/* $FreeBSD$ */ /*- * Copyright (c) 2010 Hans Petter Selasky. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * USB eXtensible Host Controller Interface, a.k.a. USB 3.0 controller. * * The XHCI 1.0 spec can be found at * http://www.intel.com/technology/usb/download/xHCI_Specification_for_USB.pdf * and the USB 3.0 spec at * http://www.usb.org/developers/docs/usb_30_spec_060910.zip */ /* * A few words about the design implementation: This driver emulates * the concept about TDs which is found in EHCI specification. This * way we avoid too much diveration among USB drivers. */ #ifdef USB_GLOBAL_INCLUDE_FILE #include USB_GLOBAL_INCLUDE_FILE #else #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define USB_DEBUG_VAR xhcidebug #include #include #include #include #include #include #include #include #include #include #endif /* USB_GLOBAL_INCLUDE_FILE */ #include #include #define XHCI_BUS2SC(bus) \ ((struct xhci_softc *)(((uint8_t *)(bus)) - \ ((uint8_t *)&(((struct xhci_softc *)0)->sc_bus)))) #ifdef USB_DEBUG static int xhcidebug; static int xhciroute; static SYSCTL_NODE(_hw_usb, OID_AUTO, xhci, CTLFLAG_RW, 0, "USB XHCI"); SYSCTL_INT(_hw_usb_xhci, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_TUN, &xhcidebug, 0, "Debug level"); TUNABLE_INT("hw.usb.xhci.debug", &xhcidebug); SYSCTL_INT(_hw_usb_xhci, OID_AUTO, xhci_port_route, CTLFLAG_RW | CTLFLAG_TUN, &xhciroute, 0, "Routing bitmap for switching EHCI ports to XHCI controller"); TUNABLE_INT("hw.usb.xhci.xhci_port_route", &xhciroute); #endif #define XHCI_INTR_ENDPT 1 struct xhci_std_temp { struct xhci_softc *sc; struct usb_page_cache *pc; struct xhci_td *td; struct xhci_td *td_next; uint32_t len; uint32_t offset; uint32_t max_packet_size; uint32_t average; uint16_t isoc_delta; uint16_t isoc_frame; uint8_t shortpkt; uint8_t multishort; uint8_t last_frame; uint8_t trb_type; uint8_t direction; uint8_t tbc; uint8_t tlbpc; uint8_t step_td; uint8_t do_isoc_sync; }; static void xhci_do_poll(struct usb_bus *); static void xhci_device_done(struct usb_xfer *, usb_error_t); static void xhci_root_intr(struct xhci_softc *); static void xhci_free_device_ext(struct usb_device *); static struct xhci_endpoint_ext *xhci_get_endpoint_ext(struct usb_device *, struct usb_endpoint_descriptor *); static usb_proc_callback_t xhci_configure_msg; static usb_error_t xhci_configure_device(struct usb_device *); static usb_error_t xhci_configure_endpoint(struct usb_device *, struct usb_endpoint_descriptor *, uint64_t, uint16_t, uint8_t, uint8_t, uint8_t, uint16_t, uint16_t, uint8_t); static usb_error_t xhci_configure_mask(struct usb_device *, uint32_t, uint8_t); static usb_error_t xhci_cmd_evaluate_ctx(struct xhci_softc *, uint64_t, uint8_t); static void xhci_endpoint_doorbell(struct usb_xfer *); static void xhci_ctx_set_le32(struct xhci_softc *sc, volatile uint32_t *ptr, uint32_t val); static uint32_t xhci_ctx_get_le32(struct xhci_softc *sc, volatile uint32_t *ptr); static void xhci_ctx_set_le64(struct xhci_softc *sc, volatile uint64_t *ptr, uint64_t val); #ifdef USB_DEBUG static uint64_t xhci_ctx_get_le64(struct xhci_softc *sc, volatile uint64_t *ptr); #endif extern struct usb_bus_methods xhci_bus_methods; #ifdef USB_DEBUG static void xhci_dump_trb(struct xhci_trb *trb) { DPRINTFN(5, "trb = %p\n", trb); DPRINTFN(5, "qwTrb0 = 0x%016llx\n", (long long)le64toh(trb->qwTrb0)); DPRINTFN(5, "dwTrb2 = 0x%08x\n", le32toh(trb->dwTrb2)); DPRINTFN(5, "dwTrb3 = 0x%08x\n", le32toh(trb->dwTrb3)); } static void xhci_dump_endpoint(struct xhci_softc *sc, struct xhci_endp_ctx *pep) { DPRINTFN(5, "pep = %p\n", pep); DPRINTFN(5, "dwEpCtx0=0x%08x\n", xhci_ctx_get_le32(sc, &pep->dwEpCtx0)); DPRINTFN(5, "dwEpCtx1=0x%08x\n", xhci_ctx_get_le32(sc, &pep->dwEpCtx1)); DPRINTFN(5, "qwEpCtx2=0x%016llx\n", (long long)xhci_ctx_get_le64(sc, &pep->qwEpCtx2)); DPRINTFN(5, "dwEpCtx4=0x%08x\n", xhci_ctx_get_le32(sc, &pep->dwEpCtx4)); DPRINTFN(5, "dwEpCtx5=0x%08x\n", xhci_ctx_get_le32(sc, &pep->dwEpCtx5)); DPRINTFN(5, "dwEpCtx6=0x%08x\n", xhci_ctx_get_le32(sc, &pep->dwEpCtx6)); DPRINTFN(5, "dwEpCtx7=0x%08x\n", xhci_ctx_get_le32(sc, &pep->dwEpCtx7)); } static void xhci_dump_device(struct xhci_softc *sc, struct xhci_slot_ctx *psl) { DPRINTFN(5, "psl = %p\n", psl); DPRINTFN(5, "dwSctx0=0x%08x\n", xhci_ctx_get_le32(sc, &psl->dwSctx0)); DPRINTFN(5, "dwSctx1=0x%08x\n", xhci_ctx_get_le32(sc, &psl->dwSctx1)); DPRINTFN(5, "dwSctx2=0x%08x\n", xhci_ctx_get_le32(sc, &psl->dwSctx2)); DPRINTFN(5, "dwSctx3=0x%08x\n", xhci_ctx_get_le32(sc, &psl->dwSctx3)); } #endif uint32_t xhci_get_port_route(void) { #ifdef USB_DEBUG return (0xFFFFFFFFU ^ ((uint32_t)xhciroute)); #else return (0xFFFFFFFFU); #endif } static void xhci_iterate_hw_softc(struct usb_bus *bus, usb_bus_mem_sub_cb_t *cb) { struct xhci_softc *sc = XHCI_BUS2SC(bus); uint8_t i; cb(bus, &sc->sc_hw.root_pc, &sc->sc_hw.root_pg, sizeof(struct xhci_hw_root), XHCI_PAGE_SIZE); cb(bus, &sc->sc_hw.ctx_pc, &sc->sc_hw.ctx_pg, sizeof(struct xhci_dev_ctx_addr), XHCI_PAGE_SIZE); for (i = 0; i != XHCI_MAX_SCRATCHPADS; i++) { cb(bus, &sc->sc_hw.scratch_pc[i], &sc->sc_hw.scratch_pg[i], XHCI_PAGE_SIZE, XHCI_PAGE_SIZE); } } static void xhci_ctx_set_le32(struct xhci_softc *sc, volatile uint32_t *ptr, uint32_t val) { if (sc->sc_ctx_is_64_byte) { uint32_t offset; /* exploit the fact that our structures are XHCI_PAGE_SIZE aligned */ /* all contexts are initially 32-bytes */ offset = ((uintptr_t)ptr) & ((XHCI_PAGE_SIZE - 1) & ~(31U)); ptr = (volatile uint32_t *)(((volatile uint8_t *)ptr) + offset); } *ptr = htole32(val); } static uint32_t xhci_ctx_get_le32(struct xhci_softc *sc, volatile uint32_t *ptr) { if (sc->sc_ctx_is_64_byte) { uint32_t offset; /* exploit the fact that our structures are XHCI_PAGE_SIZE aligned */ /* all contexts are initially 32-bytes */ offset = ((uintptr_t)ptr) & ((XHCI_PAGE_SIZE - 1) & ~(31U)); ptr = (volatile uint32_t *)(((volatile uint8_t *)ptr) + offset); } return (le32toh(*ptr)); } static void xhci_ctx_set_le64(struct xhci_softc *sc, volatile uint64_t *ptr, uint64_t val) { if (sc->sc_ctx_is_64_byte) { uint32_t offset; /* exploit the fact that our structures are XHCI_PAGE_SIZE aligned */ /* all contexts are initially 32-bytes */ offset = ((uintptr_t)ptr) & ((XHCI_PAGE_SIZE - 1) & ~(31U)); ptr = (volatile uint64_t *)(((volatile uint8_t *)ptr) + offset); } *ptr = htole64(val); } #ifdef USB_DEBUG static uint64_t xhci_ctx_get_le64(struct xhci_softc *sc, volatile uint64_t *ptr) { if (sc->sc_ctx_is_64_byte) { uint32_t offset; /* exploit the fact that our structures are XHCI_PAGE_SIZE aligned */ /* all contexts are initially 32-bytes */ offset = ((uintptr_t)ptr) & ((XHCI_PAGE_SIZE - 1) & ~(31U)); ptr = (volatile uint64_t *)(((volatile uint8_t *)ptr) + offset); } return (le64toh(*ptr)); } #endif usb_error_t xhci_start_controller(struct xhci_softc *sc) { struct usb_page_search buf_res; struct xhci_hw_root *phwr; struct xhci_dev_ctx_addr *pdctxa; uint64_t addr; uint32_t temp; uint16_t i; DPRINTF("\n"); sc->sc_capa_off = 0; sc->sc_oper_off = XREAD1(sc, capa, XHCI_CAPLENGTH); sc->sc_runt_off = XREAD4(sc, capa, XHCI_RTSOFF) & ~0x1F; sc->sc_door_off = XREAD4(sc, capa, XHCI_DBOFF) & ~0x3; DPRINTF("CAPLENGTH=0x%x\n", sc->sc_oper_off); DPRINTF("RUNTIMEOFFSET=0x%x\n", sc->sc_runt_off); DPRINTF("DOOROFFSET=0x%x\n", sc->sc_door_off); sc->sc_event_ccs = 1; sc->sc_event_idx = 0; sc->sc_command_ccs = 1; sc->sc_command_idx = 0; DPRINTF("xHCI version = 0x%04x\n", XREAD2(sc, capa, XHCI_HCIVERSION)); temp = XREAD4(sc, capa, XHCI_HCSPARAMS0); DPRINTF("HCS0 = 0x%08x\n", temp); if (XHCI_HCS0_CSZ(temp)) { sc->sc_ctx_is_64_byte = 1; device_printf(sc->sc_bus.parent, "64 byte context size.