/*- * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from nfs_vnops.c 8.16 (Berkeley) 5/27/95 */ #include __FBSDID("$FreeBSD$"); /* * vnode op calls for Sun NFS version 2, 3 and 4 */ #include "opt_kdtrace.h" #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KDTRACE_HOOKS #include dtrace_nfsclient_accesscache_flush_probe_func_t dtrace_nfscl_accesscache_flush_done_probe; uint32_t nfscl_accesscache_flush_done_id; dtrace_nfsclient_accesscache_get_probe_func_t dtrace_nfscl_accesscache_get_hit_probe, dtrace_nfscl_accesscache_get_miss_probe; uint32_t nfscl_accesscache_get_hit_id; uint32_t nfscl_accesscache_get_miss_id; dtrace_nfsclient_accesscache_load_probe_func_t dtrace_nfscl_accesscache_load_done_probe; uint32_t nfscl_accesscache_load_done_id; #endif /* !KDTRACE_HOOKS */ /* Defs */ #define TRUE 1 #define FALSE 0 extern struct nfsstats newnfsstats; extern int nfsrv_useacl; extern int nfscl_debuglevel; MALLOC_DECLARE(M_NEWNFSREQ); /* * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these * calls are not in getblk() and brelse() so that they would not be necessary * here. */ #ifndef B_VMIO #define vfs_busy_pages(bp, f) #endif static vop_read_t nfsfifo_read; static vop_write_t nfsfifo_write; static vop_close_t nfsfifo_close; static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *, struct thread *); static vop_lookup_t nfs_lookup; static vop_create_t nfs_create; static vop_mknod_t nfs_mknod; static vop_open_t nfs_open; static vop_pathconf_t nfs_pathconf; static vop_close_t nfs_close; static vop_access_t nfs_access; static vop_getattr_t nfs_getattr; static vop_setattr_t nfs_setattr; static vop_read_t nfs_read; static vop_fsync_t nfs_fsync; static vop_remove_t nfs_remove; static vop_link_t nfs_link; static vop_rename_t nfs_rename; static vop_mkdir_t nfs_mkdir; static vop_rmdir_t nfs_rmdir; static vop_symlink_t nfs_symlink; static vop_readdir_t nfs_readdir; static vop_strategy_t nfs_strategy; static vop_lock1_t nfs_lock1; static int nfs_lookitup(struct vnode *, char *, int, struct ucred *, struct thread *, struct nfsnode **); static int nfs_sillyrename(struct vnode *, struct vnode *, struct componentname *); static vop_access_t nfsspec_access; static vop_readlink_t nfs_readlink; static vop_print_t nfs_print; static vop_advlock_t nfs_advlock; static vop_advlockasync_t nfs_advlockasync; static vop_getacl_t nfs_getacl; static vop_setacl_t nfs_setacl; /* * Global vfs data structures for nfs */ struct vop_vector newnfs_vnodeops = { .vop_default = &default_vnodeops, .vop_access = nfs_access, .vop_advlock = nfs_advlock, .vop_advlockasync = nfs_advlockasync, .vop_close = nfs_close, .vop_create = nfs_create, .vop_fsync = nfs_fsync, .vop_getattr = nfs_getattr, .vop_getpages = ncl_getpages, .vop_putpages = ncl_putpages, .vop_inactive = ncl_inactive, .vop_link = nfs_link, .vop_lock1 = nfs_lock1, .vop_lookup = nfs_lookup, .vop_mkdir = nfs_mkdir, .vop_mknod = nfs_mknod, .vop_open = nfs_open, .vop_pathconf = nfs_pathconf, .vop_print = nfs_print, .vop_read = nfs_read, .vop_readdir = nfs_readdir, .vop_readlink = nfs_readlink, .vop_reclaim = ncl_reclaim, .vop_remove = nfs_remove, .vop_rename = nfs_rename, .vop_rmdir = nfs_rmdir, .vop_setattr = nfs_setattr, .vop_strategy = nfs_strategy, .vop_symlink = nfs_symlink, .vop_write = ncl_write, .vop_getacl = nfs_getacl, .vop_setacl = nfs_setacl, }; struct vop_vector newnfs_fifoops = { .vop_default = &fifo_specops, .vop_access = nfsspec_access, .vop_close = nfsfifo_close, .vop_fsync = nfs_fsync, .vop_getattr = nfs_getattr, .vop_inactive = ncl_inactive, .vop_print = nfs_print, .vop_read = nfsfifo_read, .vop_reclaim = ncl_reclaim, .vop_setattr = nfs_setattr, .vop_write = nfsfifo_write, }; static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct vattr *vap); static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, int namelen, struct ucred *cred, struct thread *td); static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td); static int nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp, struct sillyrename *sp); /* * Global variables */ #define DIRHDSIZ (sizeof (struct dirent) - (MAXNAMLEN + 1)) SYSCTL_DECL(_vfs_nfs); static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO; SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW, &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout"); static int nfs_prime_access_cache = 0; SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW, &nfs_prime_access_cache, 0, "Prime NFS ACCESS cache when fetching attributes"); static int newnfs_commit_on_close = 0; SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW, &newnfs_commit_on_close, 0, "write+commit on close, else only write"); static int nfs_clean_pages_on_close = 1; SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW, &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close"); int newnfs_directio_enable = 0; SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW, &newnfs_directio_enable, 0, "Enable NFS directio"); int nfs_keep_dirty_on_error; SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW, &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned"); /* * This sysctl allows other processes to mmap a file that has been opened * O_DIRECT by a process. In general, having processes mmap the file while * Direct IO is in progress can lead to Data Inconsistencies. But, we allow * this by default to prevent DoS attacks - to prevent a malicious user from * opening up files O_DIRECT preventing other users from mmap'ing these * files. "Protected" environments where stricter consistency guarantees are * required can disable this knob. The process that opened the file O_DIRECT * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not * meaningful. */ int newnfs_directio_allow_mmap = 1; SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW, &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens"); #if 0 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD, &newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count"); SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD, &newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count"); #endif #define NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY \ | NFSACCESS_EXTEND | NFSACCESS_EXECUTE \ | NFSACCESS_DELETE | NFSACCESS_LOOKUP) /* * SMP Locking Note : * The list of locks after the description of the lock is the ordering * of other locks acquired with the lock held. * np->n_mtx : Protects the fields in the nfsnode. VM Object Lock VI_MTX (acquired indirectly) * nmp->nm_mtx : Protects the fields in the nfsmount. rep->r_mtx * ncl_iod_mutex : Global lock, protects shared nfsiod state. * nfs_reqq_mtx : Global lock, protects the nfs_reqq list. nmp->nm_mtx rep->r_mtx * rep->r_mtx : Protects the fields in an nfsreq. */ static int nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td, struct ucred *cred, u_int32_t *retmode) { int error = 0, attrflag, i, lrupos; u_int32_t rmode; struct nfsnode *np = VTONFS(vp); struct nfsvattr nfsva; error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag, &rmode, NULL); if (attrflag) (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (!error) { lrupos = 0; mtx_lock(&np->n_mtx); for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { if (np->n_accesscache[i].uid == cred->cr_uid) { np->n_accesscache[i].mode = rmode; np->n_accesscache[i].stamp = time_second; break; } if (i > 0 && np->n_accesscache[i].stamp < np->n_accesscache[lrupos].stamp) lrupos = i; } if (i == NFS_ACCESSCACHESIZE) { np->n_accesscache[lrupos].uid = cred->cr_uid; np->n_accesscache[lrupos].mode = rmode; np->n_accesscache[lrupos].stamp = time_second; } mtx_unlock(&np->n_mtx); if (retmode != NULL) *retmode = rmode; KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0); } else if (NFS_ISV4(vp)) { error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); } #ifdef KDTRACE_HOOKS if (error != 0) KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0, error); #endif return (error); } /* * nfs access vnode op. * For nfs version 2, just return ok. File accesses may fail later. * For nfs version 3, use the access rpc to check accessibility. If file modes * are changed on the server, accesses might still fail later. */ static int nfs_access(struct vop_access_args *ap) { struct vnode *vp = ap->a_vp; int error = 0, i, gotahit; u_int32_t mode, wmode, rmode; int v34 = NFS_ISV34(vp); struct nfsnode *np = VTONFS(vp); /* * Disallow write attempts on filesystems mounted read-only; * unless the file is a socket, fifo, or a block or character * device resident on the filesystem. */ if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS | VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL | VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) { switch (vp->v_type) { case VREG: case VDIR: case VLNK: return (EROFS); default: break; } } /* * For nfs v3 or v4, check to see if we have done this recently, and if * so return our cached result instead of making an ACCESS call. * If not, do an access rpc, otherwise you are stuck emulating * ufs_access() locally using the vattr. This may not be correct, * since the server may apply other access criteria such as * client uid-->server uid mapping that we do not know about. */ if (v34) { if (ap->a_accmode & VREAD) mode = NFSACCESS_READ; else mode = 0; if (vp->v_type != VDIR) { if (ap->a_accmode & VWRITE) mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); if (ap->a_accmode & VAPPEND) mode |= NFSACCESS_EXTEND; if (ap->a_accmode & VEXEC) mode |= NFSACCESS_EXECUTE; if (ap->a_accmode & VDELETE) mode |= NFSACCESS_DELETE; } else { if (ap->a_accmode & VWRITE) mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); if (ap->a_accmode & VAPPEND) mode |= NFSACCESS_EXTEND; if (ap->a_accmode & VEXEC) mode |= NFSACCESS_LOOKUP; if (ap->a_accmode & VDELETE) mode |= NFSACCESS_DELETE; if (ap->a_accmode & VDELETE_CHILD) mode |= NFSACCESS_MODIFY; } /* XXX safety belt, only make blanket request if caching */ if (nfsaccess_cache_timeout > 0) { wmode = NFSACCESS_READ | NFSACCESS_MODIFY | NFSACCESS_EXTEND | NFSACCESS_EXECUTE | NFSACCESS_DELETE | NFSACCESS_LOOKUP; } else { wmode = mode; } /* * Does our cached result allow us to give a definite yes to * this request? */ gotahit = 0; mtx_lock(&np->n_mtx); for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) { if (time_second < (np->n_accesscache[i].stamp + nfsaccess_cache_timeout) && (np->n_accesscache[i].mode & mode) == mode) { NFSINCRGLOBAL(newnfsstats.accesscache_hits); gotahit = 1; } break; } } mtx_unlock(&np->n_mtx); #ifdef KDTRACE_HOOKS if (gotahit != 0) KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp, ap->a_cred->cr_uid, mode); else KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp, ap->a_cred->cr_uid, mode); #endif if (gotahit == 0) { /* * Either a no, or a don't know. Go to the wire. */ NFSINCRGLOBAL(newnfsstats.accesscache_misses); error = nfs34_access_otw(vp, wmode, ap->a_td, ap->a_cred, &rmode); if (!error && (rmode & mode) != mode) error = EACCES; } return (error); } else { if ((error = nfsspec_access(ap)) != 0) { return (error); } /* * Attempt to prevent a mapped root from accessing a file * which it shouldn't. We try to read a byte from the file * if the user is root and the file is not zero length. * After calling nfsspec_access, we should have the correct * file size cached. */ mtx_lock(&np->n_mtx); if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD) && VTONFS(vp)->n_size > 0) { struct iovec aiov; struct uio auio; char buf[1]; mtx_unlock(&np->n_mtx); aiov.iov_base = buf; aiov.iov_len = 1; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = 0; auio.uio_resid = 1; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_READ; auio.uio_td = ap->a_td; if (vp->v_type == VREG) error = ncl_readrpc(vp, &auio, ap->a_cred); else if (vp->v_type == VDIR) { char* bp; bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK); aiov.iov_base = bp; aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ; error = ncl_readdirrpc(vp, &auio, ap->a_cred, ap->a_td); free(bp, M_TEMP); } else if (vp->v_type == VLNK) error = ncl_readlinkrpc(vp, &auio, ap->a_cred); else error = EACCES; } else mtx_unlock(&np->n_mtx); return (error); } } /* * nfs open vnode op * Check to see if the type is ok * and that deletion is not in progress. * For paged in text files, you will need to flush the page cache * if consistency is lost. */ /* ARGSUSED */ static int nfs_open(struct vop_open_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr vattr; int error; int fmode = ap->a_mode; struct ucred *cred; if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) return (EOPNOTSUPP); /* * For NFSv4, we need to do the Open Op before cache validation, * so that we conform to RFC3530 Sec. 9.3.1. */ if (NFS_ISV4(vp)) { error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td); if (error) { error = nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); return (error); } } /* * Now, if this Open will be doing reading, re-validate/flush the * cache, so that Close/Open coherency is maintained. */ mtx_lock(&np->n_mtx); if (np->n_flag & NMODIFIED) { mtx_unlock(&np->n_mtx); error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); if (error == EINTR || error == EIO) { if (NFS_ISV4(vp)) (void) nfsrpc_close(vp, 0, ap->a_td); return (error); } mtx_lock(&np->n_mtx); np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); if (vp->v_type == VDIR) np->n_direofoffset = 0; mtx_unlock(&np->n_mtx); error = VOP_GETATTR(vp, &vattr, ap->a_cred); if (error) { if (NFS_ISV4(vp)) (void) nfsrpc_close(vp, 0, ap->a_td); return (error); } mtx_lock(&np->n_mtx); np->n_mtime = vattr.va_mtime; if (NFS_ISV4(vp)) np->n_change = vattr.va_filerev; } else { mtx_unlock(&np->n_mtx); error = VOP_GETATTR(vp, &vattr, ap->a_cred); if (error) { if (NFS_ISV4(vp)) (void) nfsrpc_close(vp, 0, ap->a_td); return (error); } mtx_lock(&np->n_mtx); if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) || NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { if (vp->v_type == VDIR) np->n_direofoffset = 0; mtx_unlock(&np->n_mtx); error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); if (error == EINTR || error == EIO) { if (NFS_ISV4(vp)) (void) nfsrpc_close(vp, 0, ap->a_td); return (error); } mtx_lock(&np->n_mtx); np->n_mtime = vattr.va_mtime; if (NFS_ISV4(vp)) np->n_change = vattr.va_filerev; } } /* * If the object has >= 1 O_DIRECT active opens, we disable caching. */ if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) { if (np->n_directio_opens == 0) { mtx_unlock(&np->n_mtx); error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); if (error) { if (NFS_ISV4(vp)) (void) nfsrpc_close(vp, 0, ap->a_td); return (error); } mtx_lock(&np->n_mtx); np->n_flag |= NNONCACHE; } np->n_directio_opens++; } /* If opened for writing via NFSv4.1 or later, mark that for pNFS. */ if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0) np->n_flag |= NWRITEOPENED; /* * If this is an open for writing, capture a reference to the * credentials, so they can be used by ncl_putpages(). Using * these write credentials is preferable to the credentials of * whatever thread happens to be doing the VOP_PUTPAGES() since * the write RPCs are less likely to fail with EACCES. */ if ((fmode & FWRITE) != 0) { cred = np->n_writecred; np->n_writecred = crhold(ap->a_cred); } else cred = NULL; mtx_unlock(&np->n_mtx); if (cred != NULL) crfree(cred); vnode_create_vobject(vp, vattr.va_size, ap->a_td); return (0); } /* * nfs close vnode op * What an NFS client should do upon close after writing is a debatable issue. * Most NFS clients push delayed writes to the server upon close, basically for * two reasons: * 1 - So that any write errors may be reported back to the client process * doing the close system call. By far the two most likely errors are * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure. * 2 - To put a worst case upper bound on cache inconsistency between * multiple clients for the file. * There is also a consistency problem for Version 2 of the protocol w.r.t. * not being able to tell if other clients are writing a file concurrently, * since there is no way of knowing if the changed modify time in the reply * is only due to the write for this client. * (NFS Version 3 provides weak cache consistency data in the reply that * should be sufficient to detect and handle this case.) * * The current code does the following: * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers * for NFS Version 3 - flush dirty buffers to the server but don't invalidate * or commit them (this satisfies 1 and 2 except for the * case where the server crashes after this close but * before the commit RPC, which is felt to be "good * enough". Changing the last argument to ncl_flush() to * a 1 would force a commit operation, if it is felt a * commit is necessary now. * for NFS Version 4 - flush the dirty buffers and commit them, if * nfscl_mustflush() says this is necessary. * It is necessary if there is no write delegation held, * in order to satisfy open/close coherency. * If the file isn't cached on local stable storage, * it may be necessary in order to detect "out of space" * errors from the server, if the write delegation * issued by the server doesn't allow the file to grow. */ /* ARGSUSED */ static int nfs_close(struct vop_close_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct nfsvattr nfsva; struct ucred *cred; int error = 0, ret, localcred = 0; int fmode = ap->a_fflag; if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF)) return (0); /* * During shutdown, a_cred isn't valid, so just use root. */ if (ap->a_cred == NOCRED) { cred = newnfs_getcred(); localcred = 1; } else { cred = ap->a_cred; } if (vp->v_type == VREG) { /* * Examine and clean dirty pages, regardless of NMODIFIED. * This closes a major hole in close-to-open consistency. * We want to push out all dirty pages (and buffers) on * close, regardless of whether they were dirtied by * mmap'ed writes or via write(). */ if (nfs_clean_pages_on_close && vp->v_object) { VM_OBJECT_WLOCK(vp->v_object); vm_object_page_clean(vp->v_object, 0, 0, 0); VM_OBJECT_WUNLOCK(vp->v_object); } mtx_lock(&np->n_mtx); if (np->n_flag & NMODIFIED) { mtx_unlock(&np->n_mtx); if (NFS_ISV3(vp)) { /* * Under NFSv3 we have dirty buffers to dispose of. We * must flush them to the NFS server. We have the option * of waiting all the way through the commit rpc or just * waiting for the initial write. The default is to only * wait through the initial write so the data is in the * server's cache, which is roughly similar to the state * a standard disk subsystem leaves the file in on close(). * * We cannot clear the NMODIFIED bit in np->n_flag due to * potential races with other processes, and certainly * cannot clear it if we don't commit. * These races occur when there is no longer the old * traditional vnode locking implemented for Vnode Ops. */ int cm = newnfs_commit_on_close ? 1 : 0; error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0); /* np->n_flag &= ~NMODIFIED; */ } else if (NFS_ISV4(vp)) { if (nfscl_mustflush(vp) != 0) { int cm = newnfs_commit_on_close ? 1 : 0; error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0); /* * as above w.r.t races when clearing * NMODIFIED. * np->n_flag &= ~NMODIFIED; */ } } else error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); mtx_lock(&np->n_mtx); } /* * Invalidate the attribute cache in all cases. * An open is going to fetch fresh attrs any way, other procs * on this node that have file open will be forced to do an * otw attr fetch, but this is safe. * --> A user found that their RPC count dropped by 20% when * this was commented out and I can't see any requirement * for it, so I've disabled it when negative lookups are * enabled. (What does this have to do with negative lookup * caching? Well nothing, except it was reported by the * same user that needed negative lookup caching and I wanted * there to be a way to disable it to see if it * is the cause of some caching/coherency issue that might * crop up.) */ if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) { np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); } if (np->n_flag & NWRITEERR) { np->n_flag &= ~NWRITEERR; error = np->n_error; } mtx_unlock(&np->n_mtx); } if (NFS_ISV4(vp)) { /* * Get attributes so "change" is up to date. */ if (error == 0 && nfscl_mustflush(vp) != 0 && vp->v_type == VREG && (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) { ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva, NULL); if (!ret) { np->n_change = nfsva.na_filerev; (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 0); } } /* * and do the close. */ ret = nfsrpc_close(vp, 0, ap->a_td); if (!error && ret) error = ret; if (error) error = nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); } if (newnfs_directio_enable) KASSERT((np->n_directio_asyncwr == 