/*- * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * ADMtek AN986 Pegasus and AN8511 Pegasus II USB to ethernet driver. * Datasheet is available from http://www.admtek.com.tw. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Pegasus chip uses four USB "endpoints" to provide 10/100 ethernet * support: the control endpoint for reading/writing registers, burst * read endpoint for packet reception, burst write for packet transmission * and one for "interrupts." The chip uses the same RX filter scheme * as the other ADMtek ethernet parts: one perfect filter entry for the * the station address and a 64-bit multicast hash table. The chip supports * both MII and HomePNA attachments. * * Since the maximum data transfer speed of USB is supposed to be 12Mbps, * you're never really going to get 100Mbps speeds from this device. I * think the idea is to allow the device to connect to 10 or 100Mbps * networks, not necessarily to provide 100Mbps performance. Also, since * the controller uses an external PHY chip, it's possible that board * designers might simply choose a 10Mbps PHY. * * Registers are accessed using usb2_do_request(). Packet transfers are * done using usb2_transfer() and friends. */ /* * NOTE: all function names beginning like "aue_cfg_" can only * be called from within the config thread function ! */ #include #include #include #include #define usb2_config_td_cc usb2_ether_cc #define usb2_config_td_softc aue_softc #define USB_DEBUG_VAR aue_debug #include #include #include #include #include #include #include #include #include #include MODULE_DEPEND(aue, usb2_ethernet, 1, 1, 1); MODULE_DEPEND(aue, usb2_core, 1, 1, 1); MODULE_DEPEND(aue, ether, 1, 1, 1); MODULE_DEPEND(aue, miibus, 1, 1, 1); #if USB_DEBUG static int aue_debug = 0; SYSCTL_NODE(_hw_usb2, OID_AUTO, aue, CTLFLAG_RW, 0, "USB aue"); SYSCTL_INT(_hw_usb2_aue, OID_AUTO, debug, CTLFLAG_RW, &aue_debug, 0, "Debug level"); #endif /* * Various supported device vendors/products. */ static const struct usb2_device_id aue_devs[] = { {USB_VPI(USB_VENDOR_3COM, USB_PRODUCT_3COM_3C460B, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_DSB650TX_PNA, 0)}, {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_UFE1000, AUE_FLAG_LSYS)}, {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX10, 0)}, {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX1, AUE_FLAG_PNA | AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX2, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX4, AUE_FLAG_PNA)}, {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX5, AUE_FLAG_PNA)}, {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX6, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX7, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX8, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX9, AUE_FLAG_PNA)}, {USB_VPI(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_SS1001, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_USB320_EC, 0)}, {USB_VPI(USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII_2, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII_3, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII_4, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUS, AUE_FLAG_PNA | AUE_FLAG_DUAL_PHY)}, {USB_VPI(USB_VENDOR_AEI, USB_PRODUCT_AEI_FASTETHERNET, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ALLIEDTELESYN, USB_PRODUCT_ALLIEDTELESYN_ATUSB100, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC110T, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_USB2LAN, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB100, 0)}, {USB_VPI(USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBE100, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBEL100, 0)}, {USB_VPI(USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBLP100, AUE_FLAG_PNA)}, {USB_VPI(USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB_TXS, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB_TX, 0)}, {USB_VPI(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX1, AUE_FLAG_LSYS)}, {USB_VPI(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX2, AUE_FLAG_LSYS | AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX3, AUE_FLAG_LSYS | AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX4, AUE_FLAG_LSYS | AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX_PNA, AUE_FLAG_PNA)}, {USB_VPI(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX, AUE_FLAG_LSYS)}, {USB_VPI(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650, AUE_FLAG_LSYS)}, {USB_VPI(USB_VENDOR_ELCON, USB_PRODUCT_ELCON_PLAN, AUE_FLAG_PNA | AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSB20, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBLTX, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX0, 0)}, {USB_VPI(USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX1, AUE_FLAG_LSYS)}, {USB_VPI(USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX2, 0)}, {USB_VPI(USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX3, AUE_FLAG_LSYS)}, {USB_VPI(USB_VENDOR_ELSA, USB_PRODUCT_ELSA_USB2ETHERNET, 0)}, {USB_VPI(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNBR402W, 0)}, {USB_VPI(USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_UF100, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_HP, USB_PRODUCT_HP_HN210E, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETTXS, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETTX, 0)}, {USB_VPI(USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_KNU101TX, 0)}, {USB_VPI(USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB100H1, AUE_FLAG_LSYS | AUE_FLAG_PNA)}, {USB_VPI(USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB100TX, AUE_FLAG_LSYS)}, {USB_VPI(USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TA, AUE_FLAG_LSYS)}, {USB_VPI(USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TX1, AUE_FLAG_LSYS | AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TX2, AUE_FLAG_LSYS | AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T, AUE_FLAG_LSYS)}, {USB_VPI(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUA2TX5, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUATX1, 0)}, {USB_VPI(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUATX5, 0)}, {USB_VPI(USB_VENDOR_MICROSOFT, USB_PRODUCT_MICROSOFT_MN110, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_FA101, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_SIEMENS, USB_PRODUCT_SIEMENS_SPEEDSTREAM, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_SIIG2, USB_PRODUCT_SIIG2_USBTOETHER, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTNIC, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_SMC, USB_PRODUCT_SMC_2202USB, 0)}, {USB_VPI(USB_VENDOR_SMC, USB_PRODUCT_SMC_2206USB, AUE_FLAG_PII)}, {USB_VPI(USB_VENDOR_SOHOWARE, USB_PRODUCT_SOHOWARE_NUB100, 0)}, {USB_VPI(USB_VENDOR_SOHOWARE, USB_PRODUCT_SOHOWARE_NUB110, AUE_FLAG_PII)}, }; /* prototypes */ static device_probe_t aue_probe; static device_attach_t aue_attach; static device_detach_t aue_detach; static device_shutdown_t aue_shutdown; static usb2_callback_t aue_intr_clear_stall_callback; static usb2_callback_t aue_intr_callback; static usb2_callback_t aue_bulk_read_clear_stall_callback; static usb2_callback_t aue_bulk_read_callback; static usb2_callback_t aue_bulk_write_clear_stall_callback; static usb2_callback_t aue_bulk_write_callback; static void aue_cfg_do_request(struct aue_softc *sc, struct usb2_device_request *req, void *data); static uint8_t aue_cfg_csr_read_1(struct aue_softc *sc, uint16_t reg); static uint16_t aue_cfg_csr_read_2(struct aue_softc *sc, uint16_t reg); static void aue_cfg_csr_write_1(struct aue_softc *sc, uint16_t reg, uint8_t val); static void aue_cfg_csr_write_2(struct aue_softc *sc, uint16_t reg, uint16_t val); static void aue_cfg_eeprom_getword(struct aue_softc *sc, uint8_t addr, uint8_t *dest); static void aue_cfg_read_eeprom(struct aue_softc *sc, uint8_t *dest, uint16_t off, uint16_t len); static miibus_readreg_t aue_cfg_miibus_readreg; static miibus_writereg_t aue_cfg_miibus_writereg; static miibus_statchg_t aue_cfg_miibus_statchg; static usb2_config_td_command_t aue_cfg_setmulti; static usb2_config_td_command_t aue_cfg_first_time_setup; static usb2_config_td_command_t aue_config_copy; static usb2_config_td_command_t aue_cfg_tick; static usb2_config_td_command_t aue_cfg_pre_init; static usb2_config_td_command_t aue_cfg_init; static usb2_config_td_command_t aue_cfg_promisc_upd; static usb2_config_td_command_t aue_cfg_ifmedia_upd; static usb2_config_td_command_t aue_cfg_pre_stop; static usb2_config_td_command_t aue_cfg_stop; static void aue_cfg_reset_pegasus_II(struct aue_softc *sc); static void aue_cfg_reset(struct aue_softc *sc); static void aue_start_cb(struct ifnet *ifp); static void aue_init_cb(void *arg); static void aue_start_transfers(struct aue_softc *sc); static int