\n"); } else { sc->sc_ctx_is_64_byte = 0; device_printf(sc->sc_bus.parent, "32 byte context size.\n"); } /* Reset controller */ XWRITE4(sc, oper, XHCI_USBCMD, XHCI_CMD_HCRST); for (i = 0; i != 100; i++) { usb_pause_mtx(NULL, hz / 100); temp = XREAD4(sc, oper, XHCI_USBCMD) & (XHCI_CMD_HCRST | XHCI_STS_CNR); if (!temp) break; } if (temp) { device_printf(sc->sc_bus.parent, "Controller " "reset timeout.\n"); return (USB_ERR_IOERROR); } if (!(XREAD4(sc, oper, XHCI_PAGESIZE) & XHCI_PAGESIZE_4K)) { device_printf(sc->sc_bus.parent, "Controller does " "not support 4K page size.\n"); return (USB_ERR_IOERROR); } temp = XREAD4(sc, capa, XHCI_HCSPARAMS1); i = XHCI_HCS1_N_PORTS(temp); if (i == 0) { device_printf(sc->sc_bus.parent, "Invalid number " "of ports: %u\n", i); return (USB_ERR_IOERROR); } sc->sc_noport = i; sc->sc_noslot = XHCI_HCS1_DEVSLOT_MAX(temp); if (sc->sc_noslot > XHCI_MAX_DEVICES) sc->sc_noslot = XHCI_MAX_DEVICES; /* setup number of device slots */ DPRINTF("CONFIG=0x%08x -> 0x%08x\n", XREAD4(sc, oper, XHCI_CONFIG), sc->sc_noslot); XWRITE4(sc, oper, XHCI_CONFIG, sc->sc_noslot); DPRINTF("Max slots: %u\n", sc->sc_noslot); temp = XREAD4(sc, capa, XHCI_HCSPARAMS2); sc->sc_noscratch = XHCI_HCS2_SPB_MAX(temp); if (sc->sc_noscratch > XHCI_MAX_SCRATCHPADS) { device_printf(sc->sc_bus.parent, "XHCI request " "too many scratchpads\n"); return (USB_ERR_NOMEM); } DPRINTF("Max scratch: %u\n", sc->sc_noscratch); temp = XREAD4(sc, capa, XHCI_HCSPARAMS3); sc->sc_exit_lat_max = XHCI_HCS3_U1_DEL(temp) + XHCI_HCS3_U2_DEL(temp) + 250 /* us */; temp = XREAD4(sc, oper, XHCI_USBSTS); /* clear interrupts */ XWRITE4(sc, oper, XHCI_USBSTS, temp); /* disable all device notifications */ XWRITE4(sc, oper, XHCI_DNCTRL, 0); /* setup device context base address */ usbd_get_page(&sc->sc_hw.ctx_pc, 0, &buf_res); pdctxa = buf_res.buffer; memset(pdctxa, 0, sizeof(*pdctxa)); addr = buf_res.physaddr; addr += (uintptr_t)&((struct xhci_dev_ctx_addr *)0)->qwSpBufPtr[0]; /* slot 0 points to the table of scratchpad pointers */ pdctxa->qwBaaDevCtxAddr[0] = htole64(addr); for (i = 0; i != sc->sc_noscratch; i++) { struct usb_page_search buf_scp; usbd_get_page(&sc->sc_hw.scratch_pc[i], 0, &buf_scp); pdctxa->qwSpBufPtr[i] = htole64((uint64_t)buf_scp.physaddr); } addr = buf_res.physaddr; XWRITE4(sc, oper, XHCI_DCBAAP_LO, (uint32_t)addr); XWRITE4(sc, oper, XHCI_DCBAAP_HI, (uint32_t)(addr >> 32)); XWRITE4(sc, oper, XHCI_DCBAAP_LO, (uint32_t)addr); XWRITE4(sc, oper, XHCI_DCBAAP_HI, (uint32_t)(addr >> 32)); /* Setup event table size */ temp = XREAD4(sc, capa, XHCI_HCSPARAMS2); DPRINTF("HCS2=0x%08x\n", temp); temp = XHCI_HCS2_ERST_MAX(temp); temp = 1U << temp; if (temp > XHCI_MAX_RSEG) temp = XHCI_MAX_RSEG; sc->sc_erst_max = temp; DPRINTF("ERSTSZ=0x%08x -> 0x%08x\n", XREAD4(sc, runt, XHCI_ERSTSZ(0)), temp); XWRITE4(sc, runt, XHCI_ERSTSZ(0), XHCI_ERSTS_SET(temp)); /* Setup interrupt rate */ XWRITE4(sc, runt, XHCI_IMOD(0), XHCI_IMOD_DEFAULT); usbd_get_page(&sc->sc_hw.root_pc, 0, &buf_res); phwr = buf_res.buffer; addr = buf_res.physaddr; addr += (uintptr_t)&((struct xhci_hw_root *)0)->hwr_events[0]; /* reset hardware root structure */ memset(phwr, 0, sizeof(*phwr)); phwr->hwr_ring_seg[0].qwEvrsTablePtr = htole64(addr); phwr->hwr_ring_seg[0].dwEvrsTableSize = htole32(XHCI_MAX_EVENTS); DPRINTF("ERDP(0)=0x%016llx\n", (unsigned long long)addr); XWRITE4(sc, runt, XHCI_ERDP_LO(0), (uint32_t)addr); XWRITE4(sc, runt, XHCI_ERDP_HI(0), (uint32_t)(addr >> 32)); addr = (uint64_t)buf_res.physaddr; DPRINTF("ERSTBA(0)=0x%016llx\n", (unsigned long long)addr); XWRITE4(sc, runt, XHCI_ERSTBA_LO(0), (uint32_t)addr); XWRITE4(sc, runt, XHCI_ERSTBA_HI(0), (uint32_t)(addr >> 32)); /* Setup interrupter registers */ temp = XREAD4(sc, runt, XHCI_IMAN(0)); temp |= XHCI_IMAN_INTR_ENA; XWRITE4(sc, runt, XHCI_IMAN(0), temp); /* setup command ring control base address */ addr = buf_res.physaddr; addr += (uintptr_t)&((struct xhci_hw_root *)0)->hwr_commands[0]; DPRINTF("CRCR=0x%016llx\n", (unsigned long long)addr); XWRITE4(sc, oper, XHCI_CRCR_LO, ((uint32_t)addr) | XHCI_CRCR_LO_RCS); XWRITE4(sc, oper, XHCI_CRCR_HI, (uint32_t)(addr >> 32)); phwr->hwr_commands[XHCI_MAX_COMMANDS - 1].qwTrb0 = htole64(addr); usb_bus_mem_flush_all(&sc->sc_bus, &xhci_iterate_hw_softc); /* Go! */ XWRITE4(sc, oper, XHCI_USBCMD, XHCI_CMD_RS | XHCI_CMD_INTE | XHCI_CMD_HSEE); for (i = 0; i != 100; i++) { usb_pause_mtx(NULL, hz / 100); temp = XREAD4(sc, oper, XHCI_USBSTS) & XHCI_STS_HCH; if (!temp) break; } if (temp) { XWRITE4(sc, oper, XHCI_USBCMD, 0); device_printf(sc->sc_bus.parent, "Run timeout.\n"); return (USB_ERR_IOERROR); } /* catch any lost interrupts */ xhci_do_poll(&sc->sc_bus); return (0); } usb_error_t xhci_halt_controller(struct xhci_softc *sc) { uint32_t temp; uint16_t i; DPRINTF("\n"); sc->sc_capa_off = 0; sc->sc_oper_off = XREAD1(sc, capa, XHCI_CAPLENGTH); sc->sc_runt_off = XREAD4(sc, capa, XHCI_RTSOFF) & ~0xF; sc->sc_door_off = XREAD4(sc, capa, XHCI_DBOFF) & ~0x3; /* Halt controller */ XWRITE4(sc, oper, XHCI_USBCMD, 0); for (i = 0; i != 100; i++) { usb_pause_mtx(NULL, hz / 100); temp = XREAD4(sc, oper, XHCI_USBSTS) & XHCI_STS_HCH; if (temp) break; } if (!temp) { device_printf(sc->sc_bus.parent, "Controller halt timeout.\n"); return (USB_ERR_IOERROR); } return (0); } usb_error_t xhci_init(struct xhci_softc *sc, device_t self) { /* initialise some bus fields */ sc->sc_bus.parent = self; /* set the bus revision */ sc->sc_bus.usbrev = USB_REV_3_0; /* set up the bus struct */ sc->sc_bus.methods = &xhci_bus_methods; /* setup devices array */ sc->sc_bus.devices = sc->sc_devices; sc->sc_bus.devices_max = XHCI_MAX_DEVICES; /* setup command queue mutex and condition varible */ cv_init(&sc->sc_cmd_cv, "CMDQ"); sx_init(&sc->sc_cmd_sx, "CMDQ lock"); /* get all DMA memory */ if (usb_bus_mem_alloc_all(&sc->sc_bus, USB_GET_DMA_TAG(self), &xhci_iterate_hw_softc)) { return (ENOMEM); } sc->sc_config_msg[0].hdr.pm_callback = &xhci_configure_msg; sc->sc_config_msg[0].bus = &sc->sc_bus; sc->sc_config_msg[1].hdr.pm_callback = &xhci_configure_msg; sc->sc_config_msg[1].bus = &sc->sc_bus; if (usb_proc_create(&sc->sc_config_proc, &sc->sc_bus.bus_mtx, device_get_nameunit(self), USB_PRI_MED)) { printf("WARNING: Creation of XHCI configure " "callback process failed.