0), ("nfs_close: dirty unflushed (%d) directio buffers\n", np->n_directio_asyncwr)); if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) { mtx_lock(&np->n_mtx); KASSERT((np->n_directio_opens > 0), ("nfs_close: unexpectedly value (0) of n_directio_opens\n")); np->n_directio_opens--; if (np->n_directio_opens == 0) np->n_flag &= ~NNONCACHE; mtx_unlock(&np->n_mtx); } if (localcred) NFSFREECRED(cred); return (error); } /* * nfs getattr call from vfs. */ static int nfs_getattr(struct vop_getattr_args *ap) { struct vnode *vp = ap->a_vp; struct thread *td = curthread; /* XXX */ struct nfsnode *np = VTONFS(vp); int error = 0; struct nfsvattr nfsva; struct vattr *vap = ap->a_vap; struct vattr vattr; /* * Update local times for special files. */ mtx_lock(&np->n_mtx); if (np->n_flag & (NACC | NUPD)) np->n_flag |= NCHG; mtx_unlock(&np->n_mtx); /* * First look in the cache. */ if (ncl_getattrcache(vp, &vattr) == 0) { vap->va_type = vattr.va_type; vap->va_mode = vattr.va_mode; vap->va_nlink = vattr.va_nlink; vap->va_uid = vattr.va_uid; vap->va_gid = vattr.va_gid; vap->va_fsid = vattr.va_fsid; vap->va_fileid = vattr.va_fileid; vap->va_size = vattr.va_size; vap->va_blocksize = vattr.va_blocksize; vap->va_atime = vattr.va_atime; vap->va_mtime = vattr.va_mtime; vap->va_ctime = vattr.va_ctime; vap->va_gen = vattr.va_gen; vap->va_flags = vattr.va_flags; vap->va_rdev = vattr.va_rdev; vap->va_bytes = vattr.va_bytes; vap->va_filerev = vattr.va_filerev; /* * Get the local modify time for the case of a write * delegation. */ nfscl_deleggetmodtime(vp, &vap->va_mtime); return (0); } if (NFS_ISV34(vp) && nfs_prime_access_cache && nfsaccess_cache_timeout > 0) { NFSINCRGLOBAL(newnfsstats.accesscache_misses); nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL); if (ncl_getattrcache(vp, ap->a_vap) == 0) { nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime); return (0); } } error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL); if (!error) error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0); if (!error) { /* * Get the local modify time for the case of a write * delegation. */ nfscl_deleggetmodtime(vp, &vap->va_mtime); } else if (NFS_ISV4(vp)) { error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); } return (error); } /* * nfs setattr call. */ static int nfs_setattr(struct vop_setattr_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct thread *td = curthread; /* XXX */ struct vattr *vap = ap->a_vap; int error = 0; u_quad_t tsize; #ifndef nolint tsize = (u_quad_t)0; #endif /* * Setting of flags and marking of atimes are not supported. */ if (vap->va_flags != VNOVAL) return (EOPNOTSUPP); /* * Disallow write attempts if the filesystem is mounted read-only. */ if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && (vp->v_mount->mnt_flag & MNT_RDONLY)) return (EROFS); if (vap->va_size != VNOVAL) { switch (vp->v_type) { case VDIR: return (EISDIR); case VCHR: case VBLK: case VSOCK: case VFIFO: if (vap->va_mtime.tv_sec == VNOVAL && vap->va_atime.tv_sec == VNOVAL && vap->va_mode == (mode_t)VNOVAL && vap->va_uid == (uid_t)VNOVAL && vap->va_gid == (gid_t)VNOVAL) return (0); vap->va_size = VNOVAL; break; default: /* * Disallow write attempts if the filesystem is * mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); /* * We run vnode_pager_setsize() early (why?), * we must set np->n_size now to avoid vinvalbuf * V_SAVE races that might setsize a lower * value. */ mtx_lock(&np->n_mtx); tsize = np->n_size; mtx_unlock(&np->n_mtx); error = ncl_meta_setsize(vp, ap->a_cred, td, vap->va_size); mtx_lock(&np->n_mtx); if (np->n_flag & NMODIFIED) { tsize = np->n_size; mtx_unlock(&np->n_mtx); if (vap->va_size == 0) error = ncl_vinvalbuf(vp, 0, td, 1); else error = ncl_vinvalbuf(vp, V_SAVE, td, 1); if (error) { vnode_pager_setsize(vp, tsize); return (error); } /* * Call nfscl_delegmodtime() to set the modify time * locally, as required. */ nfscl_delegmodtime(vp); } else mtx_unlock(&np->n_mtx); /* * np->n_size has already been set to vap->va_size * in ncl_meta_setsize(). We must set it again since * nfs_loadattrcache() could be called through * ncl_meta_setsize() and could modify np->n_size. */ mtx_lock(&np->n_mtx); np->n_vattr.na_size = np->n_size = vap->va_size; mtx_unlock(&np->n_mtx); }; } else { mtx_lock(&np->n_mtx); if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NMODIFIED) && vp->v_type == VREG) { mtx_unlock(&np->n_mtx); if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 && (error == EINTR || error == EIO)) return (error); } else mtx_unlock(&np->n_mtx); } error = nfs_setattrrpc(vp, vap, ap->a_cred, td); if (error && vap->va_size != VNOVAL) { mtx_lock(&np->n_mtx); np->n_size = np->n_vattr.na_size = tsize; vnode_pager_setsize(vp, tsize); mtx_unlock(&np->n_mtx); } return (error); } /* * Do an nfs setattr rpc. */ static int nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred, struct thread *td) { struct nfsnode *np = VTONFS(vp); int error, ret, attrflag, i; struct nfsvattr nfsva; if (NFS_ISV34(vp)) { mtx_lock(&np->n_mtx); for (i = 0; i < NFS_ACCESSCACHESIZE; i++) np->n_accesscache[i].stamp = 0; np->n_flag |= NDELEGMOD; mtx_unlock(&np->n_mtx); KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp); } error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag, NULL); if (attrflag) { ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (ret && !error) error = ret; } if (error && NFS_ISV4(vp)) error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid); return (error); } /* * nfs lookup call, one step at a time... * First look in cache * If not found, unlock the directory nfsnode and do the rpc */ static int nfs_lookup(struct vop_lookup_args *ap) { struct componentname *cnp = ap->a_cnp; struct vnode *dvp = ap->a_dvp; struct vnode **vpp = ap->a_vpp; struct mount *mp = dvp->v_mount; int flags = cnp->cn_flags; struct vnode *newvp; struct nfsmount *nmp; struct nfsnode *np, *newnp; int error = 0, attrflag, dattrflag, ltype, ncticks; struct thread *td = cnp->cn_thread; struct nfsfh *nfhp; struct nfsvattr dnfsva, nfsva; struct vattr vattr; struct timespec nctime; *vpp = NULLVP; if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) && (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) return (EROFS); if (dvp->v_type != VDIR) return (ENOTDIR); nmp = VFSTONFS(mp); np = VTONFS(dvp); /* For NFSv4, wait until any remove is done. */ mtx_lock(&np->n_mtx); while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) { np->n_flag |= NREMOVEWANT; (void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0); } mtx_unlock(&np->n_mtx); if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0) return (error); error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks); if (error > 0 && error != ENOENT) return (error); if (error == -1) { /* * Lookups of "." are special and always return the * current directory. cache_lookup() already handles * associated locking bookkeeping, etc. */ if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') { /* XXX: Is this really correct? */ if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) cnp->cn_flags |= SAVENAME; return (0); } /* * We only accept a positive hit in the cache if the * change time of the file matches our cached copy. * Otherwise, we discard the cache entry and fallback * to doing a lookup RPC. We also only trust cache * entries for less than nm_nametimeo seconds. * * To better handle stale file handles and attributes, * clear the attribute cache of this node if it is a * leaf component, part of an open() call, and not * locally modified before fetching the attributes. * This should allow stale file handles to be detected * here where we can fall back to a LOOKUP RPC to * recover rather than having nfs_open() detect the * stale file handle and failing open(2) with ESTALE. */ newvp = *vpp; newnp = VTONFS(newvp); if (!(nmp->nm_flag & NFSMNT_NOCTO) && (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && !(newnp->n_flag & NMODIFIED)) { mtx_lock(&newnp->n_mtx); newnp->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); mtx_unlock(&newnp->n_mtx); } if (nfscl_nodeleg(newvp, 0) == 0 || ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) && VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 && timespeccmp(&vattr.va_ctime, &nctime, ==))) { NFSINCRGLOBAL(newnfsstats.lookupcache_hits); if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) cnp->cn_flags |= SAVENAME; return (0); } cache_purge(newvp); if (dvp != newvp) vput(newvp); else vrele(newvp); *vpp = NULLVP; } else if (error == ENOENT) { if (dvp->v_iflag & VI_DOOMED) return (ENOENT); /* * We only accept a negative hit in the cache if the * modification time of the parent directory matches * the cached copy in the name cache entry. * Otherwise, we discard all of the negative cache * entries for this directory. We also only trust * negative cache entries for up to nm_negnametimeo * seconds. */ if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) && VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 && timespeccmp(&vattr.va_mtime, &nctime, ==)) { NFSINCRGLOBAL(newnfsstats.lookupcache_hits); return (ENOENT); } cache_purge_negative(dvp); } error = 0; newvp = NULLVP; NFSINCRGLOBAL(newnfsstats.lookupcache_misses); error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (dattrflag) (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); if (error) { if (newvp != NULLVP) { vput(newvp); *vpp = NULLVP; } if (error != ENOENT) { if (NFS_ISV4(dvp)) error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); return (error); } /* The requested file was not found. */ if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) && (flags & ISLASTCN)) { /* * XXX: UFS does a full VOP_ACCESS(dvp, * VWRITE) here instead of just checking * MNT_RDONLY. */ if (mp->mnt_flag & MNT_RDONLY) return (EROFS); cnp->cn_flags |= SAVENAME; return (EJUSTRETURN); } if ((cnp->cn_flags & MAKEENTRY) != 0 && dattrflag) { /* * Cache the modification time of the parent * directory from the post-op attributes in * the name cache entry. The negative cache * entry will be ignored once the directory * has changed. Don't bother adding the entry * if the directory has already changed. */ mtx_lock(&np->n_mtx); if (timespeccmp(&np->n_vattr.na_mtime, &dnfsva.na_mtime, ==)) { mtx_unlock(&np->n_mtx); cache_enter_time(dvp, NULL, cnp, &dnfsva.na_mtime, NULL); } else mtx_unlock(&np->n_mtx); } return (ENOENT); } /* * Handle RENAME case... */ if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) { if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { FREE((caddr_t)nfhp, M_NFSFH); return (EISDIR); } error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, LK_EXCLUSIVE); if (error) return (error); newvp = NFSTOV(np); if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); *vpp = newvp; cnp->cn_flags |= SAVENAME; return (0); } if (flags & ISDOTDOT) { ltype = NFSVOPISLOCKED(dvp); error = vfs_busy(mp, MBF_NOWAIT); if (error != 0) { vfs_ref(mp); NFSVOPUNLOCK(dvp, 0); error = vfs_busy(mp, 0); NFSVOPLOCK(dvp, ltype | LK_RETRY); vfs_rel(mp); if (error == 0 && (dvp->v_iflag & VI_DOOMED)) { vfs_unbusy(mp); error = ENOENT; } if (error != 0) return (error); } NFSVOPUNLOCK(dvp, 0); error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, cnp->cn_lkflags); if (error == 0) newvp = NFSTOV(np); vfs_unbusy(mp); if (newvp != dvp) NFSVOPLOCK(dvp, ltype | LK_RETRY); if (dvp->v_iflag & VI_DOOMED) { if (error == 0) { if (newvp == dvp) vrele(newvp); else vput(newvp); } error = ENOENT; } if (error != 0) return (error); if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); } else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { FREE((caddr_t)nfhp, M_NFSFH); VREF(dvp); newvp = dvp; if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); } else { error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, cnp->cn_lkflags); if (error) return (error); newvp = NFSTOV(np); if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && !(np->n_flag & NMODIFIED)) { /* * Flush the attribute cache when opening a * leaf node to ensure that fresh attributes * are fetched in nfs_open() since we did not * fetch attributes from the LOOKUP reply. */ mtx_lock(&np->n_mtx); np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); mtx_unlock(&np->n_mtx); } } if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) cnp->cn_flags |= SAVENAME; if ((cnp->cn_flags & MAKEENTRY) && (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) && attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0)) cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime); *vpp = newvp; return (0); } /* * nfs read call. * Just call ncl_bioread() to do the work. */ static int nfs_read(struct vop_read_args *ap) { struct vnode *vp = ap->a_vp; switch (vp->v_type) { case VREG: return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred)); case VDIR: return (EISDIR); default: return (EOPNOTSUPP); } } /* * nfs readlink call */ static int nfs_readlink(struct vop_readlink_args *ap) { struct vnode *vp = ap->a_vp; if (vp->v_type != VLNK) return (EINVAL); return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred)); } /* * Do a readlink rpc. * Called by ncl_doio() from below the buffer cache. */ int ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) { int error, ret, attrflag; struct nfsvattr nfsva; error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva, &attrflag, NULL); if (attrflag) { ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (ret && !error) error = ret; } if (error && NFS_ISV4(vp)) error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); return (error); } /* * nfs read rpc call * Ditto above */ int ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) { int error, ret, attrflag; struct nfsvattr nfsva; struct nfsmount *nmp; nmp = VFSTONFS(vnode_mount(vp)); error = EIO; attrflag = 0; if (NFSHASPNFS(nmp)) error = nfscl_doiods(vp, uiop, NULL, NULL, NFSV4OPEN_ACCESSREAD, cred, uiop->uio_td); NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error); if (error != 0) error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva, &attrflag, NULL); if (attrflag) { ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (ret && !error) error = ret; } if (error && NFS_ISV4(vp)) error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); return (error); } /* * nfs write call */ int ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, int *iomode, int *must_commit, int called_from_strategy) { struct nfsvattr nfsva; int error, attrflag, ret; struct nfsmount *nmp; nmp = VFSTONFS(vnode_mount(vp)); error = EIO; attrflag = 0; if (NFSHASPNFS(nmp)) error = nfscl_doiods(vp, uiop, iomode, must_commit, NFSV4OPEN_ACCESSWRITE, cred, uiop->uio_td); NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error); if (error != 0) error = nfsrpc_write(vp, uiop, iomode, must_commit, cred, uiop->uio_td, &nfsva, &attrflag, NULL, called_from_strategy); if (attrflag) { if (VTONFS(vp)->n_flag & ND_NFSV4) ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1, 1); else ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (ret && !error) error = ret; } if (DOINGASYNC(vp)) *iomode = NFSWRITE_FILESYNC; if (error && NFS_ISV4(vp)) error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); return (error); } /* * nfs mknod rpc * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the * mode set to specify the file type and the size field for rdev. */ static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct vattr *vap) { struct nfsvattr nfsva, dnfsva; struct vnode *newvp = NULL; struct nfsnode *np = NULL, *dnp; struct nfsfh *nfhp; struct vattr vattr; int error = 0, attrflag, dattrflag; u_int32_t rdev; if (vap->va_type == VCHR || vap->va_type == VBLK) rdev = vap->va_rdev; else if (vap->va_type == VFIFO || vap->va_type == VSOCK) rdev = 0xffffffff; else return (EOPNOTSUPP); if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) return (error); error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap, rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (!error) { if (!nfhp) (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (nfhp) error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); } if (dattrflag) (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); if (!error) { newvp = NFSTOV(np); if (attrflag != 0) { error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); if (error != 0) vput(newvp); } } if (!error) { *vpp = newvp; } else if (NFS_ISV4(dvp)) { error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, vap->va_gid); } dnp = VTONFS(dvp); mtx_lock(&dnp->n_mtx); dnp->n_flag |= NMODIFIED; if (!dattrflag) { dnp->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } mtx_unlock(&dnp->n_mtx); return (error); } /* * nfs mknod vop * just call nfs_mknodrpc() to do the work. */ /* ARGSUSED */ static int nfs_mknod(struct vop_mknod_args *ap) { return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap)); } static struct mtx nfs_cverf_mtx; MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex", MTX_DEF); static nfsquad_t nfs_get_cverf(void) { static nfsquad_t cverf; nfsquad_t ret; static int cverf_initialized = 0; mtx_lock(&nfs_cverf_mtx); if (cverf_initialized == 0) { cverf.lval[0] = arc4random(); cverf.lval[1] = arc4random(); cverf_initialized = 1; } else cverf.qval++; ret = cverf; mtx_unlock(&nfs_cverf_mtx); return (ret); } /* * nfs file create call */ static int nfs_create(struct vop_create_args *ap) { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsnode *np = NULL, *dnp; struct vnode *newvp = NULL; struct nfsmount *nmp; struct nfsvattr dnfsva, nfsva; struct nfsfh *nfhp; nfsquad_t cverf; int error = 0, attrflag, dattrflag, fmode = 0; struct vattr vattr; /* * Oops, not for me.. */ if (vap->va_type == VSOCK) return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap)); if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) return (error); if (vap->va_vaflags & VA_EXCLUSIVE) fmode |= O_EXCL; dnp = VTONFS(dvp); nmp = VFSTONFS(vnode_mount(dvp)); again: /* For NFSv4, wait until any remove is done. */ mtx_lock(&dnp->n_mtx); while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) { dnp->n_flag |= NREMOVEWANT; (void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0); } mtx_unlock(&dnp->n_mtx); cverf = nfs_get_cverf(); error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (!error) { if (nfhp == NULL) (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (nfhp != NULL) error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); } if (dattrflag) (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); if (!error) { newvp = NFSTOV(np); if (attrflag == 0) error = nfsrpc_getattr(newvp, cnp->cn_cred, cnp->cn_thread, &nfsva, NULL); if (error == 0) error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); } if (error) { if (newvp != NULL) { vput(newvp); newvp = NULL; } if (NFS_ISV34(dvp) && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) { fmode &= ~O_EXCL; goto again; } } else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) { if (nfscl_checksattr(vap, &nfsva)) { error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred, cnp->cn_thread, &nfsva, &attrflag, NULL); if (error && (vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL)) { /* try again without setting uid/gid */ vap->va_uid = (uid_t)VNOVAL; vap->va_gid = (uid_t)VNOVAL; error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred, cnp->cn_thread, &nfsva, &attrflag, NULL); } if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); if (error != 0) vput(newvp); } } if (!error) { if ((cnp->cn_flags & MAKEENTRY) && attrflag) cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL); *ap->a_vpp = newvp; } else if (NFS_ISV4(dvp)) { error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, vap->va_gid); } mtx_lock(&dnp->n_mtx); dnp->n_flag |= NMODIFIED; if (!dattrflag) { dnp->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } mtx_unlock(&dnp->n_mtx); return (error); } /* * nfs file remove call * To try and make nfs semantics closer to ufs semantics, a file that has * other processes using the vnode is renamed instead of removed and then * removed later on the last close. * - If v_usecount > 1 * If a rename is not already in the works * call nfs_sillyrename() to set it up * else * do the remove rpc */ static int nfs_remove(struct vop_remove_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct nfsnode *np = VTONFS(vp); int error = 0; struct vattr vattr; KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name")); KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount")); if (vp->v_type == VDIR) error = EPERM; else if (vrefcnt(vp) == 1 || (np->n_sillyrename && VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 && vattr.va_nlink > 1)) { /* * Purge the name cache so that the chance of a lookup for * the name succeeding while the remove is in progress is * minimized. Without node locking it can still