aue_ifmedia_upd_cb(struct ifnet *ifp); static void aue_ifmedia_sts_cb(struct ifnet *ifp, struct ifmediareq *ifmr); static int aue_ioctl_cb(struct ifnet *ifp, u_long command, caddr_t data); static void aue_watchdog(void *arg); static const struct usb2_config aue_config[AUE_ENDPT_MAX] = { [0] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .mh.bufsize = (MCLBYTES + 2), .mh.flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .mh.callback = &aue_bulk_write_callback, .mh.timeout = 10000, /* 10 seconds */ }, [1] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .mh.bufsize = (MCLBYTES + 4 + ETHER_CRC_LEN), .mh.flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .mh.callback = &aue_bulk_read_callback, }, [2] = { .type = UE_CONTROL, .endpoint = 0x00, /* Control pipe */ .direction = UE_DIR_ANY, .mh.bufsize = sizeof(struct usb2_device_request), .mh.flags = {}, .mh.callback = &aue_bulk_write_clear_stall_callback, .mh.timeout = 1000, /* 1 second */ .mh.interval = 50, /* 50ms */ }, [3] = { .type = UE_CONTROL, .endpoint = 0x00, /* Control pipe */ .direction = UE_DIR_ANY, .mh.bufsize = sizeof(struct usb2_device_request), .mh.flags = {}, .mh.callback = &aue_bulk_read_clear_stall_callback, .mh.timeout = 1000, /* 1 second */ .mh.interval = 50, /* 50ms */ }, [4] = { .type = UE_INTERRUPT, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .mh.flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .mh.bufsize = 0, /* use wMaxPacketSize */ .mh.callback = &aue_intr_callback, }, [5] = { .type = UE_CONTROL, .endpoint = 0x00, /* Control pipe */ .direction = UE_DIR_ANY, .mh.bufsize = sizeof(struct usb2_device_request), .mh.flags = {}, .mh.callback = &aue_intr_clear_stall_callback, .mh.timeout = 1000, /* 1 second */ .mh.interval = 50, /* 50ms */ }, }; static device_method_t aue_methods[] = { /* Device interface */ DEVMETHOD(device_probe, aue_probe), DEVMETHOD(device_attach, aue_attach), DEVMETHOD(device_detach, aue_detach), DEVMETHOD(device_shutdown, aue_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, aue_cfg_miibus_readreg), DEVMETHOD(miibus_writereg, aue_cfg_miibus_writereg), DEVMETHOD(miibus_statchg, aue_cfg_miibus_statchg), {0, 0} }; static driver_t aue_driver = { .name = "aue", .methods = aue_methods, .size = sizeof(struct aue_softc) }; static devclass_t aue_devclass; DRIVER_MODULE(aue, ushub, aue_driver, aue_devclass, NULL, 0); DRIVER_MODULE(miibus, aue, miibus_driver, miibus_devclass, 0, 0); static void aue_cfg_do_request(struct aue_softc *sc, struct usb2_device_request *req, void *data) { uint16_t length; usb2_error_t err; if (usb2_config_td_is_gone(&sc->sc_config_td)) { goto error; } err = usb2_do_request_flags (sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 1000); if (err) { DPRINTF("device request failed, err=%s " "(ignored)\n", usb2_errstr(err)); error: length = UGETW(req->wLength); if ((req->bmRequestType & UT_READ) && length) { bzero(data, length); } } return; } #define AUE_CFG_SETBIT(sc, reg, x) \ aue_cfg_csr_write_1(sc, reg, aue_cfg_csr_read_1(sc, reg) | (x)) #define AUE_CFG_CLRBIT(sc, reg, x) \ aue_cfg_csr_write_1(sc, reg, aue_cfg_csr_read_1(sc, reg) & ~(x)) static uint8_t aue_cfg_csr_read_1(struct aue_softc *sc, uint16_t reg) { struct usb2_device_request req; uint8_t val; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = AUE_UR_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 1); aue_cfg_do_request(sc, &req, &val); return (val); } static uint16_t aue_cfg_csr_read_2(struct aue_softc *sc, uint16_t reg) { struct usb2_device_request req; uint16_t val; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = AUE_UR_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 2); aue_cfg_do_request(sc, &req, &val); return (le16toh(val)); } static void aue_cfg_csr_write_1(struct aue_softc *sc, uint16_t reg, uint8_t val) { struct usb2_device_request req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AUE_UR_WRITEREG; req.wValue[0] = val; req.wValue[1] = 0; USETW(req.wIndex, reg); USETW(req.wLength, 1); aue_cfg_do_request(sc, &req, &val); return; } static void aue_cfg_csr_write_2(struct aue_softc *sc, uint16_t reg, uint16_t val) { struct usb2_device_request req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AUE_UR_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 2); val = htole16(val); aue_cfg_do_request(sc, &req, &val); return; } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void aue_cfg_eeprom_getword(struct aue_softc *sc, uint8_t addr, uint8_t *dest) { uint16_t i; aue_cfg_csr_write_1(sc, AUE_EE_REG, addr); aue_cfg_csr_write_1(sc, AUE_EE_CTL, AUE_EECTL_READ); for (i = 0;; i++) { if (i < AUE_TIMEOUT) { if (aue_cfg_csr_read_1(sc, AUE_EE_CTL) & AUE_EECTL_DONE) { break; } if (usb2_config_td_sleep(&sc->sc_config_td, hz / 100)) { break; } } else { DPRINTF("EEPROM read timed out!