\n"); } return (0); } void xhci_uninit(struct xhci_softc *sc) { usb_proc_free(&sc->sc_config_proc); usb_bus_mem_free_all(&sc->sc_bus, &xhci_iterate_hw_softc); cv_destroy(&sc->sc_cmd_cv); sx_destroy(&sc->sc_cmd_sx); } static void xhci_set_hw_power_sleep(struct usb_bus *bus, uint32_t state) { struct xhci_softc *sc = XHCI_BUS2SC(bus); switch (state) { case USB_HW_POWER_SUSPEND: DPRINTF("Stopping the XHCI\n"); xhci_halt_controller(sc); break; case USB_HW_POWER_SHUTDOWN: DPRINTF("Stopping the XHCI\n"); xhci_halt_controller(sc); break; case USB_HW_POWER_RESUME: DPRINTF("Starting the XHCI\n"); xhci_start_controller(sc); break; default: break; } } static usb_error_t xhci_generic_done_sub(struct usb_xfer *xfer) { struct xhci_td *td; struct xhci_td *td_alt_next; uint32_t len; uint8_t status; td = xfer->td_transfer_cache; td_alt_next = td->alt_next; if (xfer->aframes != xfer->nframes) usbd_xfer_set_frame_len(xfer, xfer->aframes, 0); while (1) { usb_pc_cpu_invalidate(td->page_cache); status = td->status; len = td->remainder; DPRINTFN(4, "xfer=%p[%u/%u] rem=%u/%u status=%u\n", xfer, (unsigned int)xfer->aframes, (unsigned int)xfer->nframes, (unsigned int)len, (unsigned int)td->len, (unsigned int)status); /* * Verify the status length and * add the length to "frlengths[]": */ if (len > td->len) { /* should not happen */ DPRINTF("Invalid status length, " "0x%04x/0x%04x bytes\n", len, td->len); status = XHCI_TRB_ERROR_LENGTH; } else if (xfer->aframes != xfer->nframes) { xfer->frlengths[xfer->aframes] += td->len - len; } /* Check for last transfer */ if (((void *)td) == xfer->td_transfer_last) { td = NULL; break; } /* Check for transfer error */ if (status != XHCI_TRB_ERROR_SHORT_PKT && status != XHCI_TRB_ERROR_SUCCESS) { /* the transfer is finished */ td = NULL; break; } /* Check for short transfer */ if (len > 0) { if (xfer->flags_int.short_frames_ok || xfer->flags_int.isochronous_xfr || xfer->flags_int.control_xfr) { /* follow alt next */ td = td->alt_next; } else { /* the transfer is finished */ td = NULL; } break; } td = td->obj_next; if (td->alt_next != td_alt_next) { /* this USB frame is complete */ break; } } /* update transfer cache */ xfer->td_transfer_cache = td; return ((status == XHCI_TRB_ERROR_STALL) ? USB_ERR_STALLED : (status != XHCI_TRB_ERROR_SHORT_PKT && status != XHCI_TRB_ERROR_SUCCESS) ? USB_ERR_IOERROR : USB_ERR_NORMAL_COMPLETION); } static void xhci_generic_done(struct usb_xfer *xfer) { usb_error_t err = 0; DPRINTFN(13, "xfer=%p endpoint=%p transfer done\n", xfer, xfer->endpoint); /* reset scanner */ xfer->td_transfer_cache = xfer->td_transfer_first; if (xfer->flags_int.control_xfr) { if (xfer->flags_int.control_hdr) err = xhci_generic_done_sub(xfer); xfer->aframes = 1; if (xfer->td_transfer_cache == NULL) goto done; } while (xfer->aframes != xfer->nframes) { err = xhci_generic_done_sub(xfer); xfer->aframes++; if (xfer->td_transfer_cache == NULL) goto done; } if (xfer->flags_int.control_xfr && !xfer->flags_int.control_act) err = xhci_generic_done_sub(xfer); done: /* transfer is complete */ xhci_device_done(xfer, err); } static void xhci_activate_transfer(struct usb_xfer *xfer) { struct xhci_td *td; td = xfer->td_transfer_cache; usb_pc_cpu_invalidate(td->page_cache); if (!(td->td_trb[0].dwTrb3 & htole32(XHCI_TRB_3_CYCLE_BIT))) { /* activate the transfer */ td->td_trb[0].dwTrb3 |= htole32(XHCI_TRB_3_CYCLE_BIT); usb_pc_cpu_flush(td->page_cache); xhci_endpoint_doorbell(xfer); } } static void xhci_skip_transfer(struct usb_xfer *xfer) { struct xhci_td *td; struct xhci_td *td_last; td = xfer->td_transfer_cache; td_last = xfer->td_transfer_last; td = td->alt_next; usb_pc_cpu_invalidate(td->page_cache); if (!(td->td_trb[0].dwTrb3 & htole32(XHCI_TRB_3_CYCLE_BIT))) { usb_pc_cpu_invalidate(td_last->page_cache); /* copy LINK TRB to current waiting location */ td->td_trb[0].qwTrb0 = td_last->td_trb[td_last->ntrb].qwTrb0; td->td_trb[0].dwTrb2 = td_last->td_trb[td_last->ntrb].dwTrb2; usb_pc_cpu_flush(td->page_cache); td->td_trb[0].dwTrb3 = td_last->td_trb[td_last->ntrb].dwTrb3; usb_pc_cpu_flush(td->page_cache); xhci_endpoint_doorbell(xfer); } } /*------------------------------------------------------------------------* * xhci_check_transfer *------------------------------------------------------------------------*/ static void xhci_check_transfer(struct xhci_softc *sc, struct xhci_trb *trb) { int64_t offset; uint64_t td_event; uint32_t temp; uint32_t remainder; uint8_t status; uint8_t halted; uint8_t epno; uint8_t index; uint8_t i; /* decode TRB */ td_event = le64toh(trb->qwTrb0); temp = le32toh(trb->dwTrb2); remainder = XHCI_TRB_2_REM_GET(temp); status = XHCI_TRB_2_ERROR_GET(temp); temp = le32toh(trb->dwTrb3); epno = XHCI_TRB_3_EP_GET(temp); index = XHCI_TRB_3_SLOT_GET(temp); /* check if error means halted */ halted = (status != XHCI_TRB_ERROR_SHORT_PKT && status != XHCI_TRB_ERROR_SUCCESS); DPRINTF("slot=%u epno=%u remainder=%u status=%u\n", index, epno, remainder, status); if (index > sc->sc_noslot) { DPRINTF("Invalid slot.\n"); return; } if ((epno == 0) || (epno >= XHCI_MAX_ENDPOINTS)) { DPRINTF("Invalid endpoint.\n"); return; } /* try to find the USB transfer that generated the event */ for (i = 0; i != (XHCI_MAX_TRANSFERS - 1); i++) { struct usb_xfer *xfer; struct xhci_td *td; struct xhci_endpoint_ext *pepext; pepext = &sc->sc_hw.devs[index].endp[epno]; xfer = pepext->xfer[i]; if (xfer == NULL) continue; td = xfer->td_transfer_cache; DPRINTFN(5, "Checking if 0x%016llx == (0x%016llx .. 0x%016llx)\n", (long long)td_event, (long long)td->td_self, (long long)td->td_self + sizeof(td->td_trb)); /* * NOTE: Some XHCI implementations might not trigger * an event on the last LINK TRB so we need to * consider both the last and second last event * address as conditions for a successful transfer. * * NOTE: We assume that the XHCI will only trigger one * event per chain of TRBs. */ offset = td_event - td->td_self; if (offset >= 0 && offset < (int64_t)sizeof(td->td_trb)) { usb_pc_cpu_invalidate(td->page_cache); /* compute rest of remainder, if any */ for (i = (offset / 16) + 1; i < td->ntrb; i++) { temp = le32toh(td->td_trb[i].dwTrb2); remainder += XHCI_TRB_2_BYTES_GET(temp); } DPRINTFN(5, "New remainder: %u\n", remainder); /* clear isochronous transfer errors */ if (xfer->flags_int.isochronous_xfr) { if (halted) { halted = 0; status = XHCI_TRB_ERROR_SUCCESS; remainder = td->len; } } /* "td->remainder" is verified later */ td->remainder = remainder; td->status = status; usb_pc_cpu_flush(td->page_cache); /* * 1) Last transfer descriptor makes the * transfer done */ if (((void *)td) == xfer->td_transfer_last) { DPRINTF("TD is last\n"); xhci_generic_done(xfer); break; } /* * 2) Any kind of error makes the transfer * done */ if (halted) { DPRINTF("TD has I/O error\n"); xhci_generic_done(xfer); break; } /* * 3) If there is no alternate next transfer, * a short packet also makes the transfer done */ if (td->remainder > 0) { if (td->alt_next == NULL) { DPRINTF( "short TD has no alternate next\n"); xhci_generic_done(xfer); break; } DPRINTF("TD has short pkt\n"); if (xfer->flags_int.short_frames_ok || xfer->flags_int.isochronous_xfr || xfer->flags_int.control_xfr) { /* follow the alt next */ xfer->td_transfer_cache = td->alt_next; xhci_activate_transfer(xfer); break; } xhci_skip_transfer(xfer); xhci_generic_done(xfer); break; } /* * 4) Transfer complete - go to next TD */ DPRINTF("Following next TD\n"); xfer->td_transfer_cache = td->obj_next; xhci_activate_transfer(xfer); break; /* there should only be one match */ } } } static void xhci_check_command(struct xhci_softc *sc, struct xhci_trb *trb) { if (sc->sc_cmd_addr == trb->qwTrb0) { DPRINTF("Received command event\n"); sc->sc_cmd_result[0] = trb->dwTrb2; sc->sc_cmd_result[1] = trb->dwTrb3; cv_signal(&sc->sc_cmd_cv); } } static void xhci_interrupt_poll(struct xhci_softc *sc) { struct usb_page_search buf_res; struct xhci_hw_root *phwr; uint64_t addr; uint32_t temp; uint16_t i; uint8_t event; uint8_t j; uint8_t k; uint8_t t; usbd_get_page(&sc->sc_hw.root_pc, 0, &buf_res); phwr = buf_res.buffer; /* Receive any events */ usb_pc_cpu_invalidate(&sc->sc_hw.root_pc); i = sc->sc_event_idx; j = sc->sc_event_ccs; t = 2; while (1) { temp = le32toh(phwr->hwr_events[i].dwTrb3); k = (temp & XHCI_TRB_3_CYCLE_BIT) ? 