/* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ /* $FreeBSD$ */ /*- * Copyright (c) 2006 by Damien Bergamini * Copyright (c) 2006 by Florian Stoehr * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * ZyDAS ZD1211/ZD1211B USB WLAN driver. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbdevs.h" #include #include #include #include #include #ifdef ZYD_DEBUG SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "ZyDAS zd1211/zd1211b"); int zyd_debug = 0; SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RW, &zyd_debug, 0, "control debugging printfs"); TUNABLE_INT("hw.usb.zyd.debug", &zyd_debug); enum { ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ ZYD_DEBUG_INIT = 0x00000008, /* device init */ ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ ZYD_DEBUG_STAT = 0x00000080, /* statistic */ ZYD_DEBUG_FW = 0x00000100, /* firmware */ ZYD_DEBUG_ANY = 0xffffffff }; #define DPRINTF(sc, m, fmt, ...) do { \ if (sc->sc_debug & (m)) \ printf(fmt, __VA_ARGS__); \ } while (0) #else #define DPRINTF(sc, m, fmt, ...) do { \ (void) sc; \ } while (0) #endif static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; /* various supported device vendors/products */ #define ZYD_ZD1211_DEV(v, p) \ { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } #define ZYD_ZD1211B_DEV(v, p) \ { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } static const struct zyd_type { struct usb_devno dev; uint8_t rev; #define ZYD_ZD1211 0 #define ZYD_ZD1211B 1 } zyd_devs[] = { ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), ZYD_ZD1211_DEV(ABOCOM, WL54), ZYD_ZD1211_DEV(ASUS, WL159G), ZYD_ZD1211_DEV(CYBERTAN, TG54USB), ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), ZYD_ZD1211_DEV(SAGEM, XG760A), ZYD_ZD1211_DEV(SENAO, NUB8301), ZYD_ZD1211_DEV(SITECOMEU, WL113), ZYD_ZD1211_DEV(SWEEX, ZD1211), ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), ZYD_ZD1211_DEV(TWINMOS, G240), ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), ZYD_ZD1211_DEV(UMEDIA, TEW429UB), ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), ZYD_ZD1211_DEV(ZCOM, ZD1211), ZYD_ZD1211_DEV(ZYDAS, ZD1211), ZYD_ZD1211_DEV(ZYXEL, AG225H), ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), ZYD_ZD1211_DEV(ZYXEL, G200V2), ZYD_ZD1211_DEV(ZYXEL, G202), ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), ZYD_ZD1211B_DEV(ACCTON, ZD1211B), ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), ZYD_ZD1211B_DEV(BELKIN, ZD1211B), ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), ZYD_ZD1211B_DEV(FIBERLINE, WL430U), ZYD_ZD1211B_DEV(MELCO, KG54L), ZYD_ZD1211B_DEV(PHILIPS, SNU5600), ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), ZYD_ZD1211B_DEV(SAGEM, XG76NA), ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), #if 0 /* Shall we needs? */ ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1), ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2), ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), #endif ZYD_ZD1211B_DEV(USR, USR5423), ZYD_ZD1211B_DEV(VTECH, ZD1211B), ZYD_ZD1211B_DEV(ZCOM, ZD1211B), ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), ZYD_ZD1211B_DEV(ZYXEL, M202), ZYD_ZD1211B_DEV(ZYXEL, G220V2), }; #define zyd_lookup(v, p) \ ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) #define zyd_read16_m(sc, val, data) do { \ error = zyd_read16(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define zyd_write16_m(sc, val, data) do { \ error = zyd_write16(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define zyd_read32_m(sc, val, data) do { \ error = zyd_read32(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define zyd_write32_m(sc, val, data) do { \ error = zyd_write32(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) static device_probe_t zyd_match; static device_attach_t zyd_attach; static device_detach_t zyd_detach; static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, const char name[IFNAMSIZ], int unit, int opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]); static void zyd_vap_delete(struct ieee80211vap *); static int zyd_open_pipes(struct zyd_softc *); static void zyd_close_pipes(struct zyd_softc *); static int zyd_alloc_tx_list(struct zyd_softc *); static void zyd_free_tx_list(struct zyd_softc *); static int zyd_alloc_rx_list(struct zyd_softc *); static void zyd_free_rx_list(struct zyd_softc *); static struct ieee80211_node *zyd_node_alloc(struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN]); static void zyd_task(void *); static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, void *, int, u_int); static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); static int zyd_rfwrite(struct zyd_softc *, uint32_t); static int zyd_lock_phy(struct zyd_softc *); static int zyd_unlock_phy(struct zyd_softc *); static int zyd_rf_attach(struct zyd_softc *, uint8_t); static const char *zyd_rf_name(uint8_t); static int zyd_hw_init(struct zyd_softc *); static int zyd_read_pod(struct zyd_softc *); static int zyd_read_eeprom(struct zyd_softc *); static int zyd_get_macaddr(struct zyd_softc *); static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); static int zyd_switch_radio(struct zyd_softc *, int); static int zyd_set_led(struct zyd_softc *, int, int); static void zyd_set_multi(void *); static void zyd_update_mcast(struct ifnet *); static int zyd_set_rxfilter(struct zyd_softc *); static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); static int zyd_set_beacon_interval(struct zyd_softc *, int); static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status); static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *, struct ieee80211_node *); static int zyd_tx_data(struct zyd_softc *, struct mbuf *, struct ieee80211_node *); static void zyd_start(struct ifnet *); static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void zyd_watchdog(void *); static int zyd_ioctl(struct ifnet *, u_long, caddr_t); static void zyd_init_locked(struct zyd_softc *); static void zyd_init(void *); static void zyd_stop(struct zyd_softc *, int); static int zyd_loadfirmware(struct zyd_softc *); static void zyd_newassoc(struct ieee80211_node *, int); static void zyd_scantask(void *); static void zyd_scan_start(struct ieee80211com *); static void zyd_scan_end(struct ieee80211com *); static void zyd_set_channel(struct ieee80211com *); static void zyd_wakeup(struct zyd_softc *); static int zyd_rfmd_init(struct zyd_rf *); static int zyd_rfmd_switch_radio(struct zyd_rf *, int); static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); static int zyd_al2230_init(struct zyd_rf *); static int zyd_al2230_switch_radio(struct zyd_rf *, int); static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); static int zyd_al2230_init_b(struct zyd_rf *); static int zyd_al7230B_init(struct zyd_rf *); static int zyd_al7230B_switch_radio(struct zyd_rf *, int); static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); static int zyd_al2210_init(struct zyd_rf *); static int zyd_al2210_switch_radio(struct zyd_rf *, int); static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); static int zyd_gct_init(struct zyd_rf *); static int zyd_gct_switch_radio(struct zyd_rf *, int); static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); static int zyd_maxim_init(struct zyd_rf *); static int zyd_maxim_switch_radio(struct zyd_rf *, int); static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); static int zyd_maxim2_init(struct zyd_rf *); static int zyd_maxim2_switch_radio(struct zyd_rf *, int); static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); static int zyd_match(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (!uaa->iface) return (UMATCH_NONE); return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ? (UMATCH_VENDOR_PRODUCT) : (UMATCH_NONE); } static int zyd_attach(device_t dev) { int error = ENXIO; struct ieee80211com *ic; struct ifnet *ifp; struct usb_attach_arg *uaa = device_get_ivars(dev); struct zyd_softc *sc = device_get_softc(dev); usb_device_descriptor_t* ddesc; uint8_t bands; sc->sc_dev = dev; sc->sc_udev = uaa->device; sc->sc_macrev = zyd_lookup(uaa->vendor, uaa->product)->rev; #ifdef ZYD_DEBUG sc->sc_debug = zyd_debug; #endif ddesc = usbd_get_device_descriptor(sc->sc_udev); if (UGETW(ddesc->bcdDevice) < 0x4330) { device_printf(dev, "device version mismatch: 0x%x " "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice)); return (ENXIO); } if ((error = zyd_get_macaddr(sc)) != 0) { device_printf(sc->sc_dev, "could not read EEPROM\n"); return (ENXIO); } mtx_init(&sc->sc_txmtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, MTX_DEF); usb_init_task(&sc->sc_mcasttask, zyd_set_multi, sc); usb_init_task(&sc->sc_scantask, zyd_scantask, sc); usb_init_task(&sc->sc_task, zyd_task, sc); callout_init(&sc->sc_watchdog_ch, 0); STAILQ_INIT(&sc->sc_rqh); ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); error = ENXIO; goto fail0; } ifp->if_softc = sc; if_initname(ifp, "zyd", device_get_unit(sc->sc_dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_NEEDSGIANT; /* USB stack is still under Giant lock */ ifp->if_init = zyd_init; ifp->if_ioctl = zyd_ioctl; ifp->if_start = zyd_start; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); IFQ_SET_READY(&ifp->if_snd); ic = ifp->if_l2com; ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_bssid); /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ | IEEE80211_C_WPA /* 802.11i */ ; bands = 0; setbit(&bands, IEEE80211_MODE_11B); setbit(&bands, IEEE80211_MODE_11G); ieee80211_init_channels(ic, NULL, &bands); ieee80211_ifattach(ic); ic->ic_newassoc = zyd_newassoc; ic->ic_raw_xmit = zyd_raw_xmit; ic->ic_node_alloc = zyd_node_alloc; ic->ic_scan_start = zyd_scan_start; ic->ic_scan_end = zyd_scan_end; ic->ic_set_channel = zyd_set_channel; ic->ic_vap_create = zyd_vap_create; ic->ic_vap_delete = zyd_vap_delete; ic->ic_update_mcast = zyd_update_mcast; bpfattach(ifp, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap)); sc->sc_rxtap_len = sizeof(sc->sc_rxtap); sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof(sc->sc_txtap); sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); if (bootverbose) ieee80211_announce(ic); usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); return (0); fail0: mtx_destroy(&sc->sc_txmtx); return (error); } static int zyd_detach(device_t dev) { struct zyd_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; if (!device_is_attached(dev)) return (0); /* set a flag to indicate we're detaching. */ sc->sc_flags |= ZYD_FLAG_DETACHING; zyd_stop(sc, 1); bpfdetach(ifp); ieee80211_ifdetach(ic); zyd_wakeup(sc); zyd_close_pipes(sc); if_free(ifp); mtx_destroy(&sc->sc_txmtx); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); return (0); } static struct ieee80211vap * zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, int opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct zyd_vap *zvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return (NULL); zvp = (struct zyd_vap *) malloc(sizeof(struct zyd_vap), M_80211_VAP, M_NOWAIT | M_ZERO); if (zvp == NULL) return (NULL); vap = &zvp->vap; /* enable s/w bmiss handling for sta mode */ ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); /* override state transition machine */ zvp->newstate = vap->iv_newstate; vap->iv_newstate = zyd_newstate; ieee80211_amrr_init(&zvp->amrr, vap, IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD, 1000 /* 1 sec */); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); ic->ic_opmode = opmode; return (vap); } static void zyd_vap_delete(struct ieee80211vap *vap) { struct zyd_vap *zvp = ZYD_VAP(vap); ieee80211_amrr_cleanup(&zvp->amrr); ieee80211_vap_detach(vap); free(zvp, M_80211_VAP); } static int zyd_open_pipes(struct zyd_softc *sc) { usb_endpoint_descriptor_t *edesc; int isize; usbd_status error; /* interrupt in */ edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); if (edesc == NULL) return (EINVAL); isize = UGETW(edesc->wMaxPacketSize); if (isize == 0) /* should not happen */ return (EINVAL); sc->sc_ibuf = malloc(isize, M_USBDEV, M_NOWAIT); if (sc->sc_ibuf == NULL) return (ENOMEM); error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, &sc->sc_ep[ZYD_ENDPT_IIN], sc, sc->sc_ibuf, isize, zyd_intr, USBD_DEFAULT_INTERVAL); if (error != 0) { device_printf(sc->sc_dev, "open rx intr pipe failed: %s\n", usbd_errstr(error)); goto fail; } /* interrupt out (not necessarily an interrupt pipe) */ error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, &sc->sc_ep[ZYD_ENDPT_IOUT]); if (error != 0) { device_printf(sc->sc_dev, "open tx intr pipe failed: %s\n", usbd_errstr(error)); goto fail; } /* bulk in */ error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, &sc->sc_ep[ZYD_ENDPT_BIN]); if (error != 0) { device_printf(sc->sc_dev, "open rx pipe failed: %s\n", usbd_errstr(error)); goto fail; } /* bulk out */ error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, &sc->sc_ep[ZYD_ENDPT_BOUT]); if (error != 0) { device_printf(sc->sc_dev, "open tx pipe failed: %s\n", usbd_errstr(error)); goto fail; } return (0); fail: zyd_close_pipes(sc); return (ENXIO); } static void zyd_close_pipes(struct zyd_softc *sc) { int i; for (i = 0; i < ZYD_ENDPT_CNT; i++) { if (sc->sc_ep[i] != NULL) { usbd_abort_pipe(sc->sc_ep[i]); usbd_close_pipe(sc->sc_ep[i]); sc->sc_ep[i] = NULL; } } if (sc->sc_ibuf != NULL) { free(sc->sc_ibuf, M_USBDEV); sc->sc_ibuf = NULL; } } static int zyd_alloc_tx_list(struct zyd_softc *sc) { int i, error; sc->sc_txqueued = 0; for (i = 0; i < ZYD_TX_LIST_CNT; i++) { struct zyd_tx_data *data = &sc->sc_txdata[i]; data->sc = sc; /* backpointer for callbacks */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { device_printf(sc->sc_dev, "could not allocate tx xfer\n"); error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ); if (data->buf == NULL) { device_printf(sc->sc_dev, "could not allocate tx buffer\n"); error = ENOMEM; goto fail; } /* clear Tx descriptor */ bzero(data->buf, sizeof(struct zyd_tx_desc)); } return (0); fail: zyd_free_tx_list(sc); return (error); } static void zyd_free_tx_list(struct zyd_softc *sc) { int i; for (i = 0; i < ZYD_TX_LIST_CNT; i++) { struct zyd_tx_data *data = &sc->sc_txdata[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } } static int zyd_alloc_rx_list(struct zyd_softc *sc) { int i, error; for (i = 0; i < ZYD_RX_LIST_CNT; i++) { struct zyd_rx_data *data = &sc->sc_rxdata[i]; data->sc = sc; /* backpointer for callbacks */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { device_printf(sc->sc_dev, "could not allocate rx xfer\n"); error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ); if (data->buf == NULL) { device_printf(sc->sc_dev, "could not allocate rx buffer\n"); error = ENOMEM; goto fail; } } return (0); fail: zyd_free_rx_list(sc); return (error); } static void zyd_free_rx_list(struct zyd_softc *sc) { int i; for (i = 0; i < ZYD_RX_LIST_CNT; i++) { struct zyd_rx_data *data = &sc->sc_rxdata[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } } } /* ARGUSED */ static struct ieee80211_node * zyd_node_alloc(struct ieee80211vap *vap __unused, const uint8_t mac[IEEE80211_ADDR_LEN] __unused) { struct zyd_node *zn; zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO); return (zn != NULL) ? (&zn->ni) : (NULL); } static void zyd_task(void *arg) { int error; struct zyd_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni = vap->iv_bss; struct zyd_vap *zvp = ZYD_VAP(vap); switch (sc->sc_state) { case IEEE80211_S_AUTH: zyd_set_chan(sc, ic->ic_curchan); break; case IEEE80211_S_RUN: if (vap->iv_opmode == IEEE80211_M_MONITOR) break; /* turn link LED on */ error = zyd_set_led(sc, ZYD_LED1, 1); if (error != 0) goto fail; /* make data LED blink upon Tx */ zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); zyd_set_bssid(sc, sc->sc_bssid); break; default: break; } fail: IEEE80211_LOCK(ic); zvp->newstate(vap, sc->sc_state, sc->sc_arg); if (vap->iv_newstate_cb != NULL) vap->iv_newstate_cb(vap, sc->sc_state, sc->sc_arg); IEEE80211_UNLOCK(ic); } static int zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct zyd_vap *zvp = ZYD_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct zyd_softc *sc = ic->ic_ifp->if_softc; DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); usb_rem_task(sc->sc_udev, &sc->sc_scantask); usb_rem_task(sc->sc_udev, &sc->sc_task); callout_stop(&sc->sc_watchdog_ch); /* do it in a process context */ sc->sc_state = nstate; sc->sc_arg = arg; if (nstate == IEEE80211_S_INIT) { zvp->newstate(vap, nstate, arg); return (0); } else { usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); return (EINPROGRESS); } } static int zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, void *odata, int olen, u_int flags) { usbd_xfer_handle xfer; struct zyd_cmd cmd; struct zyd_rq rq; uint16_t xferflags; usbd_status error; if (sc->sc_flags & ZYD_FLAG_DETACHING) return (ENXIO); if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) return (ENOMEM); cmd.code = htole16(code); bcopy(idata, cmd.data, ilen); xferflags = USBD_FORCE_SHORT_XFER; if (!