happen, such * that an I/O op returns ESTALE, but since you get this if * another host removes the file.. */ cache_purge(vp); /* * throw away biocache buffers, mainly to avoid * unnecessary delayed writes later. */ error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1); /* Do the rpc */ if (error != EINTR && error != EIO) error = nfs_removerpc(dvp, vp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread); /* * Kludge City: If the first reply to the remove rpc is lost.. * the reply to the retransmitted request will be ENOENT * since the file was in fact removed * Therefore, we cheat and return success. */ if (error == ENOENT) error = 0; } else if (!np->n_sillyrename) error = nfs_sillyrename(dvp, vp, cnp); mtx_lock(&np->n_mtx); np->n_attrstamp = 0; mtx_unlock(&np->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); return (error); } /* * nfs file remove rpc called from nfs_inactive */ int ncl_removeit(struct sillyrename *sp, struct vnode *vp) { /* * Make sure that the directory vnode is still valid. * XXX we should lock sp->s_dvp here. */ if (sp->s_dvp->v_type == VBAD) return (0); return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen, sp->s_cred, NULL)); } /* * Nfs remove rpc, called from nfs_remove() and ncl_removeit(). */ static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, int namelen, struct ucred *cred, struct thread *td) { struct nfsvattr dnfsva; struct nfsnode *dnp = VTONFS(dvp); int error = 0, dattrflag; mtx_lock(&dnp->n_mtx); dnp->n_flag |= NREMOVEINPROG; mtx_unlock(&dnp->n_mtx); error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva, &dattrflag, NULL); mtx_lock(&dnp->n_mtx); if ((dnp->n_flag & NREMOVEWANT)) { dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG); mtx_unlock(&dnp->n_mtx); wakeup((caddr_t)dnp); } else { dnp->n_flag &= ~NREMOVEINPROG; mtx_unlock(&dnp->n_mtx); } if (dattrflag) (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); mtx_lock(&dnp->n_mtx); dnp->n_flag |= NMODIFIED; if (!dattrflag) { dnp->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } mtx_unlock(&dnp->n_mtx); if (error && NFS_ISV4(dvp)) error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); return (error); } /* * nfs file rename call */ static int nfs_rename(struct vop_rename_args *ap) { struct vnode *fvp = ap->a_fvp; struct vnode *tvp = ap->a_tvp; struct vnode *fdvp = ap->a_fdvp; struct vnode *tdvp = ap->a_tdvp; struct componentname *tcnp = ap->a_tcnp; struct componentname *fcnp = ap->a_fcnp; struct nfsnode *fnp = VTONFS(ap->a_fvp); struct nfsnode *tdnp = VTONFS(ap->a_tdvp); struct nfsv4node *newv4 = NULL; int error; KASSERT((tcnp->cn_flags & HASBUF) != 0 && (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name")); /* Check for cross-device rename */ if ((fvp->v_mount != tdvp->v_mount) || (tvp && (fvp->v_mount != tvp->v_mount))) { error = EXDEV; goto out; } if (fvp == tvp) { ncl_printf("nfs_rename: fvp == tvp (can't happen)\n"); error = 0; goto out; } if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0) goto out; /* * We have to flush B_DELWRI data prior to renaming * the file. If we don't, the delayed-write buffers * can be flushed out later after the file has gone stale * under NFSV3. NFSV2 does not have this problem because * ( as far as I can tell ) it flushes dirty buffers more * often. * * Skip the rename operation if the fsync fails, this can happen * due to the server's volume being full, when we pushed out data * that was written back to our cache earlier. Not checking for * this condition can result in potential (silent) data loss. */ error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread); NFSVOPUNLOCK(fvp, 0); if (!error && tvp) error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread); if (error) goto out; /* * If the tvp exists and is in use, sillyrename it before doing the * rename of the new file over it. * XXX Can't sillyrename a directory. */ if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename && tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) { vput(tvp); tvp = NULL; } error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen, tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred, tcnp->cn_thread); if (error == 0 && NFS_ISV4(tdvp)) { /* * For NFSv4, check to see if it is the same name and * replace the name, if it is different. */ MALLOC(newv4, struct nfsv4node *, sizeof (struct nfsv4node) + tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); mtx_lock(&tdnp->n_mtx); mtx_lock(&fnp->n_mtx); if (fnp->n_v4 != NULL && fvp->v_type == VREG && (fnp->n_v4->n4_namelen != tcnp->cn_namelen || NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen) || tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen || NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, tdnp->n_fhp->nfh_len))) { #ifdef notdef { char nnn[100]; int nnnl; nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99; bcopy(tcnp->cn_nameptr, nnn, nnnl); nnn[nnnl] = '\0'; printf("ren replace=%s\n",nnn); } #endif FREE((caddr_t)fnp->n_v4, M_NFSV4NODE); fnp->n_v4 = newv4; newv4 = NULL; fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len; fnp->n_v4->n4_namelen = tcnp->cn_namelen; NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, tdnp->n_fhp->nfh_len); NFSBCOPY(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen); } mtx_unlock(&tdnp->n_mtx); mtx_unlock(&fnp->n_mtx); if (newv4 != NULL) FREE((caddr_t)newv4, M_NFSV4NODE); } if (fvp->v_type == VDIR) { if (tvp != NULL && tvp->v_type == VDIR) cache_purge(tdvp); cache_purge(fdvp); } out: if (tdvp == tvp) vrele(tdvp); else vput(tdvp); if (tvp) vput(tvp); vrele(fdvp); vrele(fvp); /* * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry. */ if (error == ENOENT) error = 0; return (error); } /* * nfs file rename rpc called from nfs_remove() above */ static int nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp, struct sillyrename *sp) { return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen, sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_thread)); } /* * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit(). */ static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td) { struct nfsvattr fnfsva, tnfsva; struct nfsnode *fdnp = VTONFS(fdvp); struct nfsnode *tdnp = VTONFS(tdvp); int error = 0, fattrflag, tattrflag; error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp, tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag, &tattrflag, NULL, NULL); mtx_lock(&fdnp->n_mtx); fdnp->n_flag |= NMODIFIED; if (fattrflag != 0) { mtx_unlock(&fdnp->n_mtx); (void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1); } else { fdnp->n_attrstamp = 0; mtx_unlock(&fdnp->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp); } mtx_lock(&tdnp->n_mtx); tdnp->n_flag |= NMODIFIED; if (tattrflag != 0) { mtx_unlock(&tdnp->n_mtx); (void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1); } else { tdnp->n_attrstamp = 0; mtx_unlock(&tdnp->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); } if (error && NFS_ISV4(fdvp)) error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); return (error); } /* * nfs hard link create call */ static int nfs_link(struct vop_link_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *tdvp = ap->a_tdvp; struct componentname *cnp = ap->a_cnp; struct nfsnode *np, *tdnp; struct nfsvattr nfsva, dnfsva; int error = 0, attrflag, dattrflag; /* * Push all writes to the server, so that the attribute cache * doesn't get "out of sync" with the server. * XXX There should be a better way! */ VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread); error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag, &dattrflag, NULL); tdnp = VTONFS(tdvp); mtx_lock(&tdnp->n_mtx); tdnp->n_flag |= NMODIFIED; if (dattrflag != 0) { mtx_unlock(&tdnp->n_mtx); (void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1); } else { tdnp->n_attrstamp = 0; mtx_unlock(&tdnp->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); } if (attrflag) (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); else { np = VTONFS(vp); mtx_lock(&np->n_mtx); np->n_attrstamp = 0; mtx_unlock(&np->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); } /* * If negative lookup caching is enabled, I might as well * add an entry for this node. Not necessary for correctness, * but if negative caching is enabled, then the system * must care about lookup caching hit rate, so... */ if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 && (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL); } if (error && NFS_ISV4(vp)) error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, (gid_t)0); return (error); } /* * nfs symbolic link create call */ static int nfs_symlink(struct vop_symlink_args *ap) { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsvattr nfsva, dnfsva; struct nfsfh *nfhp; struct nfsnode *np = NULL, *dnp; struct vnode *newvp = NULL; int error = 0, attrflag, dattrflag, ret; vap->va_type = VLNK; error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen, ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (nfhp) { ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); if (!ret) newvp = NFSTOV(np); else if (!error) error = ret; } if (newvp != NULL) { if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); } else if (!error) { /* * If we do not have an error and we could not extract the * newvp from the response due to the request being NFSv2, we * have to do a lookup in order to obtain a newvp to return. */ error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &np); if (!error) newvp = NFSTOV(np); } if (error) { if (newvp) vput(newvp); if (NFS_ISV4(dvp)) error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, vap->va_gid); } else { *ap->a_vpp = newvp; } dnp = VTONFS(dvp); mtx_lock(&dnp->n_mtx); dnp->n_flag |= NMODIFIED; if (dattrflag != 0) { mtx_unlock(&dnp->n_mtx); (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); } else { dnp->n_attrstamp = 0; mtx_unlock(&dnp->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } /* * If negative lookup caching is enabled, I might as well * add an entry for this node. Not necessary for correctness, * but if negative caching is enabled, then the system * must care about lookup caching hit rate, so... */ if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL); } return (error); } /* * nfs make dir call */ static int nfs_mkdir(struct vop_mkdir_args *ap) { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsnode *np = NULL, *dnp; struct vnode *newvp = NULL; struct vattr vattr; struct nfsfh *nfhp; struct nfsvattr nfsva, dnfsva; int error = 0, attrflag, dattrflag, ret; if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0) return (error); vap->va_type = VDIR; error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); dnp = VTONFS(dvp); mtx_lock(&dnp->n_mtx); dnp->n_flag |= NMODIFIED; if (dattrflag != 0) { mtx_unlock(&dnp->n_mtx); (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); } else { dnp->n_attrstamp = 0; mtx_unlock(&dnp->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } if (nfhp) { ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); if (!ret) { newvp = NFSTOV(np); if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); } else if (!error) error = ret; } if (!error && newvp == NULL) { error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &np); if (!error) { newvp = NFSTOV(np); if (newvp->v_type != VDIR) error = EEXIST; } } if (error) { if (newvp) vput(newvp); if (NFS_ISV4(dvp)) error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, vap->va_gid); } else { /* * If negative lookup caching is enabled, I might as well * add an entry for this node. Not necessary for correctness, * but if negative caching is enabled, then the system * must care about lookup caching hit rate, so... */ if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && dattrflag != 0) cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, &dnfsva.na_ctime); *ap->a_vpp = newvp; } return (error); } /* * nfs remove directory call */ static int nfs_rmdir(struct vop_rmdir_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct nfsnode *dnp; struct nfsvattr dnfsva; int error, dattrflag; if (dvp == vp) return (EINVAL); error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL); dnp = VTONFS(dvp); mtx_lock(&dnp->n_mtx); dnp->n_flag |= NMODIFIED; if (dattrflag != 0) { mtx_unlock(&dnp->n_mtx); (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); } else { dnp->n_attrstamp = 0; mtx_unlock(&dnp->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } cache_purge(dvp); cache_purge(vp); if (error && NFS_ISV4(dvp)) error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, (gid_t)0); /* * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry. */ if (error == ENOENT) error = 0; return (error); } /* * nfs readdir call */ static int nfs_readdir(struct vop_readdir_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct uio *uio = ap->a_uio; ssize_t tresid; int error = 0; struct vattr vattr; if (ap->a_eofflag != NULL) *ap->a_eofflag = 0; if (vp->v_type != VDIR) return(EPERM); /* * First, check for hit on the EOF offset cache */ if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset && (np->n_flag & NMODIFIED) == 0) { if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) { mtx_lock(&np->n_mtx); if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) || !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { mtx_unlock(&np->n_mtx); NFSINCRGLOBAL(newnfsstats.direofcache_hits); if (ap->a_eofflag != NULL) *ap->a_eofflag = 1; return (0); } else mtx_unlock(&np->n_mtx); } } /* * Call ncl_bioread() to do the real work. */ tresid = uio->uio_resid; error = ncl_bioread(vp, uio, 0, ap->a_cred); if (!error && uio->uio_resid == tresid) { NFSINCRGLOBAL(newnfsstats.direofcache_misses); if (ap->a_eofflag != NULL) *ap->a_eofflag = 1; } return (error); } /* * Readdir rpc call. * Called from below the buffer cache by ncl_doio(). */ int ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, struct thread *td) { struct nfsvattr nfsva; nfsuint64 *cookiep, cookie; struct nfsnode *dnp = VTONFS(vp); struct nfsmount *nmp = VFSTONFS(vp->v_mount); int error = 0, eof, attrflag; KASSERT(uiop->uio_iovcnt == 1 && (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, ("nfs readdirrpc bad uio")); /* * If there is no cookie, assume directory was stale. */ ncl_dircookie_lock(dnp); cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); if (cookiep) { cookie = *cookiep; ncl_dircookie_unlock(dnp); } else { ncl_dircookie_unlock(dnp); return (NFSERR_BAD_COOKIE); } if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) (void)ncl_fsinfo(nmp, vp, cred, td); error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva, &attrflag, &eof, NULL); if (attrflag) (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (!error) { /* * We are now either at the end of the directory or have filled * the block. */ if (eof) dnp->n_direofoffset = uiop->uio_offset; else { if (uiop->uio_resid > 0) ncl_printf("EEK! readdirrpc resid > 0\n"); ncl_dircookie_lock(dnp); cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); *cookiep = cookie; ncl_dircookie_unlock(dnp); } } else if (NFS_ISV4(vp)) { error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); } return (error); } /* * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc(). */ int ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, struct thread *td) { struct nfsvattr nfsva; nfsuint64 *cookiep, cookie; struct nfsnode *dnp = VTONFS(vp); struct nfsmount *nmp = VFSTONFS(vp->v_mount); int error = 0, attrflag, eof; KASSERT(uiop->uio_iovcnt == 1 && (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, ("nfs readdirplusrpc bad uio")); /* * If there is no cookie, assume directory was stale. */ ncl_dircookie_lock(dnp); cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); if (cookiep) { cookie = *cookiep; ncl_dircookie_unlock(dnp); } else { ncl_dircookie_unlock(dnp); return (NFSERR_BAD_COOKIE); } if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) (void)ncl_fsinfo(nmp, vp, cred, td); error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva, &attrflag, &eof, NULL); if (attrflag) (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (!error) { /* * We are now either at end of the directory or have filled the * the block. */ if (eof) dnp->n_direofoffset = uiop->uio_offset; else { if (uiop->uio_resid > 0) ncl_printf("EEK! readdirplusrpc resid > 0\n"); ncl_dircookie_lock(dnp); cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); *cookiep = cookie; ncl_dircookie_unlock(dnp); } } else if (NFS_ISV4(vp)) { error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); } return (error); } /* * Silly rename. To make the NFS filesystem that is stateless look a little * more like the "ufs" a remove of an active vnode is translated to a rename * to a funny looking filename that is removed by nfs_inactive on the * nfsnode. There is the potential for another process on a different client * to create the same funny name between the nfs_lookitup() fails and the * nfs_rename() completes, but... */ static int nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) { struct sillyrename *sp; struct nfsnode *np; int error; short pid; unsigned int lticks; cache_purge(dvp); np = VTONFS(vp); KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir")); MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename), M_NEWNFSREQ, M_WAITOK); sp->s_cred = crhold(cnp->cn_cred); sp->s_dvp = dvp; VREF(dvp); /* * Fudge together a funny name. * Changing the format of the funny name to accomodate more * sillynames per directory. * The name is now changed to .nfs...4, where ticks is * CPU ticks since boot. */ pid = cnp->cn_thread->td_proc->p_pid; lticks = (unsigned int)ticks; for ( ; ; ) { sp->s_namlen = sprintf(sp->s_name, ".nfs.%08x.%04x4.4", lticks, pid); if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, cnp->cn_thread, NULL)) break; lticks++; } error = nfs_renameit(dvp, vp, cnp, sp); if (error) goto bad; error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, cnp->cn_thread, &np); np->n_sillyrename = sp; return (0); bad: vrele(sp->s_dvp); crfree(sp->s_cred); free((caddr_t)sp, M_NEWNFSREQ); return (error); } /* * Look up a file name and optionally either update the file handle or * allocate an nfsnode, depending on the value of npp. * npp == NULL --> just do the lookup * *npp == NULL --> allocate a new nfsnode and make sure attributes are * handled too * *npp != NULL --> update the file handle in the vnode */ static int nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred, struct thread *td, struct nfsnode **npp) { struct vnode *newvp = NULL, *vp; struct nfsnode *np, *dnp = VTONFS(dvp); struct nfsfh *nfhp, *onfhp; struct nfsvattr nfsva, dnfsva; struct componentname cn; int error = 0, attrflag, dattrflag; u_int hash; error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (dattrflag) (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); if (npp && !error) { if (*npp != NULL) { np = *npp; vp = NFSTOV(np); /* * For NFSv4, check to see if it is the same name and * replace the name, if it is different. */ if (np->n_v4 != NULL && nfsva.na_type == VREG && (np->n_v4->n4_namelen != len || NFSBCMP(name, NFS4NODENAME(np->n_v4), len) || dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, dnp->n_fhp->nfh_len))) { #ifdef notdef { char nnn[100]; int nnnl; nnnl = (len < 100) ? len : 99; bcopy(name, nnn, nnnl); nnn[nnnl] = '\0'; printf("replace=%s\n",nnn); } #endif FREE((caddr_t)np->n_v4, M_NFSV4NODE); MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + len - 1, M_NFSV4NODE, M_WAITOK); np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; np->n_v4->n4_namelen = len; NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, dnp->n_fhp->nfh_len); NFSBCOPY(name, NFS4NODENAME(np->n_v4), len); } hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); onfhp = np->n_fhp; /* * Rehash node for new file handle. */ vfs_hash_rehash(vp, hash); np->n_fhp = nfhp; if (onfhp != NULL) FREE((caddr_t)onfhp, M_NFSFH); newvp = NFSTOV(np); } else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) { FREE((caddr_t)nfhp, M_NFSFH); VREF(dvp); newvp = dvp; } else { cn.cn_nameptr = name; cn.cn_namelen = len; error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td, &np, NULL, LK_EXCLUSIVE); if (error) return (error); newvp = NFSTOV(np); } if (!attrflag && *npp == NULL) { if (newvp == dvp) vrele(newvp); else vput(newvp); return (ENOENT); } if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); } if (npp && *npp == NULL) { if (error) { if (newvp) { if (newvp == dvp) vrele(newvp); else vput(newvp); } } else *npp = np; } if (error && NFS_ISV4(dvp)) error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); return (error); } /* * Nfs Version 3 and 4 commit rpc */ int ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred, struct thread *td) { struct nfsvattr nfsva; struct nfsmount *nmp = VFSTONFS(vp->v_mount); int error, attrflag; mtx_lock(&nmp->nm_mtx); if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) { mtx_unlock(&nmp->nm_mtx); return (0); } mtx_unlock(&nmp->nm_mtx); error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva, &attrflag, NULL); if (attrflag != 0) (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (error != 0 && NFS_ISV4(vp)) error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); return (error); } /* * Strategy routine. * For async requests when nfsiod(s) are running, queue the request by * calling ncl_asyncio(), otherwise just all ncl_doio() to do the * request. */ static int nfs_strategy(struct vop_strategy_args *ap) { struct buf *bp = ap->a_bp; struct ucred *cr; KASSERT(!