1 : 0; if (j != k) break; event = XHCI_TRB_3_TYPE_GET(temp); DPRINTFN(10, "event[%u] = %u (0x%016llx 0x%08lx 0x%08lx)\n", i, event, (long long)le64toh(phwr->hwr_events[i].qwTrb0), (long)le32toh(phwr->hwr_events[i].dwTrb2), (long)le32toh(phwr->hwr_events[i].dwTrb3)); switch (event) { case XHCI_TRB_EVENT_TRANSFER: xhci_check_transfer(sc, &phwr->hwr_events[i]); break; case XHCI_TRB_EVENT_CMD_COMPLETE: xhci_check_command(sc, &phwr->hwr_events[i]); break; default: DPRINTF("Unhandled event = %u\n", event); break; } i++; if (i == XHCI_MAX_EVENTS) { i = 0; j ^= 1; /* check for timeout */ if (!--t) break; } } sc->sc_event_idx = i; sc->sc_event_ccs = j; /* * NOTE: The Event Ring Dequeue Pointer Register is 64-bit * latched. That means to activate the register we need to * write both the low and high double word of the 64-bit * register. */ addr = (uint32_t)buf_res.physaddr; addr += (uintptr_t)&((struct xhci_hw_root *)0)->hwr_events[i]; /* try to clear busy bit */ addr |= XHCI_ERDP_LO_BUSY; XWRITE4(sc, runt, XHCI_ERDP_LO(0), (uint32_t)addr); XWRITE4(sc, runt, XHCI_ERDP_HI(0), (uint32_t)(addr >> 32)); } static usb_error_t xhci_do_command(struct xhci_softc *sc, struct xhci_trb *trb, uint16_t timeout_ms) { struct usb_page_search buf_res; struct xhci_hw_root *phwr; uint64_t addr; uint32_t temp; uint8_t i; uint8_t j; int err; XHCI_CMD_ASSERT_LOCKED(sc); /* get hardware root structure */ usbd_get_page(&sc->sc_hw.root_pc, 0, &buf_res); phwr = buf_res.buffer; /* Queue command */ USB_BUS_LOCK(&sc->sc_bus); i = sc->sc_command_idx; j = sc->sc_command_ccs; DPRINTFN(10, "command[%u] = %u (0x%016llx, 0x%08lx, 0x%08lx)\n", i, XHCI_TRB_3_TYPE_GET(le32toh(trb->dwTrb3)), (long long)le64toh(trb->qwTrb0), (long)le32toh(trb->dwTrb2), (long)le32toh(trb->dwTrb3)); phwr->hwr_commands[i].qwTrb0 = trb->qwTrb0; phwr->hwr_commands[i].dwTrb2 = trb->dwTrb2; usb_pc_cpu_flush(&sc->sc_hw.root_pc); temp = trb->dwTrb3; if (j) temp |= htole32(XHCI_TRB_3_CYCLE_BIT); else temp &= ~htole32(XHCI_TRB_3_CYCLE_BIT); temp &= ~htole32(XHCI_TRB_3_TC_BIT); phwr->hwr_commands[i].dwTrb3 = temp; usb_pc_cpu_flush(&sc->sc_hw.root_pc); addr = buf_res.physaddr; addr += (uintptr_t)&((struct xhci_hw_root *)0)->hwr_commands[i]; sc->sc_cmd_addr = htole64(addr); i++; if (i == (XHCI_MAX_COMMANDS - 1)) { if (j) { temp = htole32(XHCI_TRB_3_TC_BIT | XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) | XHCI_TRB_3_CYCLE_BIT); } else { temp = htole32(XHCI_TRB_3_TC_BIT | XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK)); } phwr->hwr_commands[i].dwTrb3 = temp; usb_pc_cpu_flush(&sc->sc_hw.root_pc); i = 0; j ^= 1; } sc->sc_command_idx = i; sc->sc_command_ccs = j; XWRITE4(sc, door, XHCI_DOORBELL(0), 0); err = cv_timedwait(&sc->sc_cmd_cv, &sc->sc_bus.bus_mtx, USB_MS_TO_TICKS(timeout_ms)); if (err) { DPRINTFN(0, "Command timeout!\n"); err = USB_ERR_TIMEOUT; trb->dwTrb2 = 0; trb->dwTrb3 = 0; } else { temp = le32toh(sc->sc_cmd_result[0]); if (XHCI_TRB_2_ERROR_GET(temp) != XHCI_TRB_ERROR_SUCCESS) err = USB_ERR_IOERROR; trb->dwTrb2 = sc->sc_cmd_result[0]; trb->dwTrb3 = sc->sc_cmd_result[1]; } USB_BUS_UNLOCK(&sc->sc_bus); return (err); } #if 0 static usb_error_t xhci_cmd_nop(struct xhci_softc *sc) { struct xhci_trb trb; uint32_t temp; DPRINTF("\n"); trb.qwTrb0 = 0; trb.dwTrb2 = 0; temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NOOP); trb.dwTrb3 = htole32(temp); return (xhci_do_command(sc, &trb, 100 /* ms */)); } #endif static usb_error_t xhci_cmd_enable_slot(struct xhci_softc *sc, uint8_t *pslot) { struct xhci_trb trb; uint32_t temp; usb_error_t err; DPRINTF("\n"); trb.qwTrb0 = 0; trb.dwTrb2 = 0; trb.dwTrb3 = htole32(XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ENABLE_SLOT)); err = xhci_do_command(sc, &trb, 100 /* ms */); if (err) goto done; temp = le32toh(trb.dwTrb3); *pslot = XHCI_TRB_3_SLOT_GET(temp); done: return (err); } static usb_error_t xhci_cmd_disable_slot(struct xhci_softc *sc, uint8_t slot_id) { struct xhci_trb trb; uint32_t temp; DPRINTF("\n"); trb.qwTrb0 = 0; trb.dwTrb2 = 0; temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DISABLE_SLOT) | XHCI_TRB_3_SLOT_SET(slot_id); trb.dwTrb3 = htole32(temp); return (xhci_do_command(sc, &trb, 100 /* ms */)); } static usb_error_t xhci_cmd_set_address(struct xhci_softc *sc, uint64_t input_ctx, uint8_t bsr, uint8_t slot_id) { struct xhci_trb trb; uint32_t temp; DPRINTF("\n"); trb.qwTrb0 = htole64(input_ctx); trb.dwTrb2 = 0; temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ADDRESS_DEVICE) | XHCI_TRB_3_SLOT_SET(slot_id); if (bsr) temp |= XHCI_TRB_3_BSR_BIT; trb.dwTrb3 = htole32(temp); return (xhci_do_command(sc, &trb, 500 /* ms */)); } static usb_error_t xhci_set_address(struct usb_device *udev, struct mtx *mtx, uint16_t address) { struct usb_page_search buf_inp; struct usb_page_search buf_dev; struct xhci_softc *sc = XHCI_BUS2SC(udev->bus); struct xhci_hw_dev *hdev; struct xhci_dev_ctx *pdev; struct xhci_endpoint_ext *pepext; uint32_t temp; uint16_t mps; usb_error_t err; uint8_t index; /* the root HUB case is not handled here */ if (udev->parent_hub == NULL) return (USB_ERR_INVAL); index = udev->controller_slot_id; hdev = &sc->sc_hw.devs[index]; if (mtx != NULL) mtx_unlock(mtx); XHCI_CMD_LOCK(sc); switch (hdev->state) { case XHCI_ST_DEFAULT: case XHCI_ST_ENABLED: hdev->state = XHCI_ST_ENABLED; /* set configure mask to slot and EP0 */ xhci_configure_mask(udev, 3, 0); /* configure input slot context structure */ err = xhci_configure_device(udev); if (err != 0) { DPRINTF("Could not configure device\n"); break; } /* configure input endpoint context structure */ switch (udev->speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: mps = 8; break; case USB_SPEED_HIGH: mps = 64; break; default: mps = 512; break; } pepext = xhci_get_endpoint_ext(udev, &udev->ctrl_ep_desc); err = xhci_configure_endpoint(udev, &udev->ctrl_ep_desc, pepext->physaddr, 0, 1, 1, 0, mps, mps, USB_EP_MODE_DEFAULT); if (err != 0) { DPRINTF("Could not configure default endpoint\n"); break; } /* execute set address command */ usbd_get_page(&hdev->input_pc, 0, &buf_inp); err = xhci_cmd_set_address(sc, buf_inp.physaddr, (address == 0), index); if (err != 0) { DPRINTF("Could not set address " "for slot %u.