(flags & ZYD_CMD_FLAG_READ)) xferflags |= USBD_SYNCHRONOUS; else { rq.idata = idata; rq.odata = odata; rq.len = olen / sizeof(struct zyd_pair); STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); } usbd_setup_xfer(xfer, sc->sc_ep[ZYD_ENDPT_IOUT], 0, &cmd, sizeof(uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL); error = usbd_transfer(xfer); if (error != USBD_IN_PROGRESS && error != 0) { device_printf(sc->sc_dev, "could not send command (error=%s)\n", usbd_errstr(error)); (void)usbd_free_xfer(xfer); return (EIO); } if (!(flags & ZYD_CMD_FLAG_READ)) { (void)usbd_free_xfer(xfer); return (0); /* write: don't wait for reply */ } /* wait at most one second for command reply */ error = tsleep(odata, PCATCH, "zydcmd", hz); if (error == EWOULDBLOCK) device_printf(sc->sc_dev, "zyd_read sleep timeout\n"); STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); (void)usbd_free_xfer(xfer); return (error); } static int zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) { struct zyd_pair tmp; int error; reg = htole16(reg); error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), ZYD_CMD_FLAG_READ); if (error == 0) *val = le16toh(tmp.val); return (error); } static int zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) { struct zyd_pair tmp[2]; uint16_t regs[2]; int error; regs[0] = htole16(ZYD_REG32_HI(reg)); regs[1] = htole16(ZYD_REG32_LO(reg)); error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), ZYD_CMD_FLAG_READ); if (error == 0) *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); return (error); } static int zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) { struct zyd_pair pair; pair.reg = htole16(reg); pair.val = htole16(val); return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); } static int zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) { struct zyd_pair pair[2]; pair[0].reg = htole16(ZYD_REG32_HI(reg)); pair[0].val = htole16(val >> 16); pair[1].reg = htole16(ZYD_REG32_LO(reg)); pair[1].val = htole16(val & 0xffff); return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); } static int zyd_rfwrite(struct zyd_softc *sc, uint32_t val) { struct zyd_rf *rf = &sc->sc_rf; struct zyd_rfwrite_cmd req; uint16_t cr203; int error, i; zyd_read16_m(sc, ZYD_CR203, &cr203); cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); req.code = htole16(2); req.width = htole16(rf->width); for (i = 0; i < rf->width; i++) { req.bit[i] = htole16(cr203); if (val & (1 << (rf->width - 1 - i))) req.bit[i] |= htole16(ZYD_RF_DATA); } error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); fail: return (error); } static int zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) { int error; zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); fail: return (error); } static int zyd_lock_phy(struct zyd_softc *sc) { int error; uint32_t tmp; zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); tmp &= ~ZYD_UNLOCK_PHY_REGS; zyd_write32_m(sc, ZYD_MAC_MISC, tmp); fail: return (error); } static int zyd_unlock_phy(struct zyd_softc *sc) { int error; uint32_t tmp; zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); tmp |= ZYD_UNLOCK_PHY_REGS; zyd_write32_m(sc, ZYD_MAC_MISC, tmp); fail: return (error); } /* * RFMD RF methods. */ static int zyd_rfmd_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; static const uint32_t rfini[] = ZYD_RFMD_RF; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { zyd_write16_m(sc, phyini[i].reg, phyini[i].val); } /* init RFMD radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return (error); } fail: return (error); #undef N } static int zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) { int error; struct zyd_softc *sc = rf->rf_sc; zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); fail: return (error); } static int zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) { int error; struct zyd_softc *sc = rf->rf_sc; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_RFMD_CHANTABLE; error = zyd_rfwrite(sc, rfprog[chan - 1].r1); if (error != 0) goto fail; error = zyd_rfwrite(sc, rfprog[chan - 1].r2); if (error != 0) goto fail; fail: return (error); } /* * AL2230 RF methods. */ static int zyd_al2230_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; static const struct zyd_phy_pair phypll[] = { { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } }; static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { for (i = 0; i < N(phy2230s); i++) zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); } /* init AL2230 radio */ for (i = 0; i < N(rfini1); i++) { error = zyd_rfwrite(sc, rfini1[i]); if (error != 0) goto fail; } if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) error = zyd_rfwrite(sc, 0x000824); else error = zyd_rfwrite(sc, 0x0005a4); if (error != 0) goto fail; for (i = 0; i < N(rfini2); i++) { error = zyd_rfwrite(sc, rfini2[i]); if (error != 0) goto fail; } for (i = 0; i < N(phypll); i++) zyd_write16_m(sc, phypll[i].reg, phypll[i].val); for (i = 0; i < N(rfini3); i++) { error = zyd_rfwrite(sc, rfini3[i]); if (error != 0) goto fail; } fail: return (error); #undef N } static int zyd_al2230_fini(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) int error, i; struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; for (i = 0; i < N(phy); i++) zyd_write16_m(sc, phy[i].reg, phy[i].val); if (sc->sc_newphy != 0) zyd_write16_m(sc, ZYD_CR9, 0xe1); zyd_write16_m(sc, ZYD_CR203, 0x6); fail: return (error); #undef N } static int zyd_al2230_init_b(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; int i, error; for (i = 0; i < N(phy1); i++) zyd_write16_m(sc, phy1[i].reg, phy1[i].val); /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { for (i = 0; i < N(phy2230s); i++) zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); } for (i = 0; i < 3; i++) { error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); if (error != 0) return (error); } for (i = 0; i < N(rfini_part1); i++) { error = zyd_rfwrite_cr(sc, rfini_part1[i]); if (error != 0) return (error); } if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) error = zyd_rfwrite(sc, 0x241000); else error = zyd_rfwrite(sc, 0x25a000); if (error != 0) goto fail; for (i = 0; i < N(rfini_part2); i++) { error = zyd_rfwrite_cr(sc, rfini_part2[i]); if (error != 0) return (error); } for (i = 0; i < N(phy2); i++) zyd_write16_m(sc, phy2[i].reg, phy2[i].val); for (i = 0; i < N(rfini_part3); i++) { error = zyd_rfwrite_cr(sc, rfini_part3[i]); if (error != 0) return (error); } for (i = 0; i < N(phy3); i++) zyd_write16_m(sc, phy3[i].reg, phy3[i].val); error = zyd_al2230_fini(rf); fail: return (error); #undef N } static int zyd_al2230_switch_radio(struct zyd_rf *rf, int on) { struct zyd_softc *sc = rf->rf_sc; int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); fail: return (error); } static int zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) { #define N(a) (sizeof(a) / sizeof((a)[0])) int error, i; struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phy1[] = { { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, }; static const struct { uint32_t r1, r2, r3; } rfprog[] = ZYD_AL2230_CHANTABLE; error = zyd_rfwrite(sc, rfprog[chan - 1].r1); if (error != 0) goto fail; error = zyd_rfwrite(sc, rfprog[chan - 1].r2); if (error != 0) goto fail; error = zyd_rfwrite(sc, rfprog[chan - 1].r3); if (error != 0) goto fail; for (i = 0; i < N(phy1); i++) zyd_write16_m(sc, phy1[i].reg, phy1[i].val); fail: return (error); #undef N } static int zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) { #define N(a) (sizeof(a) / sizeof((a)[0])) int error, i; struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; static const struct { uint32_t r1, r2, r3; } rfprog[] = ZYD_AL2230_CHANTABLE_B; for (i = 0; i < N(phy1); i++) zyd_write16_m(sc, phy1[i].reg, phy1[i].val); error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); if (error != 0) goto fail; error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); if (error != 0) goto fail; error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); if (error != 0) goto fail; error = zyd_al2230_fini(rf); fail: return (error); #undef N } #define ZYD_AL2230_PHY_BANDEDGE6 \ { \ { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ { ZYD_CR47, 0x1e } \ } static int zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) { #define N(a) (sizeof(a) / sizeof((a)[0])) int error = 0, i; struct zyd_softc *sc = rf->rf_sc; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; u_int chan = ieee80211_chan2ieee(ic, c); if (chan == 1 || chan == 11) r[0].val = 0x12; for (i = 0; i < N(r); i++) zyd_write16_m(sc, r[i].reg, r[i].val); fail: return (error); #undef N } /* * AL7230B RF methods. */ static int zyd_al7230B_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; int i, error; /* for AL7230B, PHY and RF need to be initialized in "phases" */ /* init RF-dependent PHY registers, part one */ for (i = 0; i < N(phyini_1); i++) zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); /* init AL7230B radio, part one */ for (i = 0; i < N(rfini_1); i++) { if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) return (error); } /* init RF-dependent PHY registers, part two */ for (i = 0; i < N(phyini_2); i++) zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); /* init AL7230B radio, part two */ for (i = 0; i < N(rfini_2); i++) { if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) return (error); } /* init RF-dependent PHY registers, part three */ for (i = 0; i < N(phyini_3); i++) zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); fail: return (error); #undef N } static int zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) { int error; struct zyd_softc *sc = rf->rf_sc; zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); fail: return (error); } static int zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_AL7230B_CHANTABLE; static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; int i, error; zyd_write16_m(sc, ZYD_CR240, 0x57); zyd_write16_m(sc, ZYD_CR251, 0x2f); for (i = 0; i < N(rfsc); i++) { if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) return (error); } zyd_write16_m(sc, ZYD_CR128, 0x14); zyd_write16_m(sc, ZYD_CR129, 0x12); zyd_write16_m(sc, ZYD_CR130, 0x10); zyd_write16_m(sc, ZYD_CR38, 0x38); zyd_write16_m(sc, ZYD_CR136, 0xdf); error = zyd_rfwrite(sc, rfprog[chan - 1].r1); if (error != 0) goto fail; error = zyd_rfwrite(sc, rfprog[chan - 1].r2); if (error != 0) goto fail; error = zyd_rfwrite(sc, 0x3c9000); if (error != 0) goto fail; zyd_write16_m(sc, ZYD_CR251, 0x3f); zyd_write16_m(sc, ZYD_CR203, 0x06); zyd_write16_m(sc, ZYD_CR240, 0x08); fail: return (error); #undef N } /* * AL2210 RF methods. */ static int zyd_al2210_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; static const uint32_t rfini[] = ZYD_AL2210_RF; uint32_t tmp; int i, error; zyd_write32_m(sc, ZYD_CR18, 2); /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); /* init AL2210 radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return (error); } zyd_write16_m(sc, ZYD_CR47, 0x1e); zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); zyd_write16_m(sc, ZYD_CR47, 0x1e); zyd_write32_m(sc, ZYD_CR18, 3); fail: return (error); #undef N } static int zyd_al2210_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return (0); } static int zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) { int error; struct zyd_softc *sc = rf->rf_sc; static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; uint32_t tmp; zyd_write32_m(sc, ZYD_CR18, 2); zyd_write16_m(sc, ZYD_CR47, 0x1e); zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); zyd_write16_m(sc, ZYD_CR47, 0x1e); /* actually set the channel */ error = zyd_rfwrite(sc, rfprog[chan - 1]); if (error != 0) goto fail; zyd_write32_m(sc, ZYD_CR18, 3); fail: return (error); } /* * GCT RF methods. */ static int zyd_gct_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; static const uint32_t rfini[] = ZYD_GCT_RF; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); /* init cgt radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return (error); } fail: return (error); #undef N } static int zyd_gct_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return (0); } static int zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) { int error; struct zyd_softc *sc = rf->rf_sc; static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; error = zyd_rfwrite(sc, 0x1c0000); if (error != 0) goto fail; error = zyd_rfwrite(sc, rfprog[chan - 1]); if (error != 0) goto fail; error = zyd_rfwrite(sc, 0x1c0008); fail: return (error); } /* * Maxim RF methods. */ static int zyd_maxim_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; static const uint32_t rfini[] = ZYD_MAXIM_RF; uint16_t tmp; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); zyd_read16_m(sc, ZYD_CR203, &tmp); zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); /* init maxim radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return (error); } zyd_read16_m(sc, ZYD_CR203, &tmp); zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); fail: return (error); #undef N } static int zyd_maxim_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return (0); } static int zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; static const uint32_t rfini[] = ZYD_MAXIM_RF; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_MAXIM_CHANTABLE; uint16_t tmp; int i, error; /* * Do the same as we do when initializing it, except for the channel * values coming from the two channel tables. */ /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); zyd_read16_m(sc, ZYD_CR203, &tmp); zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); /* first two values taken from the chantables */ error = zyd_rfwrite(sc, rfprog[chan - 1].r1); if (error != 0) goto fail; error = zyd_rfwrite(sc, rfprog[chan - 1].r2); if (error != 0) goto fail; /* init maxim radio - skipping the two first values */ for (i = 2; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return (error); } zyd_read16_m(sc, ZYD_CR203, &tmp); zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); fail: return (error); #undef N } /* * Maxim2 RF methods. */ static int zyd_maxim2_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; static const uint32_t rfini[] = ZYD_MAXIM2_RF; uint16_t tmp; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); zyd_read16_m(sc, ZYD_CR203, &tmp); zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); /* init maxim2 radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return (error); } zyd_read16_m(sc, ZYD_CR203, &tmp); zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); fail: return (error); #undef N } static int zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return (0); } static int zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; static const uint32_t rfini[] = ZYD_MAXIM2_RF; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_MAXIM2_CHANTABLE; uint16_t tmp; int i, error; /* * Do the same as we do when initializing it, except for the channel * values coming from the two channel tables. */ /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); zyd_read16_m(sc, ZYD_CR203, &tmp); zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); /* first two values taken from the chantables */ error = zyd_rfwrite(sc, rfprog[chan - 1].r1); if (error != 0) goto fail; error = zyd_rfwrite(sc, rfprog[chan - 1].r2); if (error != 0) goto fail; /* init maxim2 radio - skipping the two first values */ for (i = 2; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return (error); } zyd_read16_m(sc, ZYD_CR203, &tmp); zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); fail: return (error); #undef N } static int zyd_rf_attach(struct zyd_softc *sc, uint8_t type) { struct zyd_rf *rf = &sc->sc_rf; rf->rf_sc = sc; switch (type) { case ZYD_RF_RFMD: rf->init = zyd_rfmd_init; rf->switch_radio = zyd_rfmd_switch_radio; rf->set_channel = zyd_rfmd_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL2230: case ZYD_RF_AL2230S: if (sc->sc_macrev == ZYD_ZD1211B) { rf->init = zyd_al2230_init_b; rf->set_channel = zyd_al2230_set_channel_b; } else { rf->init = zyd_al2230_init; rf->set_channel = zyd_al2230_set_channel; } rf->switch_radio = zyd_al2230_switch_radio; rf->bandedge6 = zyd_al2230_bandedge6; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL7230B: rf->init = zyd_al7230B_init; rf->switch_radio = zyd_al7230B_switch_radio; rf->set_channel = zyd_al7230B_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL2210: rf->init = zyd_al2210_init; rf->switch_radio = zyd_al2210_switch_radio; rf->set_channel = zyd_al2210_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_GCT: rf->init = zyd_gct_init; rf->switch_radio = zyd_gct_switch_radio; rf->set_channel = zyd_gct_set_channel; rf->width = 21; /* 21-bit RF values */ break; case ZYD_RF_MAXIM_NEW: rf->init = zyd_maxim_init; rf->switch_radio = zyd_maxim_switch_radio; rf->set_channel = zyd_maxim_set_channel; rf->width = 18; /* 18-bit RF values */ break; case ZYD_RF_MAXIM_NEW2: rf->init = zyd_maxim2_init; rf->switch_radio = zyd_maxim2_switch_radio; rf->set_channel = zyd_maxim2_set_channel; rf->width = 18; /* 18-bit RF values */ break; default: device_printf(sc->sc_dev, "sorry, radio \"%s\" is not supported yet\n", zyd_rf_name(type)); return (EINVAL); } return (0); } static const char * zyd_rf_name(uint8_t type) { static const char * const zyd_rfs[] = { "unknown", "unknown", "UW2451", "UCHIP", "AL2230", "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", "PHILIPS" }; return zyd_rfs[(type > 15) ? 0 : type]; } static int zyd_hw_init(struct zyd_softc *sc) { int error; const struct zyd_phy_pair *phyp; struct zyd_rf *rf = &sc->sc_rf; uint16_t val; /* specify that the plug and play is finished */ zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", sc->sc_fwbase); /* retrieve firmware revision number */ zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); /* set mandatory rates - XXX assumes 802.11b/g */ zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); /* disable interrupts */ zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); if ((error = zyd_read_pod(sc)) != 0) { device_printf(sc->sc_dev, "could not read EEPROM\n"); goto fail; } /* PHY init (resetting) */ error = zyd_lock_phy(sc); if (error != 0) goto fail; phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; for (; phyp->reg != 0; phyp++) zyd_write16_m(sc, phyp->reg, phyp->val); if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); zyd_write32_m(sc, ZYD_CR157, val >> 8); } error = zyd_unlock_phy(sc); if (error != 0) goto fail; /* HMAC init */ zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); if (sc->sc_macrev == ZYD_ZD1211) { zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); } else { zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); } /* init beacon interval to 100ms */ if ((error = zyd_set_beacon_interval(sc, 100)) != 0) goto fail; if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", sc->sc_rfrev); goto fail; } /* RF chip init */ error = zyd_lock_phy(sc); if (error != 0) goto fail; error = (*rf->init)(rf); if (error != 0) { device_printf(sc->sc_dev, "radio initialization failed, error %d\n", error); goto fail; } error = zyd_unlock_phy(sc); if (error != 0) goto fail; if ((error = zyd_read_eeprom(sc)) != 0) { device_printf(sc->sc_dev, "could not read EEPROM\n"); goto fail; } fail: return (error); } static int zyd_read_pod(struct zyd_softc *sc) { int error; uint32_t tmp; zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); sc->sc_rfrev = tmp & 0x0f; sc->sc_ledtype = (tmp >> 4) & 0x01; sc->sc_al2230s = (tmp >> 7) & 0x01; sc->sc_cckgain = (tmp >> 8) & 0x01; sc->sc_fix_cr157 = (tmp >> 13) & 0x01; sc->sc_parev = (tmp >> 16) & 0x0f; sc->sc_bandedge6 = (tmp >> 21) & 0x01; sc->sc_newphy = (tmp >> 31) & 0x01; sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; fail: return (error); } static int zyd_read_eeprom(struct zyd_softc *sc) { uint16_t val; int error, i; /* read Tx power calibration tables */ for (i = 0; i < 7; i++) { zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); sc->sc_pwrcal[i * 2] = val >> 8; sc->sc_pwrcal[i * 2 + 1] = val & 0xff; zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); sc->sc_pwrint[i * 2] = val >> 8; sc->sc_pwrint[i * 2 + 1] = val & 0xff; zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); sc->sc_ofdm36_cal[i * 2] = val >> 8; sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); sc->sc_ofdm48_cal[i * 2] = val >> 8; sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); sc->sc_ofdm54_cal[i * 2] = val >> 8; sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; } fail: return (error); } static int zyd_get_macaddr(struct zyd_softc *sc) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = ZYD_READFWDATAREQ; USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); USETW(req.wIndex, 0); USETW(req.wLength, IEEE80211_ADDR_LEN); error = usbd_do_request(sc->sc_udev, &req, sc->sc_bssid); if (error != 0) { device_printf(sc->sc_dev, "could not read EEPROM: %s\n", usbd_errstr(error)); } return (error); } static int zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) { int error; uint32_t tmp; tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); tmp = addr[5] << 8 | addr[4]; zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); fail: return (error); } static int zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) { int error; uint32_t tmp; tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); tmp = addr[5] << 8 | addr[4]; zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); fail: return (error); } static int zyd_switch_radio(struct zyd_softc *sc, int on) { struct zyd_rf *rf = &sc->sc_rf; int error; error = zyd_lock_phy(sc); if (error != 0) goto fail; error = (*rf->switch_radio)(rf, on); if (error != 0) goto fail; error = zyd_unlock_phy(sc); fail: return (error); } static int zyd_set_led(struct zyd_softc *sc, int which, int on) { int error; uint32_t tmp; zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); tmp &= ~which; if (on) tmp |= which; zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); fail: return (error); } static void zyd_set_multi(void *arg) { int error; struct zyd_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ifmultiaddr *ifma; uint32_t low, high; uint8_t v; if (!(ifp->if_flags & IFF_UP)) return; low = 0x00000000; high = 0x80000000; if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) { low = 0xffffffff; high = 0xffffffff; } else { IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; v = ((uint8_t *)LLADDR((struct sockaddr_dl *) ifma->ifma_addr))[5] >> 2; if (v < 32) low |= 1 << v; else high |= 1 << (v - 32); } IF_ADDR_UNLOCK(ifp); } /* reprogram multicast global hash table */ zyd_write32_m(sc, ZYD_MAC_GHTBL, low); zyd_write32_m(sc, ZYD_MAC_GHTBH, high); fail: if (error != 0) device_printf(sc->sc_dev, "could not set multicast hash table\n"); } static void zyd_update_mcast(struct ifnet *ifp) { struct zyd_softc *sc = ifp->if_softc; if (!