/*- * Copyright (c) 2002 Poul-Henning Kamp * Copyright (c) 2002 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Poul-Henning Kamp * and NAI Labs, the Security Research Division of Network Associates, Inc. * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the * DARPA CHATS research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the authors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #ifndef _KERNEL #include #include #include #include #include #else #include #include #include #include #include #include #include #endif #include #include #include #include #define BSD_CLASS_NAME "BSD" struct g_bsd_softc { off_t labeloffset; struct disklabel ondisk; struct disklabel inram; }; static void g_bsd_ledec_partition(u_char *ptr, struct partition *d) { d->p_size = g_dec_le4(ptr + 0); d->p_offset = g_dec_le4(ptr + 4); d->p_fsize = g_dec_le4(ptr + 8); d->p_fstype = ptr[12]; d->p_frag = ptr[13]; d->p_cpg = g_dec_le2(ptr + 14); } static void g_bsd_ledec_disklabel(u_char *ptr, struct disklabel *d) { d->d_magic = g_dec_le4(ptr + 0); d->d_type = g_dec_le2(ptr + 4); d->d_subtype = g_dec_le2(ptr + 6); bcopy(ptr + 8, d->d_typename, 16); bcopy(d->d_packname, ptr + 24, 16); d->d_secsize = g_dec_le4(ptr + 40); d->d_nsectors = g_dec_le4(ptr + 44); d->d_ntracks = g_dec_le4(ptr + 48); d->d_ncylinders = g_dec_le4(ptr + 52); d->d_secpercyl = g_dec_le4(ptr + 56); d->d_secperunit = g_dec_le4(ptr + 60); d->d_sparespertrack = g_dec_le2(ptr + 64); d->d_sparespercyl = g_dec_le2(ptr + 66); d->d_acylinders = g_dec_le4(ptr + 68); d->d_rpm = g_dec_le2(ptr + 72); d->d_interleave = g_dec_le2(ptr + 74); d->d_trackskew = g_dec_le2(ptr + 76); d->d_cylskew = g_dec_le2(ptr + 78); d->d_headswitch = g_dec_le4(ptr + 80); d->d_trkseek = g_dec_le4(ptr + 84); d->d_flags = g_dec_le4(ptr + 88); d->d_drivedata[0] = g_dec_le4(ptr + 92); d->d_drivedata[1] = g_dec_le4(ptr + 96); d->d_drivedata[2] = g_dec_le4(ptr + 100); d->d_drivedata[3] = g_dec_le4(ptr + 104); d->d_drivedata[4] = g_dec_le4(ptr + 108); d->d_spare[0] = g_dec_le4(ptr + 112); d->d_spare[1] = g_dec_le4(ptr + 116); d->d_spare[2] = g_dec_le4(ptr + 120); d->d_spare[3] = g_dec_le4(ptr + 124); d->d_spare[4] = g_dec_le4(ptr + 128); d->d_magic2 = g_dec_le4(ptr + 132); d->d_checksum = g_dec_le2(ptr + 136); d->d_npartitions = g_dec_le2(ptr + 138); d->d_bbsize = g_dec_le4(ptr + 140); d->d_sbsize = g_dec_le4(ptr + 144); g_bsd_ledec_partition(ptr + 148, &d->d_partitions[0]); g_bsd_ledec_partition(ptr + 164, &d->d_partitions[1]); g_bsd_ledec_partition(ptr + 180, &d->d_partitions[2]); g_bsd_ledec_partition(ptr + 196, &d->d_partitions[3]); g_bsd_ledec_partition(ptr + 212, &d->d_partitions[4]); g_bsd_ledec_partition(ptr + 228, &d->d_partitions[5]); g_bsd_ledec_partition(ptr + 244, &d->d_partitions[6]); g_bsd_ledec_partition(ptr + 260, &d->d_partitions[7]); } #if 0 static void g_bsd_leenc_partition(u_char *ptr, struct partition *d) { g_enc_le4(ptr + 0, d->p_size); g_enc_le4(ptr + 4, d->p_offset); g_enc_le4(ptr + 8, d->p_fsize); ptr[12] = d->p_fstype; ptr[13] = d->p_frag; g_enc_le2(ptr + 14, d->p_cpg); } static void g_bsd_leenc_disklabel(u_char *ptr, struct disklabel *d) { g_enc_le4(ptr + 0, d->d_magic); g_enc_le2(ptr + 4, d->d_type); g_enc_le2(ptr + 6, d->d_subtype); bcopy(d->d_typename, ptr + 8, 16); bcopy(d->d_packname, ptr + 24, 16); g_enc_le4(ptr + 40, d->d_secsize); g_enc_le4(ptr + 44, d->d_nsectors); g_enc_le4(ptr + 48, d->d_ntracks); g_enc_le4(ptr + 52, d->d_ncylinders); g_enc_le4(ptr + 