\n", index); if (address != 0) break; } /* update device address to new value */ usbd_get_page(&hdev->device_pc, 0, &buf_dev); pdev = buf_dev.buffer; usb_pc_cpu_invalidate(&hdev->device_pc); temp = xhci_ctx_get_le32(sc, &pdev->ctx_slot.dwSctx3); udev->address = XHCI_SCTX_3_DEV_ADDR_GET(temp); /* update device state to new value */ if (address != 0) hdev->state = XHCI_ST_ADDRESSED; else hdev->state = XHCI_ST_DEFAULT; break; default: DPRINTF("Wrong state for set address.\n"); err = USB_ERR_IOERROR; break; } XHCI_CMD_UNLOCK(sc); if (mtx != NULL) mtx_lock(mtx); return (err); } static usb_error_t xhci_cmd_configure_ep(struct xhci_softc *sc, uint64_t input_ctx, uint8_t deconfigure, uint8_t slot_id) { struct xhci_trb trb; uint32_t temp; DPRINTF("\n"); trb.qwTrb0 = htole64(input_ctx); trb.dwTrb2 = 0; temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP) | XHCI_TRB_3_SLOT_SET(slot_id); if (deconfigure) temp |= XHCI_TRB_3_DCEP_BIT; trb.dwTrb3 = htole32(temp); return (xhci_do_command(sc, &trb, 100 /* ms */)); } static usb_error_t xhci_cmd_evaluate_ctx(struct xhci_softc *sc, uint64_t input_ctx, uint8_t slot_id) { struct xhci_trb trb; uint32_t temp; DPRINTF("\n"); trb.qwTrb0 = htole64(input_ctx); trb.dwTrb2 = 0; temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_EVALUATE_CTX) | XHCI_TRB_3_SLOT_SET(slot_id); trb.dwTrb3 = htole32(temp); return (xhci_do_command(sc, &trb, 100 /* ms */)); } static usb_error_t xhci_cmd_reset_ep(struct xhci_softc *sc, uint8_t preserve, uint8_t ep_id, uint8_t slot_id) { struct xhci_trb trb; uint32_t temp; DPRINTF("\n"); trb.qwTrb0 = 0; trb.dwTrb2 = 0; temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_EP) | XHCI_TRB_3_SLOT_SET(slot_id) | XHCI_TRB_3_EP_SET(ep_id); if (preserve) temp |= XHCI_TRB_3_PRSV_BIT; trb.dwTrb3 = htole32(temp); return (xhci_do_command(sc, &trb, 100 /* ms */)); } static usb_error_t xhci_cmd_set_tr_dequeue_ptr(struct xhci_softc *sc, uint64_t dequeue_ptr, uint16_t stream_id, uint8_t ep_id, uint8_t slot_id) { struct xhci_trb trb; uint32_t temp; DPRINTF("\n"); trb.qwTrb0 = htole64(dequeue_ptr); temp = XHCI_TRB_2_STREAM_SET(stream_id); trb.dwTrb2 = htole32(temp); temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SET_TR_DEQUEUE) | XHCI_TRB_3_SLOT_SET(slot_id) | XHCI_TRB_3_EP_SET(ep_id); trb.dwTrb3 = htole32(temp); return (xhci_do_command(sc, &trb, 100 /* ms */)); } static usb_error_t xhci_cmd_stop_ep(struct xhci_softc *sc, uint8_t suspend, uint8_t ep_id, uint8_t slot_id) { struct xhci_trb trb; uint32_t temp; DPRINTF("\n"); trb.qwTrb0 = 0; trb.dwTrb2 = 0; temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STOP_EP) | XHCI_TRB_3_SLOT_SET(slot_id) | XHCI_TRB_3_EP_SET(ep_id); if (suspend) temp |= XHCI_TRB_3_SUSP_EP_BIT; trb.dwTrb3 = htole32(temp); return (xhci_do_command(sc, &trb, 100 /* ms */)); } static usb_error_t xhci_cmd_reset_dev(struct xhci_softc *sc, uint8_t slot_id) { struct xhci_trb trb; uint32_t temp; DPRINTF("\n"); trb.qwTrb0 = 0; trb.dwTrb2 = 0; temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_DEVICE) | XHCI_TRB_3_SLOT_SET(slot_id); trb.dwTrb3 = htole32(temp); return (xhci_do_command(sc, &trb, 100 /* ms */)); } /*------------------------------------------------------------------------* * xhci_interrupt - XHCI interrupt handler *------------------------------------------------------------------------*/ void xhci_interrupt(struct xhci_softc *sc) { uint32_t status; uint32_t iman; USB_BUS_LOCK(&sc->sc_bus); status = XREAD4(sc, oper, XHCI_USBSTS); if (status == 0) goto done; /* acknowledge interrupts */ XWRITE4(sc, oper, XHCI_USBSTS, status); DPRINTFN(16, "real interrupt (status=0x%08x)\n", status); if (status & XHCI_STS_EINT) { /* acknowledge pending event */ iman = XREAD4(sc, runt, XHCI_IMAN(0)); /* reset interrupt */ XWRITE4(sc, runt, XHCI_IMAN(0), iman); DPRINTFN(16, "real interrupt (iman=0x%08x)\n", iman); /* check for event(s) */ xhci_interrupt_poll(sc); } if (status & (XHCI_STS_PCD | XHCI_STS_HCH | XHCI_STS_HSE | XHCI_STS_HCE)) { if (status & XHCI_STS_PCD) { xhci_root_intr(sc); } if (status & XHCI_STS_HCH) { printf("%s: host controller halted\n", __FUNCTION__); } if (status & XHCI_STS_HSE) { printf("%s: host system error\n", __FUNCTION__); } if (status & XHCI_STS_HCE) { printf("%s: host controller error\n", __FUNCTION__); } } done: USB_BUS_UNLOCK(&sc->sc_bus); } /*------------------------------------------------------------------------* * xhci_timeout - XHCI timeout handler *------------------------------------------------------------------------*/ static void xhci_timeout(void *arg) { struct usb_xfer *xfer = arg; DPRINTF("xfer=%p\n", xfer); USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); /* transfer is transferred */ xhci_device_done(xfer, USB_ERR_TIMEOUT); } static void xhci_do_poll(struct usb_bus *bus) { struct xhci_softc *sc = XHCI_BUS2SC(bus); USB_BUS_LOCK(&sc->sc_bus); xhci_interrupt_poll(sc); USB_BUS_UNLOCK(&sc->sc_bus); } static void xhci_setup_generic_chain_sub(struct xhci_std_temp *temp) { struct usb_page_search buf_res; struct xhci_td *td; struct xhci_td *td_next; struct xhci_td *td_alt_next; uint32_t buf_offset; uint32_t average; uint32_t len_old; uint32_t dword; uint8_t shortpkt_old; uint8_t precompute; uint8_t x; td_alt_next = NULL; buf_offset = 0; shortpkt_old = temp->shortpkt; len_old = temp->len; precompute = 1; restart: td = temp->td; td_next = temp->td_next; while (1) { if (temp->len == 0) { if (temp->shortpkt) break; /* send a Zero Length Packet, ZLP, last */ temp->shortpkt = 1; average = 0; } else { average = temp->average; if (temp->len < average) { if (temp->len % temp->max_packet_size) { temp->shortpkt = 1; } average = temp->len; } } if (td_next == NULL) panic("%s: out of XHCI transfer descriptors!", __FUNCTION__); /* get next TD */ td = td_next; td_next = td->obj_next; /* check if we are pre-computing */ if (precompute) { /* update remaining length */ temp->len -= average; continue; } /* fill out current TD */ td->len = average; td->remainder = 0; td->status = 0; /* update remaining length */ temp->len -= average; /* reset TRB index */ x = 0; if (temp->trb_type == XHCI_TRB_TYPE_SETUP_STAGE) { /* immediate data */ if (average > 8) average = 8; td->td_trb[0].qwTrb0 = 0; usbd_copy_out(temp->pc, temp->offset + buf_offset, (uint8_t *)(uintptr_t)&td->td_trb[0].qwTrb0, average); dword = XHCI_TRB_2_BYTES_SET(8) | XHCI_TRB_2_TDSZ_SET(0) | XHCI_TRB_2_IRQ_SET(0); td->td_trb[0].dwTrb2 = htole32(dword); dword = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SETUP_STAGE) | XHCI_TRB_3_IDT_BIT | XHCI_TRB_3_CYCLE_BIT; /* check wLength */ if (td->td_trb[0].qwTrb0 & htole64(XHCI_TRB_0_WLENGTH_MASK)) { if (td->td_trb[0].qwTrb0 & htole64(1)) dword |= XHCI_TRB_3_TRT_IN; else dword |= XHCI_TRB_3_TRT_OUT; } td->td_trb[0].dwTrb3 = htole32(dword); #ifdef USB_DEBUG xhci_dump_trb(&td->td_trb[x]); #endif x++; } else do { uint32_t npkt; /* fill out buffer pointers */ if (average == 0) { npkt = 1; memset(&buf_res, 0, sizeof(buf_res)); } else { usbd_get_page(temp->pc, temp->offset + buf_offset, &buf_res); /* get length to end of page */ if (buf_res.length > average) buf_res.length = average; /* check for maximum length */ if (buf_res.length > XHCI_TD_PAGE_SIZE) buf_res.length = XHCI_TD_PAGE_SIZE; /* setup npkt */ npkt = (average + temp->max_packet_size - 