(sc->sc_flags & ZYD_FLAG_INITDONE)) return; usb_add_task(sc->sc_udev, &sc->sc_mcasttask, USB_TASKQ_DRIVER); } static int zyd_set_rxfilter(struct zyd_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint32_t rxfilter; switch (ic->ic_opmode) { case IEEE80211_M_STA: rxfilter = ZYD_FILTER_BSS; break; case IEEE80211_M_IBSS: case IEEE80211_M_HOSTAP: rxfilter = ZYD_FILTER_HOSTAP; break; case IEEE80211_M_MONITOR: rxfilter = ZYD_FILTER_MONITOR; break; default: /* should not get there */ return (EINVAL); } return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); } static void zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) { int error; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct zyd_rf *rf = &sc->sc_rf; uint32_t tmp; u_int chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) { /* XXX should NEVER happen */ device_printf(sc->sc_dev, "%s: invalid channel %x\n", __func__, chan); return; } error = zyd_lock_phy(sc); if (error != 0) goto fail; error = (*rf->set_channel)(rf, chan); if (error != 0) goto fail; /* update Tx power */ zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); if (sc->sc_macrev == ZYD_ZD1211B) { zyd_write16_m(sc, ZYD_CR67, sc->sc_ofdm36_cal[chan - 1]); zyd_write16_m(sc, ZYD_CR66, sc->sc_ofdm48_cal[chan - 1]); zyd_write16_m(sc, ZYD_CR65, sc->sc_ofdm54_cal[chan - 1]); zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); zyd_write16_m(sc, ZYD_CR69, 0x28); zyd_write16_m(sc, ZYD_CR69, 0x2a); } if (sc->sc_cckgain) { /* set CCK baseband gain from EEPROM */ if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); } if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { error = (*rf->bandedge6)(rf, c); if (error != 0) goto fail; } zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); error = zyd_unlock_phy(sc); if (error != 0) goto fail; sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); fail: return; } static int zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) { int error; uint32_t val; zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); sc->sc_atim_wnd = val; zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); sc->sc_pre_tbtt = val; sc->sc_bcn_int = bintval; if (sc->sc_bcn_int <= 5) sc->sc_bcn_int = 5; if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) sc->sc_pre_tbtt = sc->sc_bcn_int - 1; if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); fail: return (error); } static void zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct zyd_softc *sc = (struct zyd_softc *)priv; struct zyd_cmd *cmd; uint32_t datalen; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (status == USBD_STALLED) { usbd_clear_endpoint_stall_async( sc->sc_ep[ZYD_ENDPT_IIN]); } return; } cmd = (struct zyd_cmd *)sc->sc_ibuf; if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { struct zyd_notif_retry *retry = (struct zyd_notif_retry *)cmd->data; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni; DPRINTF(sc, ZYD_DEBUG_TX_PROC, "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", le16toh(retry->rate), ether_sprintf(retry->macaddr), le16toh(retry->count) & 0xff, le16toh(retry->count)); /* * Find the node to which the packet was sent and update its * retry statistics. In BSS mode, this node is the AP we're * associated to so no lookup is actually needed. */ ni = ieee80211_find_txnode(vap, retry->macaddr); if (ni != NULL) { ieee80211_amrr_tx_complete(&ZYD_NODE(ni)->amn, IEEE80211_AMRR_FAILURE, 1); ieee80211_free_node(ni); } if (le16toh(retry->count) & 0x100) ifp->if_oerrors++; /* too many retries */ } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) { struct zyd_rq *rqp; if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) return; /* HMAC interrupt */ usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL); datalen -= sizeof(cmd->code); datalen -= 2; /* XXX: padding? */ STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { int i; if (sizeof(struct zyd_pair) * rqp->len != datalen) continue; for (i = 0; i < rqp->len; i++) { if (*(((const uint16_t *)rqp->idata) + i) != (((struct zyd_pair *)cmd->data) + i)->reg) break; } if (i != rqp->len) continue; /* copy answer into caller-supplied buffer */ bcopy(cmd->data, rqp->odata, sizeof(struct zyd_pair) * rqp->len); wakeup(rqp->odata); /* wakeup caller */ return; } return; /* unexpected IORD notification */ } else { device_printf(sc->sc_dev, "unknown notification %x\n", le16toh(cmd->code)); } } static void zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211_node *ni; const struct zyd_plcphdr *plcp; const struct zyd_rx_stat *stat; struct mbuf *m; int rlen, rssi, nf; if (len < ZYD_MIN_FRAGSZ) { DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", device_get_nameunit(sc->sc_dev), len); ifp->if_ierrors++; return; } plcp = (const struct zyd_plcphdr *)buf; stat = (const struct zyd_rx_stat *) (buf + len - sizeof(struct zyd_rx_stat)); if (stat->flags & ZYD_RX_ERROR) { DPRINTF(sc, ZYD_DEBUG_RECV, "%s: RX status indicated error (%x)\n", device_get_nameunit(sc->sc_dev), stat->flags); ifp->if_ierrors++; return; } /* compute actual frame length */ rlen = len - sizeof(struct zyd_plcphdr) - sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; /* allocate a mbuf to store the frame */ if (rlen > MHLEN) m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); else m = m_gethdr(M_DONTWAIT, MT_DATA); if (m == NULL) { DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", device_get_nameunit(sc->sc_dev)); ifp->if_ierrors++; return; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = rlen; bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen); if (bpf_peers_present(ifp->if_bpf)) { struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if (stat->flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; /* XXX toss, no way to express errors */ if (stat->flags & ZYD_RX_DECRYPTERR) tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; tap->wr_rate = ieee80211_plcp2rate(plcp->signal, (stat->flags & ZYD_RX_OFDM) ? IEEE80211_T_OFDM : IEEE80211_T_CCK); tap->wr_antsignal = stat->rssi + -95; tap->wr_antnoise = -95; /* XXX */ bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m); } rssi = stat->rssi > 63 ? 127 : 2 * stat->rssi; nf = -95; /* XXX */ ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); if (ni != NULL) { (void)ieee80211_input(ni, m, rssi, nf, 0); ieee80211_free_node(ni); } else (void)ieee80211_input_all(ic, m, rssi, nf, 0); } static void zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct zyd_rx_data *data = priv; struct zyd_softc *sc = data->sc; struct ifnet *ifp = sc->sc_ifp; const struct zyd_rx_desc *desc; int len; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->sc_ep[ZYD_ENDPT_BIN]); goto skip; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); if (len < ZYD_MIN_RXBUFSZ) { DPRINTF(sc, ZYD_DEBUG_RECV, "%s: xfer too short (length=%d)\n", device_get_nameunit(sc->sc_dev), len); ifp->if_ierrors++; /* XXX not really errors */ goto skip; } desc = (const struct zyd_rx_desc *) (data->buf + len - sizeof(struct zyd_rx_desc)); if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { const uint8_t *p = data->buf, *end = p + len; int i; DPRINTF(sc, ZYD_DEBUG_RECV, "%s: received multi-frame transfer\n", __func__); for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { const uint16_t len16 = UGETW(desc->len[i]); if (len16 == 0 || p + len16 > end) break; zyd_rx_data(sc, p, len16); /* next frame is aligned on a 32-bit boundary */ p += (len16 + 3) & ~3; } } else { DPRINTF(sc, ZYD_DEBUG_RECV, "%s: received single-frame transfer\n", __func__); zyd_rx_data(sc, data->buf, len); } skip: /* setup a new transfer */ usbd_setup_xfer(xfer, sc->sc_ep[ZYD_ENDPT_BIN], data, NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof); (void)usbd_transfer(xfer); } static uint8_t zyd_plcp_signal(int rate) { switch (rate) { /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return (0xb); case 18: return (0xf); case 24: return (0xa); case 36: return (0xe); case 48: return (0x9); case 72: return (0xd); case 96: return (0x8); case 108: return (0xc); /* CCK rates (NB: not IEEE std, device-specific) */ case 2: return (0x0); case 4: return (0x1); case 11: return (0x2); case 22: return (0x3); } return (0xff); /* XXX unsupported/unknown rate */ } static int zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = sc->sc_ifp; struct zyd_tx_desc *desc; struct zyd_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; int data_idx, rate, totlen, xferlen; uint16_t pktlen; usbd_status error; data_idx = sc->sc_txidx; sc->sc_txidx = (sc->sc_txidx + 1) % ZYD_TX_LIST_CNT; data = &sc->sc_txdata[data_idx]; desc = (struct zyd_tx_desc *)data->buf; rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return (ENOBUFS); } } data->ni = ni; data->m = m0; wh = mtod(m0, struct ieee80211_frame *); xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len; totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; /* fill Tx descriptor */ desc->len = htole16(totlen); desc->flags = ZYD_TX_FLAG_BACKOFF; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* multicast frames are not sent at OFDM rates in 802.11b/g */ if (totlen > vap->iv_rtsthreshold) { desc->flags |= ZYD_TX_FLAG_RTS; } else if (ZYD_RATE_IS_OFDM(rate) && (ic->ic_flags & IEEE80211_F_USEPROT)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) desc->flags |= ZYD_TX_FLAG_RTS; } } else desc->flags |= ZYD_TX_FLAG_MULTICAST; if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); desc->phy = zyd_plcp_signal(rate); if (ZYD_RATE_IS_OFDM(rate)) { desc->phy |= ZYD_TX_PHY_OFDM; if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) desc->phy |= ZYD_TX_PHY_5GHZ; } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->phy |= ZYD_TX_PHY_SHPREAMBLE; /* actual transmit length (XXX why +10?) */ pktlen = sizeof(struct zyd_tx_desc) + 10; if (sc->sc_macrev == ZYD_ZD1211) pktlen += totlen; desc->pktlen = htole16(pktlen); desc->plcp_length = (16 * totlen + rate - 1) / rate; desc->plcp_service = 0; if (rate == 22) { const int remainder = (16 * totlen) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= ZYD_PLCP_LENGEXT; } if (bpf_peers_present(ifp->if_bpf)) { struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0); } m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + sizeof(struct zyd_tx_desc)); DPRINTF(sc, ZYD_DEBUG_XMIT, "%s: sending mgt frame len=%zu rate=%u xferlen=%u\n", device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen); usbd_setup_xfer(data->xfer, sc->sc_ep[ZYD_ENDPT_BOUT], data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, ZYD_TX_TIMEOUT, zyd_txeof); error = usbd_transfer(data->xfer); if (error != USBD_IN_PROGRESS && error != 0) { ifp->if_oerrors++; return (EIO); } sc->sc_txqueued++; return (0); } static void zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct zyd_tx_data *data = priv; struct zyd_softc *sc = data->sc; struct ifnet *ifp = sc->sc_ifp; struct ieee80211_node *ni; struct mbuf *m; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; device_printf(sc->sc_dev, "could not transmit buffer: %s\n", usbd_errstr(status)); if (status == USBD_STALLED) { usbd_clear_endpoint_stall_async( sc->sc_ep[ZYD_ENDPT_BOUT]); } ifp->if_oerrors++; return; } ni = data->ni; /* update rate control statistics */ ieee80211_amrr_tx_complete(&ZYD_NODE(ni)->amn, IEEE80211_AMRR_SUCCESS, 0); /* * Do any tx complete callback. Note this must * be done before releasing the node reference. */ m = data->m; if (m != NULL && m->m_flags & M_TXCB) { ieee80211_process_callback(ni, m, 0); /* XXX status? */ m_freem(m); data->m = NULL; } ieee80211_free_node(ni); data->ni = NULL; ZYD_TX_LOCK(sc); sc->sc_txqueued--; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ZYD_TX_UNLOCK(sc); ifp->if_opackets++; sc->sc_txtimer = 0; zyd_start(ifp); } static int zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = sc->sc_ifp; struct zyd_tx_desc *desc; struct zyd_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k; int data_idx, rate, totlen, xferlen; uint16_t pktlen; usbd_status error; data_idx = sc->sc_txidx; sc->sc_txidx = (sc->sc_txidx + 1) % ZYD_TX_LIST_CNT; wh = mtod(m0, struct ieee80211_frame *); data = &sc->sc_txdata[data_idx]; desc = (struct zyd_tx_desc *)data->buf; desc->flags = ZYD_TX_FLAG_BACKOFF; tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { rate = tp->mcastrate; desc->flags |= ZYD_TX_FLAG_MULTICAST; } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { rate = tp->ucastrate; } else { (void) ieee80211_amrr_choose(ni, &ZYD_NODE(ni)->amn); rate = ni->ni_txrate; } if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return (ENOBUFS); } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } data->ni = ni; data->m = NULL; xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len; totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; /* fill Tx descriptor */ desc->len = htole16(totlen); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* multicast frames are not sent at OFDM rates in 802.11b/g */ if (totlen > vap->iv_rtsthreshold) { desc->flags |= ZYD_TX_FLAG_RTS; } else if (ZYD_RATE_IS_OFDM(rate) && (ic->ic_flags & IEEE80211_F_USEPROT)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) desc->flags |= ZYD_TX_FLAG_RTS; } } if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); desc->phy = zyd_plcp_signal(rate); if (ZYD_RATE_IS_OFDM(rate)) { desc->phy |= ZYD_TX_PHY_OFDM; if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) desc->phy |= ZYD_TX_PHY_5GHZ; } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->phy |= ZYD_TX_PHY_SHPREAMBLE; /* actual transmit length (XXX why +10?) */ pktlen = sizeof(struct zyd_tx_desc) + 10; if (sc->sc_macrev == ZYD_ZD1211) pktlen += totlen; desc->pktlen = htole16(pktlen); desc->plcp_length = (16 * totlen + rate - 1) / rate; desc->plcp_service = 0; if (rate == 22) { const int remainder = (16 * totlen) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= ZYD_PLCP_LENGEXT; } if (bpf_peers_present(ifp->if_bpf)) { struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0); } m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + sizeof(struct zyd_tx_desc)); DPRINTF(sc, ZYD_DEBUG_XMIT, "%s: sending data frame len=%zu rate=%u xferlen=%u\n", device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen); m_freem(m0); /* mbuf no longer needed */ usbd_setup_xfer(data->xfer, sc->sc_ep[ZYD_ENDPT_BOUT], data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, ZYD_TX_TIMEOUT, zyd_txeof); error = usbd_transfer(data->xfer); if (error != USBD_IN_PROGRESS && error != 0) { ifp->if_oerrors++; return (EIO); } sc->sc_txqueued++; return (0); } static void zyd_start(struct ifnet *ifp) { struct zyd_softc *sc = ifp->if_softc; struct ieee80211_node *ni; struct mbuf *m; ZYD_TX_LOCK(sc); for (;;) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; if (sc->sc_txqueued >= ZYD_TX_LIST_CNT) { IFQ_DRV_PREPEND(&ifp->if_snd, m); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m = ieee80211_encap(ni, m); if (m == NULL) { ieee80211_free_node(ni); ifp->if_oerrors++; continue; } if (zyd_tx_data(sc, m, ni) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; break; } sc->sc_txtimer = 5; } ZYD_TX_UNLOCK(sc); } static int zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = ic->ic_ifp; struct zyd_softc *sc = ifp->if_softc; /* prevent management frames from being sent if we're not ready */ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { m_freem(m); ieee80211_free_node(ni); return (ENETDOWN); } ZYD_TX_LOCK(sc); if (sc->sc_txqueued >= ZYD_TX_LIST_CNT) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; m_freem(m); ieee80211_free_node(ni); return (ENOBUFS); /* XXX */ } /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. * XXX raw path */ if (zyd_tx_mgt(sc, m, ni) != 0) { ZYD_TX_UNLOCK(sc); ifp->if_oerrors++; ieee80211_free_node(ni); return (EIO); } ZYD_TX_UNLOCK(sc); ifp->if_opackets++; sc->sc_txtimer = 5; return (0); } static void zyd_watchdog(void *arg) { struct zyd_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; if (sc->sc_txtimer > 0) { if (--sc->sc_txtimer == 0) { device_printf(sc->sc_dev, "device timeout\n"); /* zyd_init(ifp); XXX needs a process context ? */ ifp->if_oerrors++; return; } callout_reset(&sc->sc_watchdog_ch, hz, zyd_watchdog, sc); } } static int zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct zyd_softc *sc = ifp->if_softc; struct ieee80211com *ic = ifp->if_l2com; struct ifreq *ifr = (struct ifreq *) data; int error = 0, startall = 0; switch (cmd) { case SIOCSIFFLAGS: ZYD_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if ((ifp->if_flags ^ sc->sc_if_flags) & (IFF_ALLMULTI | IFF_PROMISC)) zyd_set_multi(sc); } else { zyd_init_locked(sc); startall = 1; } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) zyd_stop(sc, 1); } sc->sc_if_flags = ifp->if_flags; ZYD_UNLOCK(sc); if (startall) ieee80211_start_all(ic); break; case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); break; case SIOCGIFADDR: error = ether_ioctl(ifp, cmd, data); break; default: error = EINVAL; break; } return (error); } static void zyd_init_locked(struct zyd_softc *sc) { int error, i; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint32_t val; if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { error = zyd_loadfirmware(sc); if (error != 0) { device_printf(sc->sc_dev, "could not load firmware (error=%d)\n", error); goto fail; } error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); if (error != 0) { device_printf(sc->sc_dev, "setting config no failed\n"); goto fail; } error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, &sc->sc_iface); if (error != 0) { device_printf(sc->sc_dev, "getting interface handle failed\n"); goto fail; } if ((error = zyd_open_pipes(sc)) != 0) { device_printf(sc->sc_dev, "could not open pipes\n"); goto fail; } if ((error = zyd_hw_init(sc)) != 0) { device_printf(sc->sc_dev, "hardware initialization failed\n"); goto fail; } device_printf(sc->sc_dev, "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " "BE%x NP%x Gain%x F%x\n", (sc->sc_macrev == ZYD_ZD1211) ? "": "B", sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, sc->sc_cckgain, sc->sc_fix_cr157); /* read regulatory domain (currently unused) */ zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); sc->sc_regdomain = val >> 16; DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", sc->sc_regdomain); /* we'll do software WEP decryption for now */ DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", __func__); zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); sc->sc_flags |= ZYD_FLAG_INITONCE; } if (ifp->if_drv_flags & IFF_DRV_RUNNING) zyd_stop(sc, 0); /* reset softc variables. */ sc->sc_txidx = 0; IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)); error = zyd_set_macaddr(sc, ic->ic_myaddr); if (error != 0) return; /* set basic rates */ if (ic->ic_curmode == IEEE80211_MODE_11B) zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); else if (ic->ic_curmode == IEEE80211_MODE_11A) zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); else /* assumes 802.11b/g */ zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); /* promiscuous mode */ zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); /* multicast setup */ zyd_set_multi(sc); /* set RX filter */ error = zyd_set_rxfilter(sc); if (error != 0) goto fail; /* switch radio transmitter ON */ error = zyd_switch_radio(sc, 1); if (error != 0) goto fail; /* set default BSS channel */ zyd_set_chan(sc, ic->ic_curchan); /* * Allocate Tx and Rx xfer queues. */ if ((error = zyd_alloc_tx_list(sc)) != 0) { device_printf(sc->sc_dev, "could not allocate Tx list\n"); goto fail; } if ((error = zyd_alloc_rx_list(sc)) != 0) { device_printf(sc->sc_dev, "could not allocate Rx list\n"); goto fail; } /* * Start up the receive pipe. */ for (i = 0; i < ZYD_RX_LIST_CNT; i++) { struct zyd_rx_data *data = &sc->sc_rxdata[i]; usbd_setup_xfer(data->xfer, sc->sc_ep[ZYD_ENDPT_BIN], data, NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof); error = usbd_transfer(data->xfer); if (error != USBD_IN_PROGRESS && error != 0) { device_printf(sc->sc_dev, "could not queue Rx transfer\n"); goto fail; } } /* enable interrupts */ zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_drv_flags |= IFF_DRV_RUNNING; sc->sc_flags |= ZYD_FLAG_INITDONE; callout_reset(&sc->sc_watchdog_ch, hz, zyd_watchdog, sc); return; fail: zyd_stop(sc, 1); return; } static void zyd_init(void *priv) { struct zyd_softc *sc = priv; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; ZYD_LOCK(sc); zyd_init_locked(sc); ZYD_UNLOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) ieee80211_start_all(ic); /* start all vap's */ } static void zyd_stop(struct zyd_softc *sc, int disable) { int error; struct ifnet *ifp = sc->sc_ifp; sc->sc_txtimer = 0; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); /* switch radio transmitter OFF */ error = zyd_switch_radio(sc, 0); if (error != 0) goto fail; /* disable Rx */ zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); /* disable interrupts */ zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); usb_rem_task(sc->sc_udev, &sc->sc_scantask); usb_rem_task(sc->sc_udev, &sc->sc_task); callout_stop(&sc->sc_watchdog_ch); usbd_abort_pipe(sc->sc_ep[ZYD_ENDPT_BIN]); usbd_abort_pipe(sc->sc_ep[ZYD_ENDPT_BOUT]); zyd_free_rx_list(sc); zyd_free_tx_list(sc); fail: return; } static int zyd_loadfirmware(struct zyd_softc *sc) { usb_device_request_t req; size_t size; u_char *fw; uint8_t stat; uint16_t addr; if (sc->sc_flags & ZYD_FLAG_FWLOADED) return (0); if (sc->sc_macrev == ZYD_ZD1211) { fw = (u_char *)zd1211_firmware; size = sizeof(zd1211_firmware); } else { fw = (u_char *)zd1211b_firmware; size = sizeof(zd1211b_firmware); } req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = ZYD_DOWNLOADREQ; USETW(req.wIndex, 0); addr = ZYD_FIRMWARE_START_ADDR; while (size > 0) { /* * When the transfer size is 4096 bytes, it is not * likely to be able to transfer it. * The cause is port or machine or chip? */ const int mlen = min(size, 64); DPRINTF(sc, ZYD_DEBUG_FW, "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); USETW(req.wValue, addr); USETW(req.wLength, mlen); if (usbd_do_request(sc->sc_udev, &req, fw) != 0) return (EIO); addr += mlen / 2; fw += mlen; size -= mlen; } /* check whether the upload succeeded */ req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = ZYD_DOWNLOADSTS; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, sizeof(stat)); if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) return (EIO); sc->sc_flags |= ZYD_FLAG_FWLOADED; return (stat & 0x80) ? (EIO) : (0); } static void zyd_newassoc(struct ieee80211_node *ni, int isnew) { struct ieee80211vap *vap = ni->ni_vap; ieee80211_amrr_node_init(&ZYD_VAP(vap)->amrr, &ZYD_NODE(ni)->amn, ni); } static void zyd_scan_start(struct ieee80211com *ic) { struct zyd_softc *sc = ic->ic_ifp->if_softc; usb_rem_task(sc->sc_udev, &sc->sc_scantask); /* do it in a process context */ sc->sc_scan_action = ZYD_SCAN_START; usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER); } static void zyd_scan_end(struct ieee80211com *ic) { struct zyd_softc *sc = ic->ic_ifp->if_softc; usb_rem_task(sc->sc_udev, &sc->sc_scantask); /* do it in a process context */ sc->sc_scan_action = ZYD_SCAN_END; usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER); } static void zyd_set_channel(struct ieee80211com *ic) { struct zyd_softc *sc = ic->ic_ifp->if_softc; usb_rem_task(sc->sc_udev, &sc->sc_scantask); /* do it in a process context */ sc->sc_scan_action = ZYD_SET_CHANNEL; usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER); } static void zyd_scantask(void *arg) { struct zyd_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; ZYD_LOCK(sc); switch (sc->sc_scan_action) { case ZYD_SCAN_START: /* want broadcast address while scanning */ zyd_set_bssid(sc, ifp->if_broadcastaddr); break; case ZYD_SCAN_END: /* restore previous bssid */ zyd_set_bssid(sc, sc->sc_bssid); break; case ZYD_SET_CHANNEL: zyd_set_chan(sc, ic->ic_curchan); break; default: device_printf(sc->sc_dev, "unknown scan action %d\n", sc->sc_scan_action); break; } ZYD_UNLOCK(sc); } static void zyd_wakeup(struct zyd_softc *sc) { struct zyd_rq *rqp; STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) wakeup(rqp->odata); /* wakeup sleeping caller */ } static device_method_t zyd_methods[] = { /* Device interface */ DEVMETHOD(device_probe, zyd_match), DEVMETHOD(device_attach, zyd_attach), DEVMETHOD(device_detach, zyd_detach), { 0, 0 } }; static driver_t zyd_driver = { "zyd", zyd_methods, sizeof(struct zyd_softc) }; static devclass_t zyd_devclass; DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, usbd_driver_load, 0); MODULE_DEPEND(zyd, wlan, 1, 1, 1); MODULE_DEPEND(zyd, wlan_amrr, 1, 1, 1); MODULE_DEPEND(zyd, usb, 1, 1, 1);