56, d->d_secpercyl); g_enc_le4(ptr + 60, d->d_secperunit); g_enc_le2(ptr + 64, d->d_sparespertrack); g_enc_le2(ptr + 66, d->d_sparespercyl); g_enc_le4(ptr + 68, d->d_acylinders); g_enc_le2(ptr + 72, d->d_rpm); g_enc_le2(ptr + 74, d->d_interleave); g_enc_le2(ptr + 76, d->d_trackskew); g_enc_le2(ptr + 78, d->d_cylskew); g_enc_le4(ptr + 80, d->d_headswitch); g_enc_le4(ptr + 84, d->d_trkseek); g_enc_le4(ptr + 88, d->d_flags); g_enc_le4(ptr + 92, d->d_drivedata[0]); g_enc_le4(ptr + 96, d->d_drivedata[1]); g_enc_le4(ptr + 100, d->d_drivedata[2]); g_enc_le4(ptr + 104, d->d_drivedata[3]); g_enc_le4(ptr + 108, d->d_drivedata[4]); g_enc_le4(ptr + 112, d->d_spare[0]); g_enc_le4(ptr + 116, d->d_spare[1]); g_enc_le4(ptr + 120, d->d_spare[2]); g_enc_le4(ptr + 124, d->d_spare[3]); g_enc_le4(ptr + 128, d->d_spare[4]); g_enc_le4(ptr + 132, d->d_magic2); g_enc_le2(ptr + 136, d->d_checksum); g_enc_le2(ptr + 138, d->d_npartitions); g_enc_le4(ptr + 140, d->d_bbsize); g_enc_le4(ptr + 144, d->d_sbsize); g_bsd_leenc_partition(ptr + 148, &d->d_partitions[0]); g_bsd_leenc_partition(ptr + 164, &d->d_partitions[1]); g_bsd_leenc_partition(ptr + 180, &d->d_partitions[2]); g_bsd_leenc_partition(ptr + 196, &d->d_partitions[3]); g_bsd_leenc_partition(ptr + 212, &d->d_partitions[4]); g_bsd_leenc_partition(ptr + 228, &d->d_partitions[5]); g_bsd_leenc_partition(ptr + 244, &d->d_partitions[6]); g_bsd_leenc_partition(ptr + 260, &d->d_partitions[7]); } #endif static void ondisk2inram(struct g_bsd_softc *sc) { struct partition *ppp; unsigned offset; int i; sc->inram = sc->ondisk; offset = sc->inram.d_partitions[RAW_PART].p_offset; for (i = 0; i < 8; i++) { ppp = &sc->inram.d_partitions[i]; if (ppp->p_offset >= offset) ppp->p_offset -= offset; } sc->inram.d_checksum = 0; sc->inram.d_checksum = dkcksum(&sc->inram); } /* * It is rather fortunate that this checksum only covers up to the * actual end of actual data, otherwise the pointer-screwup in * alpha architectures would have been much harder to handle. */ static int g_bsd_lesum(struct disklabel *dl, u_char *p) { u_char *pe; uint16_t sum; pe = p + 148 + 16 * dl->d_npartitions; sum = 0; while (p < pe) { sum ^= g_dec_le2(p); p += 2; } return (sum); } static int g_bsd_try(struct g_slicer *gsp, struct g_consumer *cp, int secsize, struct g_bsd_softc *ms, off_t offset) { int error; u_char *buf; struct disklabel *dl; off_t secoff; dl = &ms->ondisk; secoff = offset % secsize; buf = g_read_data(cp, offset - secoff, secsize, &error); if (buf == NULL || error != 0) return(ENOENT); g_bsd_ledec_disklabel(buf + secoff, dl); if (dl->d_magic == DISKMAGIC && dl->d_magic2 == DISKMAGIC && g_bsd_lesum(dl, buf + secoff) == 0) error = 0; else error = ENOENT; g_free(buf); if (error == 0) { gsp->frontstuff = 16 * secsize; ms->labeloffset = offset; } return(error); } static int g_bsd_start(struct bio *bp) { struct g_geom *gp; struct g_bsd_softc *ms; struct g_slicer *gsp; struct g_ioctl *gio; gp = bp->bio_to->geom; gsp = gp->softc; ms = gsp->softc; if (strcmp(bp->bio_attribute, "GEOM::ioctl")) return(0); else if (bp->bio_length != sizeof *gio) return(0); gio = (struct g_ioctl *)bp->bio_data; if (gio->cmd == DIOCGDINFO) { bcopy(&ms->inram, gio->data, sizeof ms->inram); bp->bio_error = 0; g_io_deliver(bp); return (1); } return (0); } static void g_bsd_dumpconf(struct sbuf *sb, char *indent, struct g_geom *gp, struct g_consumer *cp __unused, struct g_provider *pp) { struct g_bsd_softc *ms; struct g_slicer *gsp; gsp = gp->softc; ms = gsp->softc; if (pp == NULL && cp == NULL) { sbuf_printf(sb, "%s%lld\n", indent, ms->labeloffset); } g_slice_dumpconf(sb, indent, gp, cp, pp); } static struct g_geom * g_bsd_taste(struct g_class *mp, struct g_provider *pp, int flags) { struct g_geom *gp; struct g_consumer *cp; struct g_provider *pp2; int error, i, j, npart; struct g_bsd_softc *ms; struct disklabel *dl; u_int secsize; u_int fwsectors, fwheads; off_t mediasize; struct partition *ppp, *ppr; struct g_slicer *gsp; g_trace(G_T_TOPOLOGY, "bsd_taste(%s,%s)", mp->name, pp->name); g_topology_assert(); if (flags == G_TF_NORMAL && !strcmp(pp->geom->class->name, BSD_CLASS_NAME)) return (NULL); gp = g_slice_new(mp, 8, pp, &cp, &ms, sizeof *ms, g_bsd_start); if (gp == NULL) return (NULL); gsp = gp->softc; g_topology_unlock(); gp->dumpconf = g_bsd_dumpconf; npart = 0; while (1) { /* a trick to allow us to use break */ error = g_getattr("MBR::type", cp, &i); if (!error && i != 165 && flags == G_TF_NORMAL) break; error = g_getattr("GEOM::sectorsize", cp, &secsize); if (error) { secsize = 512; printf("g_bsd_taste: error %d Sectors are %d bytes\n", error, secsize); } error = g_getattr("GEOM::mediasize", cp, &mediasize); if (error) { mediasize = 0; printf("g_error %d Mediasize is %lld bytes\n", error, (long long)mediasize); } error = g_bsd_try(gsp, cp, secsize, ms, secsize); if (!error) { g_add_magicspace(gp, "boot1", 0, 512, 0); g_add_magicspace(gp, "label", 512, 276, 0); g_add_magicspace(gp, "fill0", 748, 236, 0); g_add_magicspace(gp, "boot2", 1024, 7168, 0); } if (error) { error = g_bsd_try(gsp, cp, secsize, ms, 64); if (!error) { g_add_magicspace(gp, "fill0", 0, 64, 0); g_add_magicspace(gp, "label", 64, 276, 0); g_add_magicspace(gp, "fill1", 340, 172, 0); } } if (error) break; dl = &ms->ondisk; if (bootverbose) g_hexdump(dl, sizeof(*dl)); if (dl->d_secsize < secsize) break; if (dl->d_secsize > secsize) secsize = dl->d_secsize; ppr = &dl->d_partitions[2]; for (i = 0; i < 8; i++) { ppp = &dl->d_partitions[i]; if (ppp->p_size == 0) continue; npart++; pp2 = g_slice_addslice(gp, i, ((off_t)(ppp->p_offset - ppr->p_offset)) << 9ULL, ((off_t)ppp->p_size) << 9ULL, "%s%c", pp->name, 'a' + i); g_error_provider(pp2, 0); } ondisk2inram(ms); break; } if (npart == 0 && ( (flags == G_TF_INSIST && mediasize != 0) || (flags == G_TF_TRANSPARENT))) { dl = &ms->ondisk; bzero(dl, sizeof *dl); dl->d_magic = DISKMAGIC; dl->d_magic2 = DISKMAGIC; ppp = &dl->d_partitions[RAW_PART]; ppp->p_offset = 0; ppp->p_size = mediasize / secsize; dl->d_npartitions = MAXPARTITIONS; dl->d_interleave = 1; dl->d_secsize = secsize; dl->d_rpm = 3600; j = sizeof fwsectors; error = g_io_getattr("GEOM::fwsectors", cp, &j, &fwsectors); if (error) dl->d_nsectors = 32; else dl->d_nsectors = fwsectors; error = g_io_getattr("GEOM::fwheads", cp, &j, &fwheads); if (error) dl->d_ntracks = 64; else dl->d_ntracks = fwheads; dl->d_secpercyl = dl->d_nsectors * dl->d_ntracks; dl->d_ncylinders = ppp->p_size / dl->d_secpercyl; dl->d_secperunit = ppp->p_size; dl->d_checksum = 0; dl->d_checksum = dkcksum(dl); ms->inram = ms->ondisk; pp2 = g_slice_addslice(gp, RAW_PART, 0, mediasize, "%s%c", pp->name, 'a' + RAW_PART); g_error_provider(pp2, 0); npart = 1; } g_topology_lock(); error = g_access_rel(cp, -1, 0, 0); if (npart > 0) return (gp); g_std_spoiled(cp); return (NULL); } static struct g_class g_bsd_class = { BSD_CLASS_NAME, g_bsd_taste, NULL, G_CLASS_INITIALIZER }; DECLARE_GEOM_CLASS(g_bsd_class, g_bsd);