1) / temp->max_packet_size; if (npkt > 31) npkt = 31; } /* fill out TRB's */ td->td_trb[x].qwTrb0 = htole64((uint64_t)buf_res.physaddr); dword = XHCI_TRB_2_BYTES_SET(buf_res.length) | XHCI_TRB_2_TDSZ_SET(npkt) | XHCI_TRB_2_IRQ_SET(0); td->td_trb[x].dwTrb2 = htole32(dword); dword = XHCI_TRB_3_CHAIN_BIT | XHCI_TRB_3_CYCLE_BIT | XHCI_TRB_3_TYPE_SET(temp->trb_type) | (temp->do_isoc_sync ? XHCI_TRB_3_FRID_SET(temp->isoc_frame / 8) : XHCI_TRB_3_ISO_SIA_BIT) | XHCI_TRB_3_TBC_SET(temp->tbc) | XHCI_TRB_3_TLBPC_SET(temp->tlbpc); temp->do_isoc_sync = 0; if (temp->direction == UE_DIR_IN) { dword |= XHCI_TRB_3_DIR_IN; /* * NOTE: Only the SETUP stage should * use the IDT bit. Else transactions * can be sent using the wrong data * toggle value. */ if (temp->trb_type != XHCI_TRB_TYPE_SETUP_STAGE && temp->trb_type != XHCI_TRB_TYPE_STATUS_STAGE) dword |= XHCI_TRB_3_ISP_BIT; } td->td_trb[x].dwTrb3 = htole32(dword); average -= buf_res.length; buf_offset += buf_res.length; #ifdef USB_DEBUG xhci_dump_trb(&td->td_trb[x]); #endif x++; } while (average != 0); td->td_trb[x-1].dwTrb3 |= htole32(XHCI_TRB_3_IOC_BIT); /* store number of data TRB's */ td->ntrb = x; DPRINTF("NTRB=%u\n", x); /* fill out link TRB */ if (td_next != NULL) { /* link the current TD with the next one */ td->td_trb[x].qwTrb0 = htole64((uint64_t)td_next->td_self); DPRINTF("LINK=0x%08llx\n", (long long)td_next->td_self); } else { /* this field will get updated later */ DPRINTF("NOLINK\n"); } dword = XHCI_TRB_2_IRQ_SET(0); td->td_trb[x].dwTrb2 = htole32(dword); dword = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) | XHCI_TRB_3_CYCLE_BIT | XHCI_TRB_3_IOC_BIT; td->td_trb[x].dwTrb3 = htole32(dword); td->alt_next = td_alt_next; #ifdef USB_DEBUG xhci_dump_trb(&td->td_trb[x]); #endif usb_pc_cpu_flush(td->page_cache); } if (precompute) { precompute = 0; /* setup alt next pointer, if any */ if (temp->last_frame) { td_alt_next = NULL; } else { /* we use this field internally */ td_alt_next = td_next; } /* restore */ temp->shortpkt = shortpkt_old; temp->len = len_old; goto restart; } /* remove cycle bit from first if we are stepping the TRBs */ if (temp->step_td) td->td_trb[0].dwTrb3 &= ~htole32(XHCI_TRB_3_CYCLE_BIT); /* remove chain bit because this is the last TRB in the chain */ td->td_trb[td->ntrb - 1].dwTrb2 &= ~htole32(XHCI_TRB_2_TDSZ_SET(15)); td->td_trb[td->ntrb - 1].dwTrb3 &= ~htole32(XHCI_TRB_3_CHAIN_BIT); usb_pc_cpu_flush(td->page_cache); temp->td = td; temp->td_next = td_next; } static void xhci_setup_generic_chain(struct usb_xfer *xfer) { struct xhci_std_temp temp; struct xhci_td *td; uint32_t x; uint32_t y; uint8_t mult; temp.do_isoc_sync = 0; temp.step_td = 0; temp.tbc = 0; temp.tlbpc = 0; temp.average = xfer->max_hc_frame_size; temp.max_packet_size = xfer->max_packet_size; temp.sc = XHCI_BUS2SC(xfer->xroot->bus); temp.pc = NULL; temp.last_frame = 0; temp.offset = 0; temp.multishort = xfer->flags_int.isochronous_xfr || xfer->flags_int.control_xfr || xfer->flags_int.short_frames_ok; /* toggle the DMA set we are using */ xfer->flags_int.curr_dma_set ^= 1; /* get next DMA set */ td = xfer->td_start[xfer->flags_int.curr_dma_set]; temp.td = NULL; temp.td_next = td; xfer->td_transfer_first = td; xfer->td_transfer_cache = td; if (xfer->flags_int.isochronous_xfr) { uint8_t shift; /* compute multiplier for ISOCHRONOUS transfers */ mult = xfer->endpoint->ecomp ? UE_GET_SS_ISO_MULT(xfer->endpoint->ecomp->bmAttributes) : 0; /* check for USB 2.0 multiplier */ if (mult == 0) { mult = (xfer->endpoint->edesc-> wMaxPacketSize[1] >> 3) & 3; } /* range check */ if (mult > 2) mult = 3; else mult++; x = XREAD4(temp.sc, runt, XHCI_MFINDEX); DPRINTF("MFINDEX=0x%08x\n", x); switch (usbd_get_speed(xfer->xroot->udev)) { case USB_SPEED_FULL: shift = 3; temp.isoc_delta = 8; /* 1ms */ x += temp.isoc_delta - 1; x &= ~(temp.isoc_delta - 1); break; default: shift = usbd_xfer_get_fps_shift(xfer); temp.isoc_delta = 1U << shift; x += temp.isoc_delta - 1; x &= ~(temp.isoc_delta - 1); /* simple frame load balancing */ x += xfer->endpoint->usb_uframe; break; } y = XHCI_MFINDEX_GET(x - xfer->endpoint->isoc_next); if ((xfer->endpoint->is_synced == 0) || (y < (xfer->nframes << shift)) || (XHCI_MFINDEX_GET(-y) >= (128 * 8))) { /* * If there is data underflow or the pipe * queue is empty we schedule the transfer a * few frames ahead of the current frame * position. Else two isochronous transfers * might overlap. */ xfer->endpoint->isoc_next = XHCI_MFINDEX_GET(x + (3 * 8)); xfer->endpoint->is_synced = 1; temp.do_isoc_sync = 1; DPRINTFN(3, "start next=%d\n", xfer->endpoint->isoc_next); } /* compute isochronous completion time */ y = XHCI_MFINDEX_GET(xfer->endpoint->isoc_next - (x & ~7)); xfer->isoc_time_complete = usb_isoc_time_expand(&temp.sc->sc_bus, x / 8) + (y / 8) + (((xfer->nframes << shift) + 7) / 8); x = 0; temp.isoc_frame = xfer->endpoint->isoc_next; temp.trb_type = XHCI_TRB_TYPE_ISOCH; xfer->endpoint->isoc_next += xfer->nframes << shift; } else if (xfer->flags_int.control_xfr) { /* check if we should prepend a setup message */ if (xfer->flags_int.control_hdr) { temp.len = xfer->frlengths[0]; temp.pc = xfer->frbuffers + 0; temp.shortpkt = temp.len ? 1 : 0; temp.trb_type = XHCI_TRB_TYPE_SETUP_STAGE; temp.direction = 0; /* check for last frame */ if (xfer->nframes == 1) { /* no STATUS stage yet, SETUP is last */ if (xfer->flags_int.control_act) temp.last_frame = 1; } xhci_setup_generic_chain_sub(&temp); } x = 1; mult = 1; temp.isoc_delta = 0; temp.isoc_frame = 0; temp.trb_type = XHCI_TRB_TYPE_DATA_STAGE; } else { x = 0; mult = 1; temp.isoc_delta = 0; temp.isoc_frame = 0; temp.trb_type = XHCI_TRB_TYPE_NORMAL; } if (x != xfer->nframes) { /* setup page_cache pointer */ temp.pc = xfer->frbuffers + x; /* set endpoint direction */ temp.direction = UE_GET_DIR(xfer->endpointno); } while (x != xfer->nframes) { /* DATA0 / DATA1 message */ temp.len = xfer->frlengths[x]; temp.step_td = ((xfer->endpointno & UE_DIR_IN) && x != 0 && temp.multishort == 0); x++; if (x == xfer->nframes) { if (xfer->flags_int.control_xfr) { /* no STATUS stage yet, DATA is last */ if (xfer->flags_int.control_act) temp.last_frame = 1; } else { temp.last_frame = 1; } } if (temp.len == 0) { /* make sure that we send an USB packet */ temp.shortpkt = 0; temp.tbc = 0; temp.tlbpc = mult - 1; } else if (xfer->flags_int.isochronous_xfr) { uint8_t tdpc; /* * Isochronous transfers don't have short * packet termination: */ temp.shortpkt = 1; /* isochronous transfers have a transfer limit */ if (temp.len > xfer->max_frame_size) temp.len = xfer->max_frame_size; /* compute TD packet count */ tdpc = (temp.len + xfer->max_packet_size - 1) / xfer->max_packet_size; temp.tbc = ((tdpc + mult - 1) / mult) - 1; temp.tlbpc = (tdpc % mult); if (temp.tlbpc == 0) temp.tlbpc = mult - 1; else temp.tlbpc--; } else { /* regular data transfer */ temp.shortpkt = xfer->flags.force_short_xfer ? 