\n"); break; } } i = aue_cfg_csr_read_2(sc, AUE_EE_DATA); dest[0] = (i & 0xFF); dest[1] = (i >> 8); return; } /* * Read a sequence of words from the EEPROM. */ static void aue_cfg_read_eeprom(struct aue_softc *sc, uint8_t *dest, uint16_t off, uint16_t len) { uint16_t i; for (i = 0; i < len; i++) { aue_cfg_eeprom_getword(sc, off + i, dest + (i * 2)); } return; } static int aue_cfg_miibus_readreg(device_t dev, int phy, int reg) { struct aue_softc *sc = device_get_softc(dev); uint16_t i; uint8_t do_unlock; /* avoid recursive locking */ if (mtx_owned(&sc->sc_mtx)) { do_unlock = 0; } else { mtx_lock(&sc->sc_mtx); do_unlock = 1; } /* * The Am79C901 HomePNA PHY actually contains * two transceivers: a 1Mbps HomePNA PHY and a * 10Mbps full/half duplex ethernet PHY with * NWAY autoneg. However in the ADMtek adapter, * only the 1Mbps PHY is actually connected to * anything, so we ignore the 10Mbps one. It * happens to be configured for MII address 3, * so we filter that out. */ if (sc->sc_flags & AUE_FLAG_DUAL_PHY) { if (phy == 3) { i = 0; goto done; } #if 0 if (phy != 1) { i = 0; goto done; } #endif } aue_cfg_csr_write_1(sc, AUE_PHY_ADDR, phy); aue_cfg_csr_write_1(sc, AUE_PHY_CTL, reg | AUE_PHYCTL_READ); for (i = 0;; i++) { if (i < AUE_TIMEOUT) { if (aue_cfg_csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE) { break; } if (usb2_config_td_sleep(&sc->sc_config_td, hz / 100)) { break; } } else { DPRINTF("MII read timed out\n"); break; } } i = aue_cfg_csr_read_2(sc, AUE_PHY_DATA); done: if (do_unlock) { mtx_unlock(&sc->sc_mtx); } return (i); } static int aue_cfg_miibus_writereg(device_t dev, int phy, int reg, int data) { struct aue_softc *sc = device_get_softc(dev); uint16_t i; uint8_t do_unlock; if (phy == 3) { return (0); } /* avoid recursive locking */ if (mtx_owned(&sc->sc_mtx)) { do_unlock = 0; } else { mtx_lock(&sc->sc_mtx); do_unlock = 1; } aue_cfg_csr_write_2(sc, AUE_PHY_DATA, data); aue_cfg_csr_write_1(sc, AUE_PHY_ADDR, phy); aue_cfg_csr_write_1(sc, AUE_PHY_CTL, reg | AUE_PHYCTL_WRITE); for (i = 0;; i++) { if (i < AUE_TIMEOUT) { if (aue_cfg_csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE) { break; } if (usb2_config_td_sleep(&sc->sc_config_td, hz / 100)) { break; } } else { DPRINTF("MII write timed out\n"); break; } } if (do_unlock) { mtx_unlock(&sc->sc_mtx); } return (0); } static void aue_cfg_miibus_statchg(device_t dev) { struct aue_softc *sc = device_get_softc(dev); struct mii_data *mii = GET_MII(sc); uint8_t do_unlock; /* avoid recursive locking */ if (mtx_owned(&sc->sc_mtx)) { do_unlock = 0; } else { mtx_lock(&sc->sc_mtx); do_unlock = 1; } AUE_CFG_CLRBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB | AUE_CTL0_TX_ENB); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { AUE_CFG_SETBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL); } else { AUE_CFG_CLRBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL); } if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { AUE_CFG_SETBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX); } else { AUE_CFG_CLRBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX); } AUE_CFG_SETBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB | AUE_CTL0_TX_ENB); /* * Set the LED modes on the LinkSys adapter. * This turns on the 'dual link LED' bin in the auxmode * register of the Broadcom PHY. */ if (sc->sc_flags & AUE_FLAG_LSYS) { uint16_t auxmode; auxmode = aue_cfg_miibus_readreg(dev, 0, 0x1b); aue_cfg_miibus_writereg(dev, 0, 0x1b, auxmode | 0x04); } if (do_unlock) { mtx_unlock(&sc->sc_mtx); } return; } static void aue_cfg_setmulti(struct aue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { uint16_t i; if ((cc->if_flags & IFF_ALLMULTI) || (cc->if_flags & IFF_PROMISC)) { AUE_CFG_SETBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI); return; } AUE_CFG_CLRBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI); /* clear existing ones */ for (i = 0; i < 8; i++) { aue_cfg_csr_write_1(sc, AUE_MAR0 + i, 0); } /* now program new ones */ for (i = 0; i < 8; i++) { aue_cfg_csr_write_1(sc, AUE_MAR0 + i, cc->if_hash[i]); } return; } static void aue_cfg_reset_pegasus_II(struct aue_softc *sc) { /* Magic constants taken from Linux driver. */ aue_cfg_csr_write_1(sc, AUE_REG_1D, 0); aue_cfg_csr_write_1(sc, AUE_REG_7B, 2); #if 0 if ((sc->sc_flags & HAS_HOME_PNA) && mii_mode) aue_cfg_csr_write_1(sc, AUE_REG_81, 6); else #endif aue_cfg_csr_write_1(sc, AUE_REG_81, 2); return; } static void aue_cfg_reset(struct aue_softc *sc) { uint16_t i; AUE_CFG_SETBIT(sc, AUE_CTL1, AUE_CTL1_RESETMAC); for (i = 0;; i++) { if (i < AUE_TIMEOUT) { if (!