) c->board->bcr0 |= BCR0_UI_RS449; outb (BCR0(c->board->port), c->board->bcr0); } else if (c->num == 8) { c->board->bcr0b &= ~BCR0_UMASK; if (c->mode != M_ASYNC) c->board->bcr0b |= BCR0_UM_SYNC; if (c->board->if8type && (c->type==T_UNIV_RS449 || c->type==T_UNIV_V35)) c->board->bcr0b |= BCR0_UI_RS449; outb (BCR0(c->board->port+0x10), c->board->bcr0b); } /* set current channel number */ outb (CAR(port), c->num & 3); /* reset the channel */ cx_cmd (port, CCR_CLRCH); /* set LIVR to contain the board and channel numbers */ outb (LIVR(port), c->board->num << 6 | c->num << 2); /* clear DTR, RTS, set TXCout/DTR pin */ outb (MSVR_RTS(port), 0); outb (MSVR_DTR(port), c->mode==M_ASYNC ? 0 : MSV_TXCOUT); switch (c->mode) { /* initialize the channel mode */ case M_ASYNC: /* set receiver timeout register */ outw (RTPR(port), 10); /* 10 msec, see TPR */ outb (CMR(port), CMR_RXDMA | CMR_TXDMA | CMR_ASYNC); outb (COR1(port), BYTE c->aopt.cor1); outb (COR2(port), BYTE c->aopt.cor2); outb (COR3(port), BYTE c->aopt.cor3); outb (COR6(port), BYTE c->aopt.cor6); outb (COR7(port), BYTE c->aopt.cor7); outb (SCHR1(port), c->aopt.schr1); outb (SCHR2(port), c->aopt.schr2); outb (SCHR3(port), c->aopt.schr3); outb (SCHR4(port), c->aopt.schr4); outb (SCRL(port), c->aopt.scrl); outb (SCRH(port), c->aopt.scrh); outb (LNXT(port), c->aopt.lnxt); break; case M_HDLC: outb (CMR(port), CMR_RXDMA | CMR_TXDMA | CMR_HDLC); outb (COR1(port), BYTE c->hopt.cor1); outb (COR2(port), BYTE c->hopt.cor2); outb (COR3(port), BYTE c->hopt.cor3); outb (RFAR1(port), c->hopt.rfar1); outb (RFAR2(port), c->hopt.rfar2); outb (RFAR3(port), c->hopt.rfar3); outb (RFAR4(port), c->hopt.rfar4); outb (CPSR(port), c->hopt.cpsr); break; case M_BISYNC: outb (CMR(port), CMR_RXDMA | CMR_TXDMA | CMR_BISYNC); outb (COR1(port), BYTE c->bopt.cor1); outb (COR2(port), BYTE c->bopt.cor2); outb (COR3(port), BYTE c->bopt.cor3); outb (COR6(port), BYTE c->bopt.cor6); outb (CPSR(port), c->bopt.cpsr); break; case M_X21: outb (CMR(port), CMR_RXDMA | CMR_TXDMA | CMR_X21); outb (COR1(port), BYTE c->xopt.cor1); outb (COR2(port), BYTE c->xopt.cor2); outb (COR3(port), BYTE c->xopt.cor3); outb (COR6(port), BYTE c->xopt.cor6); outb (SCHR1(port), c->xopt.schr1); outb (SCHR2(port), c->xopt.schr2); outb (SCHR3(port), c->xopt.schr3); break; } /* set mode-independent options */ outb (COR4(port), BYTE c->opt.cor4); outb (COR5(port), BYTE c->opt.cor5); /* set up receiver clock values */ if (c->mode == M_ASYNC || c->opt.rcor.dpll) { cx_clock (c->chip->oscfreq, c->rxbaud, &clock, &period); c->opt.rcor.clk = clock; } else { c->opt.rcor.clk = CLK_EXT; period = 1; } outb (RCOR(port), BYTE c->opt.rcor); outb (RBPR(port), period); /* set up transmitter clock values */ if (c->mode == M_ASYNC || !c->opt.tcor.ext1x) { unsigned ext1x = c->opt.tcor.ext1x; c->opt.tcor.ext1x = 0; cx_clock (c->chip->oscfreq, c->txbaud, &clock, &period); c->opt.tcor.clk = clock; c->opt.tcor.ext1x = ext1x; } else { c->opt.tcor.clk = CLK_EXT; period = 1; } outb (TCOR(port), BYTE c->opt.tcor); outb (TBPR(port), period); /* set receiver A buffer physical address */ c->arphys = vtophys (c->arbuf); outw (ARBADRU(port), (unsigned short) (c->arphys>>16)); outw (ARBADRL(port), (unsigned short) c->arphys); /* set receiver B buffer physical address */ c->brphys = vtophys (c->brbuf); outw (BRBADRU(port), (unsigned short) (c->brphys>>16)); outw (BRBADRL(port), (unsigned short) c->brphys); /* set transmitter A buffer physical address */ c->atphys = vtophys (c->atbuf); outw (ATBADRU(port), (unsigned short) (c->atphys>>16)); outw (ATBADRL(port), (unsigned short) c->atphys); /* set transmitter B buffer physical address */ c->btphys = vtophys (c->btbuf); outw (BTBADRU(port), (unsigned short) (c->btphys>>16)); outw (BTBADRL(port), (unsigned short) c->btphys); c->dtr = 0; c->rts = 0; } /* * Control DTR signal for the channel. * Turn it on/off. */ void cx_chan_dtr (cx_chan_t *c, int on) { c->dtr = on ? 1 : 0; if (c->mode == M_ASYNC) { outb (CAR(c->chip->port), c->num & 3); outb (MSVR_DTR(c->chip->port), on ? MSV_DTR : 0); return; } switch (c->num) { default: /* Channels 4..7 and 12..15 in syncronous mode * have no DTR signal. */ break; case 1: case 2: case 3: if (c->type == T_UNIV_RS232) break; case 0: if (on) c->board->bcr1 |= 0x100 << c->num; else c->board->bcr1 &= ~(0x100 << c->num); outw (BCR1(c->board->port), c->board->bcr1); break; case 9: case 10: case 11: if (c->type == T_UNIV_RS232) break; case 8: if (on) c->board->bcr1b |= 0x100 << (c->num & 3); else c->board->bcr1b &= ~(0x100 << (c->num & 3)); outw (BCR1(c->board->port+0x10), c->board->bcr1b); break; } } /* * Control RTS signal for the channel. * Turn it on/off. */ void cx_chan_rts (cx_chan_t *c, int on) { c->rts = on ? 1 : 0; outb (CAR(c->chip->port), c->num & 3); outb (MSVR_RTS(c->chip->port), on ? MSV_RTS : 0); } /* * Get the state of CARRIER signal of the channel. */ int cx_chan_cd (cx_chan_t *c) { unsigned char sigval; if (c->mode == M_ASYNC) { outb (CAR(c->chip->port), c->num & 3); return (inb (MSVR(c->chip->port)) & MSV_CD ? 1 : 0); } /* * Channels 4..7 and 12..15 don't have CD signal available. */ switch (c->num) { default: return (1); case 1: case 2: case 3: if (c->type == T_UNIV_RS232) return (1); case 0: sigval = inw (BSR(c->board->port)) >> 8; break; case 9: case 10: case 11: if (c->type == T_UNIV_RS232) return (1); case 8: sigval = inw (BSR(c->board->port+0x10)) >> 8; break; } return (~sigval >> 4 >> (c->num & 3) & 1); } /* * Compute CD2400 clock values. */ void cx_clock (long hz, long ba, int *clk, int *div) { static short clocktab[] = { 8, 32, 128, 512, 2048, 0 }; for (*clk=0; clocktab[*clk]; ++*clk) { long c = ba * clocktab[*clk]; if (hz <= c*256) { *div = (2 * hz + c) / (2 * c) - 1; return; } } /* Incorrect baud rate. Return some meaningful values. */ *clk = 0; *div = 255; }