(bp->b_flags & B_DONE), ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp)); BUF_ASSERT_HELD(bp); if (bp->b_iocmd == BIO_READ) cr = bp->b_rcred; else cr = bp->b_wcred; /* * If the op is asynchronous and an i/o daemon is waiting * queue the request, wake it up and wait for completion * otherwise just do it ourselves. */ if ((bp->b_flags & B_ASYNC) == 0 || ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread)) (void) ncl_doio(ap->a_vp, bp, cr, curthread, 1); return (0); } /* * fsync vnode op. Just call ncl_flush() with commit == 1. */ /* ARGSUSED */ static int nfs_fsync(struct vop_fsync_args *ap) { if (ap->a_vp->v_type != VREG) { /* * For NFS, metadata is changed synchronously on the server, * so there is nothing to flush. Also, ncl_flush() clears * the NMODIFIED flag and that shouldn't be done here for * directories. */ return (0); } return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0)); } /* * Flush all the blocks associated with a vnode. * Walk through the buffer pool and push any dirty pages * associated with the vnode. * If the called_from_renewthread argument is TRUE, it has been called * from the NFSv4 renew thread and, as such, cannot block indefinitely * waiting for a buffer write to complete. */ int ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td, int commit, int called_from_renewthread) { struct nfsnode *np = VTONFS(vp); struct buf *bp; int i; struct buf *nbp; struct nfsmount *nmp = VFSTONFS(vp->v_mount); int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos; int passone = 1, trycnt = 0; u_quad_t off, endoff, toff; struct ucred* wcred = NULL; struct buf **bvec = NULL; struct bufobj *bo; #ifndef NFS_COMMITBVECSIZ #define NFS_COMMITBVECSIZ 20 #endif struct buf *bvec_on_stack[NFS_COMMITBVECSIZ]; int bvecsize = 0, bveccount; if (called_from_renewthread != 0) slptimeo = hz; if (nmp->nm_flag & NFSMNT_INT) slpflag = PCATCH; if (!commit) passone = 0; bo = &vp->v_bufobj; /* * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the * server, but has not been committed to stable storage on the server * yet. On the first pass, the byte range is worked out and the commit * rpc is done. On the second pass, ncl_writebp() is called to do the * job. */ again: off = (u_quad_t)-1; endoff = 0; bvecpos = 0; if (NFS_ISV34(vp) && commit) { if (bvec != NULL && bvec != bvec_on_stack) free(bvec, M_TEMP); /* * Count up how many buffers waiting for a commit. */ bveccount = 0; BO_LOCK(bo); TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if (!BUF_ISLOCKED(bp) && (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == (B_DELWRI | B_NEEDCOMMIT)) bveccount++; } /* * Allocate space to remember the list of bufs to commit. It is * important to use M_NOWAIT here to avoid a race with nfs_write. * If we can't get memory (for whatever reason), we will end up * committing the buffers one-by-one in the loop below. */ if (bveccount > NFS_COMMITBVECSIZ) { /* * Release the vnode interlock to avoid a lock * order reversal. */ BO_UNLOCK(bo); bvec = (struct buf **) malloc(bveccount * sizeof(struct buf *), M_TEMP, M_NOWAIT); BO_LOCK(bo); if (bvec == NULL) { bvec = bvec_on_stack; bvecsize = NFS_COMMITBVECSIZ; } else bvecsize = bveccount; } else { bvec = bvec_on_stack; bvecsize = NFS_COMMITBVECSIZ; } TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if (bvecpos >= bvecsize) break; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { nbp = TAILQ_NEXT(bp, b_bobufs); continue; } if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != (B_DELWRI | B_NEEDCOMMIT)) { BUF_UNLOCK(bp); nbp = TAILQ_NEXT(bp, b_bobufs); continue; } BO_UNLOCK(bo); bremfree(bp); /* * Work out if all buffers are using the same cred * so we can deal with them all with one commit. * * NOTE: we are not clearing B_DONE here, so we have * to do it later on in this routine if we intend to * initiate I/O on the bp. * * Note: to avoid loopback deadlocks, we do not * assign b_runningbufspace. */ if (wcred == NULL) wcred = bp->b_wcred; else if (wcred != bp->b_wcred) wcred = NOCRED; vfs_busy_pages(bp, 1); BO_LOCK(bo); /* * bp is protected by being locked, but nbp is not * and vfs_busy_pages() may sleep. We have to * recalculate nbp. */ nbp = TAILQ_NEXT(bp, b_bobufs); /* * A list of these buffers is kept so that the * second loop knows which buffers have actually * been committed. This is necessary, since there * may be a race between the commit rpc and new * uncommitted writes on the file. */ bvec[bvecpos++] = bp; toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; if (toff < off) off = toff; toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff); if (toff > endoff) endoff = toff; } BO_UNLOCK(bo); } if (bvecpos > 0) { /* * Commit data on the server, as required. * If all bufs are using the same wcred, then use that with * one call for all of them, otherwise commit each one * separately. */ if (wcred != NOCRED) retv = ncl_commit(vp, off, (int)(endoff - off), wcred, td); else { retv = 0; for (i = 0; i < bvecpos; i++) { off_t off, size; bp = bvec[i]; off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; size = (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff); retv = ncl_commit(vp, off, (int)size, bp->b_wcred, td); if (retv) break; } } if (retv == NFSERR_STALEWRITEVERF) ncl_clearcommit(vp->v_mount); /* * Now, either mark the blocks I/O done or mark the * blocks dirty, depending on whether the commit * succeeded. */ for (i = 0; i < bvecpos; i++) { bp = bvec[i]; bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); if (retv) { /* * Error, leave B_DELWRI intact */ vfs_unbusy_pages(bp); brelse(bp); } else { /* * Success, remove B_DELWRI ( bundirty() ). * * b_dirtyoff/b_dirtyend seem to be NFS * specific. We should probably move that * into bundirty(). XXX */ bufobj_wref(bo); bp->b_flags |= B_ASYNC; bundirty(bp); bp->b_flags &= ~B_DONE; bp->b_ioflags &= ~BIO_ERROR; bp->b_dirtyoff = bp->b_dirtyend = 0; bufdone(bp); } } } /* * Start/do any write(s) that are required. */ loop: BO_LOCK(bo); TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { if (waitfor != MNT_WAIT || passone) continue; error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo); if (error == 0) { BUF_UNLOCK(bp); goto loop; } if (error == ENOLCK) { error = 0; goto loop; } if (called_from_renewthread != 0) { /* * Return EIO so the flush will be retried * later. */ error = EIO; goto done; } if (newnfs_sigintr(nmp, td)) { error = EINTR; goto done; } if (slpflag == PCATCH) { slpflag = 0; slptimeo = 2 * hz; } goto loop; } if ((bp->b_flags & B_DELWRI) == 0) panic("nfs_fsync: not dirty"); if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) { BUF_UNLOCK(bp); continue; } BO_UNLOCK(bo); bremfree(bp); if (passone || !commit) bp->b_flags |= B_ASYNC; else bp->b_flags |= B_ASYNC; bwrite(bp); if (newnfs_sigintr(nmp, td)) { error = EINTR; goto done; } goto loop; } if (passone) { passone = 0; BO_UNLOCK(bo); goto again; } if (waitfor == MNT_WAIT) { while (bo->bo_numoutput) { error = bufobj_wwait(bo, slpflag, slptimeo); if (error) { BO_UNLOCK(bo); if (called_from_renewthread != 0) { /* * Return EIO so that the flush will be * retried later. */ error = EIO; goto done; } error = newnfs_sigintr(nmp, td); if (error) goto done; if (slpflag == PCATCH) { slpflag = 0; slptimeo = 2 * hz; } BO_LOCK(bo); } } if (bo->bo_dirty.bv_cnt != 0 && commit) { BO_UNLOCK(bo); goto loop; } /* * Wait for all the async IO requests to drain */ BO_UNLOCK(bo); mtx_lock(&np->n_mtx); while (np->n_directio_asyncwr > 0) { np->n_flag |= NFSYNCWAIT; error = newnfs_msleep(td, &np->n_directio_asyncwr, &np->n_mtx, slpflag | (PRIBIO + 1), "nfsfsync", 0); if (error) { if (newnfs_sigintr(nmp, td)) { mtx_unlock(&np->n_mtx); error = EINTR; goto done; } } } mtx_unlock(&np->n_mtx); } else BO_UNLOCK(bo); if (NFSHASPNFS(nmp)) { nfscl_layoutcommit(vp, td); /* * Invalidate the attribute cache, since writes to a DS * won't update the size attribute. */ mtx_lock(&np->n_mtx); np->n_attrstamp = 0; } else mtx_lock(&np->n_mtx); if (np->n_flag & NWRITEERR) { error = np->n_error; np->n_flag &= ~NWRITEERR; } if (commit && bo->bo_dirty.bv_cnt == 0 && bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0) np->n_flag &= ~NMODIFIED; mtx_unlock(&np->n_mtx); done: if (bvec != NULL && bvec != bvec_on_stack) free(bvec, M_TEMP); if (error == 0 && commit != 0 && waitfor == MNT_WAIT && (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 || np->n_directio_asyncwr != 0) && trycnt++ < 5) { /* try, try again... */ passone = 1; wcred = NULL; bvec = NULL; bvecsize = 0; printf("try%d\n", trycnt); goto again; } return (error); } /* * NFS advisory byte-level locks. */ static int nfs_advlock(struct vop_advlock_args *ap) { struct vnode *vp = ap->a_vp; struct ucred *cred; struct nfsnode *np = VTONFS(ap->a_vp); struct proc *p = (struct proc *)ap->a_id; struct thread *td = curthread; /* XXX */ struct vattr va; int ret, error = EOPNOTSUPP; u_quad_t size; if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) { if (vp->v_type != VREG) return (EINVAL); if ((ap->a_flags & F_POSIX) != 0) cred = p->p_ucred; else cred = td->td_ucred; NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); if (vp->v_iflag & VI_DOOMED) { NFSVOPUNLOCK(vp, 0); return (EBADF); } /* * If this is unlocking a write locked region, flush and * commit them before unlocking. This is required by * RFC3530 Sec. 9.3.2. */ if (ap->a_op == F_UNLCK && nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id, ap->a_flags)) (void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0); /* * Loop around doing the lock op, while a blocking lock * must wait for the lock op to succeed. */ do { ret = nfsrpc_advlock(vp, np->n_size, ap->a_op, ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags); if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && ap->a_op == F_SETLK) { NFSVOPUNLOCK(vp, 0); error = nfs_catnap(PZERO | PCATCH, ret, "ncladvl"); if (error) return (EINTR); NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); if (vp->v_iflag & VI_DOOMED) { NFSVOPUNLOCK(vp, 0); return (EBADF); } } } while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && ap->a_op == F_SETLK); if (ret == NFSERR_DENIED) { NFSVOPUNLOCK(vp, 0); return (EAGAIN); } else if (ret == EINVAL || ret == EBADF || ret == EINTR) { NFSVOPUNLOCK(vp, 0); return (ret); } else if (ret != 0) { NFSVOPUNLOCK(vp, 0); return (EACCES); } /* * Now, if we just got a lock, invalidate data in the buffer * cache, as required, so that the coherency conforms with * RFC3530 Sec. 9.3.2. */ if (ap->a_op == F_SETLK) { if ((np->n_flag & NMODIFIED) == 0) { np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); ret = VOP_GETATTR(vp, &va, cred); } if ((np->n_flag & NMODIFIED) || ret || np->n_change != va.va_filerev) { (void) ncl_vinvalbuf(vp, V_SAVE, td, 1); np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); ret = VOP_GETATTR(vp, &va, cred); if (!ret) { np->n_mtime = va.va_mtime; np->n_change = va.va_filerev; } } /* Mark that a file lock has been acquired. */ mtx_lock(&np->n_mtx); np->n_flag |= NHASBEENLOCKED; mtx_unlock(&np->n_mtx); } NFSVOPUNLOCK(vp, 0); return (0); } else if (!NFS_ISV4(vp)) { error = NFSVOPLOCK(vp, LK_SHARED); if (error) return (error); if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { size = VTONFS(vp)->n_size; NFSVOPUNLOCK(vp, 0); error = lf_advlock(ap, &(vp->v_lockf), size); } else { if (nfs_advlock_p != NULL) error = nfs_advlock_p(ap); else { NFSVOPUNLOCK(vp, 0); error = ENOLCK; } } if (error == 0 && ap->a_op == F_SETLK) { /* Mark that a file lock has been acquired. */ mtx_lock(&np->n_mtx); np->n_flag |= NHASBEENLOCKED; mtx_unlock(&np->n_mtx); } } return (error); } /* * NFS advisory byte-level locks. */ static int nfs_advlockasync(struct vop_advlockasync_args *ap) { struct vnode *vp = ap->a_vp; u_quad_t size; int error; if (NFS_ISV4(vp)) return (EOPNOTSUPP); error = NFSVOPLOCK(vp, LK_SHARED); if (error) return (error); if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { size = VTONFS(vp)->n_size; NFSVOPUNLOCK(vp, 0); error = lf_advlockasync(ap, &(vp->v_lockf), size); } else { NFSVOPUNLOCK(vp, 0); error = EOPNOTSUPP; } return (error); } /* * Print out the contents of an nfsnode. */ static int nfs_print(struct vop_print_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); ncl_printf("\tfileid %ld fsid 0x%x", np->n_vattr.na_fileid, np->n_vattr.na_fsid); if (vp->v_type == VFIFO) fifo_printinfo(vp); printf("\n"); return (0); } /* * This is the "real" nfs::bwrite(struct buf*). * We set B_CACHE if this is a VMIO buffer. */ int ncl_writebp(struct buf *bp, int force __unused, struct thread *td) { int s; int oldflags = bp->b_flags; #if 0 int retv = 1; off_t off; #endif BUF_ASSERT_HELD(bp); if (bp->b_flags & B_INVAL) { brelse(bp); return(0); } bp->b_flags |= B_CACHE; /* * Undirty the bp. We will redirty it later if the I/O fails. */ s = splbio(); bundirty(bp); bp->b_flags &= ~B_DONE; bp->b_ioflags &= ~BIO_ERROR; bp->b_iocmd = BIO_WRITE; bufobj_wref(bp->b_bufobj); curthread->td_ru.ru_oublock++; splx(s); /* * Note: to avoid loopback deadlocks, we do not * assign b_runningbufspace. */ vfs_busy_pages(bp, 1); BUF_KERNPROC(bp); bp->b_iooffset = dbtob(bp->b_blkno); bstrategy(bp); if( (oldflags & B_ASYNC) == 0) { int rtval = bufwait(bp); if (oldflags & B_DELWRI) { s = splbio(); reassignbuf(bp); splx(s); } brelse(bp); return (rtval); } return (0); } /* * nfs special file access vnode op. * Essentially just get vattr and then imitate iaccess() since the device is * local to the client. */ static int nfsspec_access(struct vop_access_args *ap) { struct vattr *vap; struct ucred *cred = ap->a_cred; struct vnode *vp = ap->a_vp; accmode_t accmode = ap->a_accmode; struct vattr vattr; int error; /* * Disallow write attempts on filesystems mounted read-only; * unless the file is a socket, fifo, or a block or character * device resident on the filesystem. */ if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { switch (vp->v_type) { case VREG: case VDIR: case VLNK: return (EROFS); default: break; } } vap = &vattr; error = VOP_GETATTR(vp, vap, cred); if (error) goto out; error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid, accmode, cred, NULL); out: return error; } /* * Read wrapper for fifos. */ static int nfsfifo_read(struct vop_read_args *ap) { struct nfsnode *np = VTONFS(ap->a_vp); int error; /* * Set access flag. */ mtx_lock(&np->n_mtx); np->n_flag |= NACC; vfs_timestamp(&np->n_atim); mtx_unlock(&np->n_mtx); error = fifo_specops.vop_read(ap); return error; } /* * Write wrapper for fifos. */ static int nfsfifo_write(struct vop_write_args *ap) { struct nfsnode *np = VTONFS(ap->a_vp); /* * Set update flag. */ mtx_lock(&np->n_mtx); np->n_flag |= NUPD; vfs_timestamp(&np->n_mtim); mtx_unlock(&np->n_mtx); return(fifo_specops.vop_write(ap)); } /* * Close wrapper for fifos. * * Update the times on the nfsnode then do fifo close. */ static int nfsfifo_close(struct vop_close_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr vattr; struct timespec ts; mtx_lock(&np->n_mtx); if (np->n_flag & (NACC | NUPD)) { vfs_timestamp(&ts); if (np->n_flag & NACC) np->n_atim = ts; if (np->n_flag & NUPD) np->n_mtim = ts; np->n_flag |= NCHG; if (vrefcnt(vp) == 1 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { VATTR_NULL(&vattr); if (np->n_flag & NACC) vattr.va_atime = np->n_atim; if (np->n_flag & NUPD) vattr.va_mtime = np->n_mtim; mtx_unlock(&np->n_mtx); (void)VOP_SETATTR(vp, &vattr, ap->a_cred); goto out; } } mtx_unlock(&np->n_mtx); out: return (fifo_specops.vop_close(ap)); } /* * Just call ncl_writebp() with the force argument set to 1. * * NOTE: B_DONE may or may not be set in a_bp on call. */ static int nfs_bwrite(struct buf *bp) { return (ncl_writebp(bp, 1, curthread)); } struct buf_ops buf_ops_newnfs = { .bop_name = "buf_ops_nfs", .bop_write = nfs_bwrite, .bop_strategy = bufstrategy, .bop_sync = bufsync, .bop_bdflush = bufbdflush, }; /* * Cloned from vop_stdlock(), and then the ugly hack added. */ static int nfs_lock1(struct vop_lock1_args *ap) { struct vnode *vp = ap->a_vp; int error = 0; /* * Since vfs_hash_get() calls vget() and it will no longer work * for FreeBSD8 with flags == 0, I can only think of this horrible * hack to work around it. I call vfs_hash_get() with LK_EXCLOTHER * and then handle it here. All I want for this case is a v_usecount * on the vnode to use for recovery, while another thread might * hold a lock on the vnode. I have the other threads blocked, so * there isn't any race problem. */ if ((ap->a_flags & LK_TYPE_MASK) == LK_EXCLOTHER) { if ((ap->a_flags & LK_INTERLOCK) == 0) panic("ncllock1"); if ((vp->v_iflag & VI_DOOMED)) error = ENOENT; VI_UNLOCK(vp); return (error); } return (_lockmgr_args(vp->v_vnlock, ap->a_flags, VI_MTX(vp), LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, ap->a_file, ap->a_line)); } static int nfs_getacl(struct vop_getacl_args *ap) { int error; if (ap->a_type != ACL_TYPE_NFS4) return (EOPNOTSUPP); error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, NULL); if (error > NFSERR_STALE) { (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); error = EPERM; } return (error); } static int nfs_setacl(struct vop_setacl_args *ap) { int error; if (ap->a_type != ACL_TYPE_NFS4) return (EOPNOTSUPP); error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, NULL); if (error > NFSERR_STALE) { (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); error = EPERM; } return (error); } /* * Return POSIX pathconf information applicable to nfs filesystems. */ static int nfs_pathconf(struct vop_pathconf_args *ap) { struct nfsv3_pathconf pc; struct nfsvattr nfsva; struct vnode *vp = ap->a_vp; struct thread *td = curthread; int attrflag, error; if ((NFS_ISV34(vp) && (ap->a_name == _PC_LINK_MAX || ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED || ap->a_name == _PC_NO_TRUNC)) || (NFS_ISV4(vp) && ap->a_name == _PC_ACL_NFS4)) { /* * Since only the above 4 a_names are returned by the NFSv3 * Pathconf RPC, there is no point in doing it for others. * For NFSv4, the Pathconf RPC (actually a Getattr Op.) can * be used for _PC_NFS4_ACL as well. */ error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva, &attrflag, NULL); if (attrflag != 0) (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (error != 0) return (error); } else { /* * For NFSv2 (or NFSv3 when not one of the above 4 a_names), * just fake them. */ pc.pc_linkmax = LINK_MAX; pc.pc_namemax = NFS_MAXNAMLEN; pc.pc_notrunc = 1; pc.pc_chownrestricted = 1; pc.pc_caseinsensitive = 0; pc.pc_casepreserving = 1; error = 0; } switch (ap->a_name) { case _PC_LINK_MAX: *ap->a_retval = pc.pc_linkmax; break; case _PC_NAME_MAX: *ap->a_retval = pc.pc_namemax; break; case _PC_PATH_MAX: *ap->a_retval = PATH_MAX; break; case _PC_PIPE_BUF: *ap->a_retval = PIPE_BUF; break; case _PC_CHOWN_RESTRICTED: *ap->a_retval = pc.pc_chownrestricted; break; case _PC_NO_TRUNC: *ap->a_retval = pc.pc_notrunc; break; case _PC_ACL_EXTENDED: *ap->a_retval = 0; break; case _PC_ACL_NFS4: if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 && NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL)) *ap->a_retval = 1; else *ap->a_retval = 0; break; case _PC_ACL_PATH_MAX: if (NFS_ISV4(vp)) *ap->a_retval = ACL_MAX_ENTRIES; else *ap->a_retval = 3; break; case _PC_MAC_PRESENT: *ap->a_retval = 0; break; case _PC_ASYNC_IO: /* _PC_ASYNC_IO should have been handled by upper layers. */ KASSERT(0, ("_PC_ASYNC_IO should not get here")); error = EINVAL; break; case _PC_PRIO_IO: *ap->a_retval = 0; break; case _PC_SYNC_IO: *ap->a_retval = 0; break; case _PC_ALLOC_SIZE_MIN: *ap->a_retval = vp->v_mount->mnt_stat.f_bsize; break; case _PC_FILESIZEBITS: if (NFS_ISV34(vp)) *ap->a_retval = 64; else *ap->a_retval = 32; break; case _PC_REC_INCR_XFER_SIZE: *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; break; case _PC_REC_MAX_XFER_SIZE: *ap->a_retval = -1; /* means ``unlimited'' */ break; case _PC_REC_MIN_XFER_SIZE: *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; break; case _PC_REC_XFER_ALIGN: *ap->a_retval = PAGE_SIZE; break; case _PC_SYMLINK_MAX: *ap->a_retval = NFS_MAXPATHLEN; break; default: error = EINVAL; break; } return (error); }