(aue_cfg_csr_read_1(sc, AUE_CTL1) & AUE_CTL1_RESETMAC)) { break; } if (usb2_config_td_sleep(&sc->sc_config_td, hz / 100)) { break; } } else { DPRINTF("reset timed out\n"); break; } } /* * The PHY(s) attached to the Pegasus chip may be held * in reset until we flip on the GPIO outputs. Make sure * to set the GPIO pins high so that the PHY(s) will * be enabled. * * Note: We force all of the GPIO pins low first, *then* * enable the ones we want. */ aue_cfg_csr_write_1(sc, AUE_GPIO0, (AUE_GPIO_OUT0 | AUE_GPIO_SEL0)); aue_cfg_csr_write_1(sc, AUE_GPIO0, (AUE_GPIO_OUT0 | AUE_GPIO_SEL0 | AUE_GPIO_SEL1)); if (sc->sc_flags & AUE_FLAG_LSYS) { /* Grrr. LinkSys has to be different from everyone else. */ aue_cfg_csr_write_1(sc, AUE_GPIO0, (AUE_GPIO_SEL0 | AUE_GPIO_SEL1)); aue_cfg_csr_write_1(sc, AUE_GPIO0, (AUE_GPIO_SEL0 | AUE_GPIO_SEL1 | AUE_GPIO_OUT0)); } if (sc->sc_flags & AUE_FLAG_PII) { aue_cfg_reset_pegasus_II(sc); } /* wait a little while for the chip to get its brains in order: */ usb2_config_td_sleep(&sc->sc_config_td, hz / 100); return; } /* * Probe for a Pegasus chip. */ static int aue_probe(device_t dev) { struct usb2_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb2_mode != USB_MODE_HOST) { return (ENXIO); } if (uaa->info.bConfigIndex != AUE_CONFIG_INDEX) { return (ENXIO); } if (uaa->info.bIfaceIndex != AUE_IFACE_IDX) { return (ENXIO); } return (usb2_lookup_id_by_uaa(aue_devs, sizeof(aue_devs), uaa)); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int aue_attach(device_t dev) { struct usb2_attach_arg *uaa = device_get_ivars(dev); struct aue_softc *sc = device_get_softc(dev); int32_t error; uint8_t iface_index; if (sc == NULL) { return (ENOMEM); } sc->sc_udev = uaa->device; sc->sc_dev = dev; sc->sc_unit = device_get_unit(dev); sc->sc_flags = USB_GET_DRIVER_INFO(uaa); if (uaa->info.bcdDevice >= 0x0201) { sc->sc_flags |= AUE_FLAG_VER_2; /* XXX currently undocumented */ } device_set_usb2_desc(dev); snprintf(sc->sc_name, sizeof(sc->sc_name), "%s", device_get_nameunit(dev)); mtx_init(&sc->sc_mtx, "aue lock", NULL, MTX_DEF | MTX_RECURSE); usb2_callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, CALLOUT_RETURNUNLOCKED); iface_index = AUE_IFACE_IDX; error = usb2_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, aue_config, AUE_ENDPT_MAX, sc, &sc->sc_mtx); if (error) { device_printf(dev, "allocating USB " "transfers failed!\n"); goto detach; } error = usb2_config_td_setup(&sc->sc_config_td, sc, &sc->sc_mtx, NULL, sizeof(struct usb2_config_td_cc), 16); if (error) { device_printf(dev, "could not setup config " "thread!\n"); goto detach; } mtx_lock(&sc->sc_mtx); sc->sc_flags |= AUE_FLAG_WAIT_LINK; /* start setup */ usb2_config_td_queue_command (&sc->sc_config_td, NULL, &aue_cfg_first_time_setup, 0, 0); /* start watchdog (will exit mutex) */ aue_watchdog(sc); return (0); /* success */ detach: aue_detach(dev); return (ENXIO); /* failure */ } static void aue_cfg_first_time_setup(struct aue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { struct ifnet *ifp; int error; uint8_t eaddr[min(ETHER_ADDR_LEN, 6)]; /* reset the adapter */ aue_cfg_reset(sc); /* set default value */ bzero(eaddr, sizeof(eaddr)); /* get station address from the EEPROM */ aue_cfg_read_eeprom(sc, eaddr, 0, 3); mtx_unlock(&sc->sc_mtx); ifp = if_alloc(IFT_ETHER); mtx_lock(&sc->sc_mtx); if (ifp == NULL) { printf("%s: could not if_alloc()\n", sc->sc_name); goto done; } sc->sc_evilhack = ifp; ifp->if_softc = sc; if_initname(ifp, "aue", sc->sc_unit); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = aue_ioctl_cb; ifp->if_start = aue_start_cb; ifp->if_watchdog = NULL; ifp->if_init = aue_init_cb; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); /* * XXX need Giant when accessing the device structures ! */ mtx_unlock(&sc->sc_mtx); mtx_lock(&Giant); error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, &aue_ifmedia_upd_cb, &aue_ifmedia_sts_cb); mtx_unlock(&Giant); mtx_lock(&sc->sc_mtx); /* * Do MII setup. * NOTE: Doing this causes child devices to be attached to us, * which we would normally disconnect at in the detach routine * using device_delete_child(). However the USB code is set up * such that when this driver is removed, all children devices * are removed as well. In effect, the USB code ends up detaching * all of our children for us, so we don't have to do is ourselves * in aue_detach(). It's important to point this out since if * we *do* try to detach the child devices ourselves, we will * end up getting the children deleted twice, which will crash * the system. */ if (error) { printf("%s: MII without any PHY!\n", sc->sc_name); if_free(ifp); goto done; } sc->sc_ifp = ifp; mtx_unlock(&sc->sc_mtx); /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); mtx_lock(&sc->sc_mtx); done: return; } static int aue_detach(device_t dev) { struct aue_softc *sc = device_get_softc(dev); struct ifnet *ifp; usb2_config_td_drain(&sc->sc_config_td); mtx_lock(&sc->sc_mtx); usb2_callout_stop(&sc->sc_watchdog); aue_cfg_pre_stop(sc, NULL, 0); ifp = sc->sc_ifp; mtx_unlock(&sc->sc_mtx); /* stop all USB transfers first */ usb2_transfer_unsetup(sc->sc_xfer, AUE_ENDPT_MAX); /* get rid of any late children */ bus_generic_detach(dev); if (ifp) { ether_ifdetach(ifp); if_free(ifp); } usb2_config_td_unsetup(&sc->sc_config_td); usb2_callout_drain(&sc->sc_watchdog); mtx_destroy(&sc->sc_mtx); return (0); } static void aue_intr_clear_stall_callback(struct usb2_xfer *xfer) { struct aue_softc *sc = xfer->priv_sc; struct usb2_xfer *xfer_other = sc->sc_xfer[4]; if (usb2_clear_stall_callback(xfer, xfer_other)) { DPRINTF("stall cleared\n"); sc->sc_flags &= ~AUE_FLAG_INTR_STALL; usb2_transfer_start(xfer_other); } return; } static void aue_intr_callback(struct usb2_xfer *xfer) { struct aue_softc *sc = xfer->priv_sc; struct ifnet *ifp = sc->sc_ifp; struct aue_intrpkt pkt; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: if (ifp && (ifp->if_drv_flags & IFF_DRV_RUNNING) && (xfer->actlen >= sizeof(pkt))) { usb2_copy_out(xfer->frbuffers, 0, &pkt, sizeof(pkt)); if (pkt.aue_txstat0) { ifp->if_oerrors++; } if (pkt.aue_txstat0 & (AUE_TXSTAT0_LATECOLL & AUE_TXSTAT0_EXCESSCOLL)) { ifp->if_collisions++; } } case USB_ST_SETUP: if (sc->sc_flags & AUE_FLAG_INTR_STALL) { usb2_transfer_start(sc->sc_xfer[5]); } else { xfer->frlengths[0] = xfer->max_data_length; usb2_start_hardware(xfer); } return; default: /* Error */ if (xfer->error != USB_ERR_CANCELLED) { /* start clear stall */ sc->sc_flags |= AUE_FLAG_INTR_STALL; usb2_transfer_start(sc->sc_xfer[5]); } return; } } static void aue_bulk_read_clear_stall_callback(struct usb2_xfer *xfer) { struct aue_softc *sc = xfer->priv_sc; struct usb2_xfer *xfer_other = sc->sc_xfer[1]; if (usb2_clear_stall_callback(xfer, xfer_other)) { DPRINTF("stall cleared\n"); sc->sc_flags &= ~AUE_FLAG_READ_STALL; usb2_transfer_start(xfer_other); } return; } static void aue_bulk_read_callback(struct usb2_xfer *xfer) { struct aue_softc *sc = xfer->priv_sc; struct ifnet *ifp = sc->sc_ifp; struct mbuf *m = NULL; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "received %d bytes\n", xfer->actlen); if (sc->sc_flags & AUE_FLAG_VER_2) { if (xfer->actlen == 0) { ifp->if_ierrors++; goto tr_setup; } } else { if (xfer->actlen <= (4 + ETHER_CRC_LEN)) { ifp->if_ierrors++; goto tr_setup; } usb2_copy_out(xfer->frbuffers, xfer->actlen - 4, &sc->sc_rxpkt, sizeof(sc->sc_rxpkt)); /* * turn off all the non-error bits in the rx status * word: */ sc->sc_rxpkt.aue_rxstat &= AUE_RXSTAT_MASK; if (sc->sc_rxpkt.aue_rxstat) { ifp->if_ierrors++; goto tr_setup; } /* No errors; receive the packet. */ xfer->actlen -= (4 + ETHER_CRC_LEN); } m = usb2_ether_get_mbuf(); if (m == NULL) { ifp->if_ierrors++; goto tr_setup; } xfer->actlen = min(xfer->actlen, m->m_len); usb2_copy_out(xfer->frbuffers, 0, m->m_data, xfer->actlen); ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = xfer->actlen; case USB_ST_SETUP: tr_setup: if (sc->sc_flags & AUE_FLAG_READ_STALL) { usb2_transfer_start(sc->sc_xfer[3]); } else { xfer->frlengths[0] = xfer->max_data_length; usb2_start_hardware(xfer); } /* * At the end of a USB callback it is always safe to unlock * the private mutex of a device! That is why we do the * "if_input" here, and not some lines up! */ if (m) { mtx_unlock(&sc->sc_mtx); (ifp->if_input) (ifp, m); mtx_lock(&sc->sc_mtx); } return; default: /* Error */ if (xfer->error != USB_ERR_CANCELLED) { /* try to clear stall first */ sc->sc_flags |= AUE_FLAG_READ_STALL; usb2_transfer_start(sc->sc_xfer[3]); } DPRINTF("bulk read error, %s\n", usb2_errstr(xfer->error)); return; } } static void aue_bulk_write_clear_stall_callback(struct usb2_xfer *xfer) { struct aue_softc *sc = xfer->priv_sc; struct usb2_xfer *xfer_other = sc->sc_xfer[0]; if (usb2_clear_stall_callback(xfer, xfer_other)) { DPRINTF("stall cleared\n"); sc->sc_flags &= ~AUE_FLAG_WRITE_STALL; usb2_transfer_start(xfer_other); } return; } static void aue_bulk_write_callback(struct usb2_xfer *xfer) { struct aue_softc *sc = xfer->priv_sc; struct ifnet *ifp = sc->sc_ifp; struct mbuf *m; uint8_t buf[2]; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer of %d bytes complete\n", xfer->actlen); ifp->if_opackets++; case USB_ST_SETUP: if (sc->sc_flags & AUE_FLAG_WRITE_STALL) { usb2_transfer_start(sc->sc_xfer[2]); goto done; } if (sc->sc_flags & AUE_FLAG_WAIT_LINK) { /* * don't send anything if there is no link ! */ goto done; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) { goto done; } if (m->m_pkthdr.len > MCLBYTES) { m->m_pkthdr.len = MCLBYTES; } if (sc->sc_flags & AUE_FLAG_VER_2) { xfer->frlengths[0] = m->m_pkthdr.len; usb2_m_copy_in(xfer->frbuffers, 0, m, 0, m->m_pkthdr.len); } else { xfer->frlengths[0] = (m->m_pkthdr.len + 2); /* * The ADMtek documentation says that the packet length is * supposed to be specified in the first two bytes of the * transfer, however it actually seems to ignore this info * and base the frame size on the bulk transfer length. */ buf[0] = (uint8_t)(m->m_pkthdr.len); buf[1] = (uint8_t)(m->m_pkthdr.len >> 8); usb2_copy_in(xfer->frbuffers, 0, buf, 2); usb2_m_copy_in(xfer->frbuffers, 2, m, 0, m->m_pkthdr.len); } /* * if there's a BPF listener, bounce a copy * of this frame to him: */ BPF_MTAP(ifp, m); m_freem(m); usb2_start_hardware(xfer); done: return; default: /* Error */ DPRINTFN(11, "transfer error, %s\n", usb2_errstr(xfer->error)); if (xfer->error != USB_ERR_CANCELLED) { /* try to clear stall first */ sc->sc_flags |= AUE_FLAG_WRITE_STALL; usb2_transfer_start(sc->sc_xfer[2]); } ifp->if_oerrors++; return; } } #define AUE_BITS 6 static void aue_mchash(struct usb2_config_td_cc *cc, const uint8_t *ptr) { uint8_t h; h = ether_crc32_le(ptr, ETHER_ADDR_LEN) & ((1 << AUE_BITS) - 1); cc->if_hash[(h >> 3)] |= (1 << (h & 7)); return; } static void aue_config_copy(struct aue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { bzero(cc, sizeof(*cc)); usb2_ether_cc(sc->sc_ifp, &aue_mchash, cc); return; } static void aue_cfg_tick(struct aue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { struct ifnet *ifp = sc->sc_ifp; struct mii_data *mii = GET_MII(sc); if ((ifp == NULL) || (mii == NULL)) { /* not ready */ return; } mii_tick(mii); mii_pollstat(mii); if ((sc->sc_flags & AUE_FLAG_WAIT_LINK) && (mii->mii_media_status & IFM_ACTIVE) && (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) { sc->sc_flags &= ~AUE_FLAG_WAIT_LINK; } sc->sc_media_active = mii->mii_media_active; sc->sc_media_status = mii->mii_media_status; /* start stopped transfers, if any */ aue_start_transfers(sc); return; } static void aue_start_cb(struct ifnet *ifp) { struct aue_softc *sc = ifp->if_softc; mtx_lock(&sc->sc_mtx); aue_start_transfers(sc); mtx_unlock(&sc->sc_mtx); return; } static void aue_init_cb(void *arg) { struct aue_softc *sc = arg; mtx_lock(&sc->sc_mtx); usb2_config_td_queue_command (&sc->sc_config_td, &aue_cfg_pre_init, &aue_cfg_init, 0, 0); mtx_unlock(&sc->sc_mtx); return; } static void aue_start_transfers(struct aue_softc *sc) { if ((sc->sc_flags & AUE_FLAG_LL_READY) && (sc->sc_flags & AUE_FLAG_HL_READY)) { /* * start the USB transfers, if not already started: */ usb2_transfer_start(sc->sc_xfer[4]); usb2_transfer_start(sc->sc_xfer[1]); usb2_transfer_start(sc->sc_xfer[0]); } return; } static void aue_cfg_pre_init(struct aue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { struct ifnet *ifp = sc->sc_ifp; /* immediate configuration */ aue_cfg_pre_stop(sc, cc, 0); ifp->if_drv_flags |= IFF_DRV_RUNNING; sc->sc_flags |= AUE_FLAG_HL_READY; return; } static void aue_cfg_init(struct aue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { struct mii_data *mii = GET_MII(sc); uint8_t i; /* * Cancel pending I/O */ aue_cfg_stop(sc, cc, 0); /* Set MAC address */ for (i = 0; i < ETHER_ADDR_LEN; i++) { aue_cfg_csr_write_1(sc, AUE_PAR0 + i, cc->if_lladdr[i]); } /* update promiscuous setting */ aue_cfg_promisc_upd(sc, cc, 0); /* load the multicast filter */ aue_cfg_setmulti(sc, cc, 0); /* enable RX and TX */ aue_cfg_csr_write_1(sc, AUE_CTL0, (AUE_CTL0_RXSTAT_APPEND | AUE_CTL0_RX_ENB)); AUE_CFG_SETBIT(sc, AUE_CTL0, AUE_CTL0_TX_ENB); AUE_CFG_SETBIT(sc, AUE_CTL2, AUE_CTL2_EP3_CLR); mii_mediachg(mii); sc->sc_flags |= (AUE_FLAG_READ_STALL | AUE_FLAG_WRITE_STALL | AUE_FLAG_LL_READY); aue_start_transfers(sc); return; } static void aue_cfg_promisc_upd(struct aue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { /* if we want promiscuous mode, set the allframes bit: */ if (cc->if_flags & IFF_PROMISC) { AUE_CFG_SETBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); } else { AUE_CFG_CLRBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); } return; } /* * Set media options. */ static int aue_ifmedia_upd_cb(struct ifnet *ifp) { struct aue_softc *sc = ifp->if_softc; mtx_lock(&sc->sc_mtx); usb2_config_td_queue_command (&sc->sc_config_td, NULL, &aue_cfg_ifmedia_upd, 0, 0); mtx_unlock(&sc->sc_mtx); return (0); } static void aue_cfg_ifmedia_upd(struct aue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { struct ifnet *ifp = sc->sc_ifp; struct mii_data *mii = GET_MII(sc); if ((ifp == NULL) || (mii == NULL)) { /* not ready */ return; } sc->sc_flags |= AUE_FLAG_WAIT_LINK; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) { mii_phy_reset(miisc); } } mii_mediachg(mii); return; } /* * Report current media status. */ static void aue_ifmedia_sts_cb(struct ifnet *ifp, struct ifmediareq *ifmr) { struct aue_softc *sc = ifp->if_softc; mtx_lock(&sc->sc_mtx); ifmr->ifm_active = sc->sc_media_active; ifmr->ifm_status = sc->sc_media_status; mtx_unlock(&sc->sc_mtx); return; } static int aue_ioctl_cb(struct ifnet *ifp, u_long command, caddr_t data) { struct aue_softc *sc = ifp->if_softc; struct mii_data *mii; int error = 0; switch (command) { case SIOCSIFFLAGS: mtx_lock(&sc->sc_mtx); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { usb2_config_td_queue_command (&sc->sc_config_td, &aue_config_copy, &aue_cfg_promisc_upd, 0, 0); } else { usb2_config_td_queue_command (&sc->sc_config_td, &aue_cfg_pre_init, &aue_cfg_init, 0, 0); } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { usb2_config_td_queue_command (&sc->sc_config_td, &aue_cfg_pre_stop, &aue_cfg_stop, 0, 0); } } mtx_unlock(&sc->sc_mtx); break; case SIOCADDMULTI: case SIOCDELMULTI: mtx_lock(&sc->sc_mtx); usb2_config_td_queue_command (&sc->sc_config_td, &aue_config_copy, &aue_cfg_setmulti, 0, 0); mtx_unlock(&sc->sc_mtx); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = GET_MII(sc); if (mii == NULL) { error = EINVAL; } else { error = ifmedia_ioctl (ifp, (void *)data, &mii->mii_media, command); } break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void aue_watchdog(void *arg) { struct aue_softc *sc = arg; mtx_assert(&sc->sc_mtx, MA_OWNED); usb2_config_td_queue_command (&sc->sc_config_td, NULL, &aue_cfg_tick, 0, 0); usb2_callout_reset(&sc->sc_watchdog, hz, &aue_watchdog, sc); mtx_unlock(&sc->sc_mtx); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. * * NOTE: can be called when "ifp" is NULL */ static void aue_cfg_pre_stop(struct aue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { struct ifnet *ifp = sc->sc_ifp; if (cc) { /* copy the needed configuration */ aue_config_copy(sc, cc, refcount); } /* immediate configuration */ if (ifp) { /* clear flags */ ifp->if_drv_flags &= ~IFF_DRV_RUNNING; } sc->sc_flags &= ~(AUE_FLAG_HL_READY | AUE_FLAG_LL_READY); sc->sc_flags |= AUE_FLAG_WAIT_LINK; /* * stop all the transfers, if not already stopped: */ usb2_transfer_stop(sc->sc_xfer[0]); usb2_transfer_stop(sc->sc_xfer[1]); usb2_transfer_stop(sc->sc_xfer[2]); usb2_transfer_stop(sc->sc_xfer[3]); usb2_transfer_stop(sc->sc_xfer[4]); usb2_transfer_stop(sc->sc_xfer[5]); return; } static void aue_cfg_stop(struct aue_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { aue_cfg_csr_write_1(sc, AUE_CTL0, 0); aue_cfg_csr_write_1(sc, AUE_CTL1, 0); aue_cfg_reset(sc); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int aue_shutdown(device_t dev) { struct aue_softc *sc = device_get_softc(dev); mtx_lock(&sc->sc_mtx); usb2_config_td_queue_command (&sc->sc_config_td, &aue_cfg_pre_stop, &aue_cfg_stop, 0, 0); mtx_unlock(&sc->sc_mtx); return (0); }