0 : 1; } xhci_setup_generic_chain_sub(&temp); if (xfer->flags_int.isochronous_xfr) { temp.offset += xfer->frlengths[x - 1]; temp.isoc_frame += temp.isoc_delta; } else { /* get next Page Cache pointer */ temp.pc = xfer->frbuffers + x; } } /* check if we should append a status stage */ if (xfer->flags_int.control_xfr && !xfer->flags_int.control_act) { /* * Send a DATA1 message and invert the current * endpoint direction. */ temp.step_td = (xfer->nframes != 0); temp.direction = UE_GET_DIR(xfer->endpointno) ^ UE_DIR_IN; temp.len = 0; temp.pc = NULL; temp.shortpkt = 0; temp.last_frame = 1; temp.trb_type = XHCI_TRB_TYPE_STATUS_STAGE; xhci_setup_generic_chain_sub(&temp); } td = temp.td; /* must have at least one frame! */ xfer->td_transfer_last = td; DPRINTF("first=%p last=%p\n", xfer->td_transfer_first, td); } static void xhci_set_slot_pointer(struct xhci_softc *sc, uint8_t index, uint64_t dev_addr) { struct usb_page_search buf_res; struct xhci_dev_ctx_addr *pdctxa; usbd_get_page(&sc->sc_hw.ctx_pc, 0, &buf_res); pdctxa = buf_res.buffer; DPRINTF("addr[%u]=0x%016llx\n", index, (long long)dev_addr); pdctxa->qwBaaDevCtxAddr[index] = htole64(dev_addr); usb_pc_cpu_flush(&sc->sc_hw.ctx_pc); } static usb_error_t xhci_configure_mask(struct usb_device *udev, uint32_t mask, uint8_t drop) { struct xhci_softc *sc = XHCI_BUS2SC(udev->bus); struct usb_page_search buf_inp; struct xhci_input_dev_ctx *pinp; uint32_t temp; uint8_t index; uint8_t x; index = udev->controller_slot_id; usbd_get_page(&sc->sc_hw.devs[index].input_pc, 0, &buf_inp); pinp = buf_inp.buffer; if (drop) { mask &= XHCI_INCTX_NON_CTRL_MASK; xhci_ctx_set_le32(sc, &pinp->ctx_input.dwInCtx0, mask); xhci_ctx_set_le32(sc, &pinp->ctx_input.dwInCtx1, 0); } else { xhci_ctx_set_le32(sc, &pinp->ctx_input.dwInCtx0, 0); xhci_ctx_set_le32(sc, &pinp->ctx_input.dwInCtx1, mask); /* find most significant set bit */ for (x = 31; x != 1; x--) { if (mask & (1 << x)) break; } /* adjust */ x--; /* figure out maximum */ if (x > sc->sc_hw.devs[index].context_num) { sc->sc_hw.devs[index].context_num = x; temp = xhci_ctx_get_le32(sc, &pinp->ctx_slot.dwSctx0); temp &= ~XHCI_SCTX_0_CTX_NUM_SET(31); temp |= XHCI_SCTX_0_CTX_NUM_SET(x + 1); xhci_ctx_set_le32(sc, &pinp->ctx_slot.dwSctx0, temp); } } return (0); } static usb_error_t xhci_configure_endpoint(struct usb_device *udev, struct usb_endpoint_descriptor *edesc, uint64_t ring_addr, uint16_t interval, uint8_t max_packet_count, uint8_t mult, uint8_t fps_shift, uint16_t max_packet_size, uint16_t max_frame_size, uint8_t ep_mode) { struct usb_page_search buf_inp; struct xhci_softc *sc = XHCI_BUS2SC(udev->bus); struct xhci_input_dev_ctx *pinp; uint32_t temp; uint8_t index; uint8_t epno; uint8_t type; index = udev->controller_slot_id; usbd_get_page(&sc->sc_hw.devs[index].input_pc, 0, &buf_inp); pinp = buf_inp.buffer; epno = edesc->bEndpointAddress; type = edesc->bmAttributes & UE_XFERTYPE; if (type == UE_CONTROL) epno |= UE_DIR_IN; epno = XHCI_EPNO2EPID(epno); if (epno == 0) return (USB_ERR_NO_PIPE); /* invalid */ if (max_packet_count == 0) return (USB_ERR_BAD_BUFSIZE); max_packet_count--; if (mult == 0) return (USB_ERR_BAD_BUFSIZE); if (ep_mode == USB_EP_MODE_STREAMS) { temp = XHCI_EPCTX_0_EPSTATE_SET(0) | XHCI_EPCTX_0_MAXP_STREAMS_SET(XHCI_MAX_STREAMS_LOG - 1) | XHCI_EPCTX_0_LSA_SET(1); ring_addr += sizeof(struct xhci_trb) * XHCI_MAX_TRANSFERS * XHCI_MAX_STREAMS; } else { temp = XHCI_EPCTX_0_EPSTATE_SET(0) | XHCI_EPCTX_0_MAXP_STREAMS_SET(0) | XHCI_EPCTX_0_LSA_SET(0); ring_addr |= XHCI_EPCTX_2_DCS_SET(1); } switch (udev->speed) { case USB_SPEED_FULL: case USB_SPEED_LOW: /* 1ms -> 125us */ fps_shift += 3; break; default: break; } switch (type) { case UE_INTERRUPT: if (fps_shift > 3) fps_shift--; temp |= XHCI_EPCTX_0_IVAL_SET(fps_shift); break; case UE_ISOCHRONOUS: temp |= XHCI_EPCTX_0_IVAL_SET(fps_shift); switch (udev->speed) { case USB_SPEED_SUPER: if (mult > 3) mult = 3; temp |= XHCI_EPCTX_0_MULT_SET(mult - 1); max_packet_count /= mult; break; default: break; } break; default: break; } xhci_ctx_set_le32(sc, &pinp->ctx_ep[epno - 1].dwEpCtx0, temp); temp = XHCI_EPCTX_1_HID_SET(0) | XHCI_EPCTX_1_MAXB_SET(max_packet_count) | XHCI_EPCTX_1_MAXP_SIZE_SET(max_packet_size); if ((udev->parent_hs_hub != NULL) || (udev->address != 0)) { if (type != UE_ISOCHRONOUS) temp |= XHCI_EPCTX_1_CERR_SET(3); } switch (type) { case UE_CONTROL: temp |= XHCI_EPCTX_1_EPTYPE_SET(4); break; case UE_ISOCHRONOUS: temp |= XHCI_EPCTX_1_EPTYPE_SET(1); break; case UE_BULK: temp |= XHCI_EPCTX_1_EPTYPE_SET(2); break; default: temp |= XHCI_EPCTX_1_EPTYPE_SET(3); break; } /* check for IN direction */ if (epno & 1) temp |= XHCI_EPCTX_1_EPTYPE_SET(4); xhci_ctx_set_le32(sc, &pinp->ctx_ep[epno - 1].dwEpCtx1, temp); xhci_ctx_set_le64(sc, &pinp->ctx_ep[epno - 1].qwEpCtx2, ring_addr); switch (edesc->bmAttributes & UE_XFERTYPE) { case UE_INTERRUPT: case UE_ISOCHRONOUS: temp = XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_SET(max_frame_size) | XHCI_EPCTX_4_AVG_TRB_LEN_SET(MIN(XHCI_PAGE_SIZE, max_frame_size)); break; case UE_CONTROL: temp = XHCI_EPCTX_4_AVG_TRB_LEN_SET(8); break; default: temp = XHCI_EPCTX_4_AVG_TRB_LEN_SET(XHCI_PAGE_SIZE); break; } xhci_ctx_set_le32(sc, &pinp->ctx_ep[epno - 1].dwEpCtx4, temp); #ifdef USB_DEBUG xhci_dump_endpoint(sc, &pinp->ctx_ep[epno - 1]); #endif usb_pc_cpu_flush(&sc->sc_hw.devs[index].input_pc); return (0); /* success */ } static usb_error_t xhci_configure_endpoint_by_xfer(struct usb_xfer *xfer) { struct xhci_endpoint_ext *pepext; struct usb_endpoint_ss_comp_descriptor *ecomp; usb_stream_t x; pepext = xhci_get_endpoint_ext(xfer->xroot->udev, xfer->endpoint->edesc); ecomp = xfer->endpoint->ecomp; for (x = 0; x != XHCI_MAX_STREAMS; x++) { uint64_t temp; /* halt any transfers */ pepext->trb[x * XHCI_MAX_TRANSFERS].dwTrb3 = 0; /* compute start of TRB ring for stream "x" */ temp = pepext->physaddr + (x * XHCI_MAX_TRANSFERS * sizeof(struct xhci_trb)) + XHCI_SCTX_0_SCT_SEC_TR_RING; /* make tree structure */ pepext->trb[(XHCI_MAX_TRANSFERS * XHCI_MAX_STREAMS) + x].qwTrb0 = htole64(temp); /* reserved fields */ pepext->trb[(XHCI_MAX_TRANSFERS * XHCI_MAX_STREAMS) + x].dwTrb2 = 0; pepext->trb[(XHCI_MAX_TRANSFERS * XHCI_MAX_STREAMS) + x].dwTrb3 = 0; } usb_pc_cpu_flush(pepext->page_cache); return (xhci_configure_endpoint(xfer->xroot->udev, xfer->endpoint->edesc, pepext->physaddr, xfer->interval, xfer->max_packet_count, (ecomp != NULL) ? UE_GET_SS_ISO_MULT(ecomp->bmAttributes) + 1 : 1, usbd_xfer_get_fps_shift(xfer), xfer->max_packet_size, xfer->max_frame_size, xfer->endpoint->ep_mode)); } static usb_error_t xhci_configure_device(struct usb_device *udev) { struct xhci_softc *sc = XHCI_BUS2SC(udev->bus); struct usb_page_search buf_inp; struct usb_page_cache *pcinp; struct xhci_input_dev_ctx *pinp; struct usb_device *hubdev; uint32_t temp; uint32_t route; uint32_t rh_port; uint8_t is_hub; uint8_t index; uint8_t depth; index = udev->controller_slot_id; DPRINTF("index=%u\n", index); pcinp = &sc->sc_hw.devs[index].input_pc; usbd_get_page(pcinp, 0, &buf_inp); pinp = buf_inp.buffer; rh_port = 0; route = 0; /* figure out route string and root HUB port number */ for (hubdev = udev; hubdev != NULL; hubdev = hubdev->parent_hub) { if (hubdev->parent_hub == NULL) break; depth = hubdev->parent_hub->depth; /* * NOTE: HS/FS/LS devices and the SS root HUB can have * more than 15 ports */ rh_port = hubdev->port_no; if (depth == 0) break; if (rh_port > 15) rh_port = 15; if (depth < 6) route |= rh_port << (4 * (depth - 1)); } DPRINTF("Route=0x%08x\n", route); temp = XHCI_SCTX_0_ROUTE_SET(route) | XHCI_SCTX_0_CTX_NUM_SET( sc->sc_hw.devs[index].context_num + 1); switch (udev->speed) { case USB_SPEED_LOW: temp |= XHCI_SCTX_0_SPEED_SET(2); if (udev->parent_hs_hub != NULL && udev->parent_hs_hub->ddesc.bDeviceProtocol == UDPROTO_HSHUBMTT) { DPRINTF("Device inherits MTT\n"); temp |= XHCI_SCTX_0_MTT_SET(1); } break; case USB_SPEED_HIGH: temp |= XHCI_SCTX_0_SPEED_SET(3); if (sc->sc_hw.devs[index].nports != 0 && udev->ddesc.bDeviceProtocol == UDPROTO_HSHUBMTT) { DPRINTF("HUB supports MTT\n"); temp |= XHCI_SCTX_0_MTT_SET(1); } break; case USB_SPEED_FULL: temp |= XHCI_SCTX_0_SPEED_SET(1); if (udev->parent_hs_hub != NULL && udev->parent_hs_hub->ddesc.bDeviceProtocol == UDPROTO_HSHUBMTT) { DPRINTF("Device inherits MTT\n"); temp |= XHCI_SCTX_0_MTT_SET(1); } break; default: temp |= XHCI_SCTX_0_SPEED_SET(4); break; } is_hub = sc->sc_hw.devs[index].nports != 0 && (udev->speed == USB_SPEED_SUPER || udev->speed == USB_SPEED_HIGH); if (is_hub) temp |= XHCI_SCTX_0_HUB_SET(1); xhci_ctx_set_le32(sc, &pinp->ctx_slot.dwSctx0, temp); temp = XHCI_SCTX_1_RH_PORT_SET(rh_port); if (is_hub) { temp |= XHCI_SCTX_1_NUM_PORTS_SET( sc->sc_hw.devs[index].nports); } switch (udev->speed) { case USB_SPEED_SUPER: switch (sc->sc_hw.devs[index].state) { case XHCI_ST_ADDRESSED: case XHCI_ST_CONFIGURED: /* enable power save */ temp |= XHCI_SCTX_1_MAX_EL_SET(sc->sc_exit_lat_max); break; default: /* disable power save */ break; } break; default: break; } xhci_ctx_set_le32(sc, &pinp->ctx_slot.dwSctx1, temp); temp = XHCI_SCTX_2_IRQ_TARGET_SET(0); if (is_hub) { temp |= XHCI_SCTX_2_TT_THINK_TIME_SET( sc->sc_hw.devs[index].tt); } hubdev = udev->parent_hs_hub; /* check if we should activate the transaction translator */ switch (udev->speed) { case USB_SPEED_FULL: case USB_SPEED_LOW: if (hubdev != NULL) { temp |= XHCI_SCTX_2_TT_HUB_SID_SET( hubdev->controller_slot_id); temp |= XHCI_SCTX_2_TT_PORT_NUM_SET( udev->hs_port_no); } break; default: break; } xhci_ctx_set_le32(sc, &pinp->ctx_slot.dwSctx2, temp); temp = XHCI_SCTX_3_DEV_ADDR_SET(udev->address) | XHCI_SCTX_3_SLOT_STATE_SET(0); xhci_ctx_set_le32(sc, &pinp->ctx_slot.dwSctx3, temp); #ifdef USB_DEBUG xhci_dump_device(sc, &pinp->ctx_slot); #endif usb_pc_cpu_flush(pcinp); return (0); /* success */ } static usb_error_t xhci_alloc_device_ext(struct usb_device *udev) { struct xhci_softc *sc = XHCI_BUS2SC(udev->bus); struct usb_page_search buf_dev; struct usb_page_search buf_ep; struct xhci_trb *trb; struct usb_page_cache *pc; struct usb_page *pg; uint64_t addr; uint8_t index; uint8_t i; index = udev->controller_slot_id; pc = &sc->sc_hw.devs[index].device_pc; pg = &sc->sc_hw.devs[index].device_pg; /* need to initialize the page cache */ pc->tag_parent = sc->sc_bus.dma_parent_tag; if (usb_pc_alloc_mem(pc, pg, sc->sc_ctx_is_64_byte ? (2 * sizeof(struct xhci_dev_ctx)) : sizeof(struct xhci_dev_ctx), XHCI_PAGE_SIZE)) goto error; usbd_get_page(pc, 0, &buf_dev); pc = &sc->sc_hw.devs[index].input_pc; pg = &sc->sc_hw.devs[index].input_pg; /* need to initialize the page cache */ pc->tag_parent = sc->sc_bus.dma_parent_tag; if (usb_pc_alloc_mem(pc, pg, sc->sc_ctx_is_64_byte ? (2 * sizeof(struct xhci_input_dev_ctx)) : sizeof(struct xhci_input_dev_ctx), XHCI_PAGE_SIZE)) { goto error; } pc = &sc->sc_hw.devs[index].endpoint_pc; pg = &sc->sc_hw.devs[index].endpoint_pg; /* need to initialize the page cache */ pc->tag_parent = sc->sc_bus.dma_parent_tag; if (usb_pc_alloc_mem(pc, pg, sizeof(struct xhci_dev_endpoint_trbs), XHCI_PAGE_SIZE)) { goto error; } /* initialise all endpoint LINK TRBs */ for (i = 0; i != XHCI_MAX_ENDPOINTS; i++) { /* lookup endpoint TRB ring */ usbd_get_page(pc, (uintptr_t)& ((struct xhci_dev_endpoint_trbs *)0)->trb[i][0], &buf_ep); /* get TRB pointer */ trb = buf_ep.buffer; trb += XHCI_MAX_TRANSFERS - 1; /* get TRB start address */ addr = buf_ep.physaddr; /* create LINK TRB */ trb->qwTrb0 = htole64(addr); trb->dwTrb2 = htole32(XHCI_TRB_2_IRQ_SET(0)); trb->dwTrb3 = htole32(XHCI_TRB_3_CYCLE_BIT | XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK)); } usb_pc_cpu_flush(pc); xhci_set_slot_pointer(sc, index, buf_dev.physaddr); return (0); error: xhci_free_device_ext(udev); return (USB_ERR_NOMEM); } static void xhci_free_device_ext(struct usb_device *udev) { struct xhci_softc *sc = XHCI_BUS2SC(udev->bus); uint8_t index; index = udev->controller_slot_id; xhci_set_slot_pointer(sc, index, 0); usb_pc_free_mem(&sc->sc_hw.devs[index].device_pc); usb_pc_free_mem(&sc->sc_hw.devs[index].input_pc); usb_pc_free_mem(&sc->sc_hw.devs[index].endpoint_pc); } static struct xhci_endpoint_ext * xhci_get_endpoint_ext(struct usb_device *udev, struct usb_endpoint_descriptor *edesc) { struct xhci_softc *sc = XHCI_BUS2SC(udev->bus); struct xhci_endpoint_ext *pepext; struct usb_page_cache *pc; struct usb_page_search buf_ep; uint8_t epno; uint8_t index; epno = edesc->bEndpointAddress; if ((edesc->bmAttributes & UE_XFERTYPE) == UE_CONTROL) epno |= UE_DIR_IN; epno = XHCI_EPNO2EPID(epno); index = udev->controller_slot_id; pc = &sc->sc_hw.devs[index].endpoint_pc; usbd_get_page(pc, (uintptr_t)&((struct xhci_dev_endpoint_trbs *)0)-> trb[epno][0], &buf_ep); pepext = &sc->sc_hw.devs[index].endp[epno]; pepext->page_cache = pc; pepext->trb = buf_ep.buffer; pepext->physaddr = buf_ep.physaddr; return (pepext); } static void xhci_endpoint_doorbell(struct usb_xfer *xfer) { struct xhci_softc *sc = XHCI_BUS2SC(xfer->xroot->bus); uint8_t epno; uint8_t index; epno = xfer->endpointno; if (xfer->flags_int.control_xfr) epno |= UE_DIR_IN; epno = XHCI_EPNO2EPID(epno); index = xfer->xroot->udev->controller_slot_id; if (xfer->xroot->udev->flags.self_suspended == 0) { XWRITE4(sc, door, XHCI_DOORBELL(index), epno | XHCI_DB_SID_SET(xfer->stream_id)); } } static void xhci_transfer_remove(struct usb_xfer *xfer, usb_error_t error) { struct xhci_endpoint_ext *pepext; if (xfer->flags_int.bandwidth_reclaimed) { xfer->flags_int.bandwidth_reclaimed = 0; pepext = xhci_get_endpoint_ext(xfer->xroot->udev, xfer->endpoint->edesc); pepext->trb_used[xfer->stream_id]--; pepext->xfer[xfer->qh_pos] = NULL; if (error && pepext->trb_running != 0) { pepext->trb_halted = 1; pepext->trb_running = 0; } } } static usb_error_t xhci_transfer_insert(struct usb_xfer *xfer) { struct xhci_td *td_first; struct xhci_td *td_last; struct xhci_endpoint_ext *pepext; uint64_t addr; usb_stream_t id; uint8_t i; uint8_t inext; uint8_t trb_limit; DPRINTFN(8, "\n"); id = xfer->stream_id; /* check if already inserted */ if (xfer->flags_int.bandwidth_reclaimed) { DPRINTFN(8, "Already in schedule\n"); return (0); } pepext = xhci_get_endpoint_ext(xfer->xroot->udev, xfer->endpoint->edesc); td_first = xfer->td_transfer_first; td_last = xfer->td_transfer_last; addr = pepext->physaddr; switch (xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE) { case UE_CONTROL: case UE_INTERRUPT: /* single buffered */ trb_limit = 1; break; default: /* multi buffered */ trb_limit = (XHCI_MAX_TRANSFERS - 2); break; } if (pepext->trb_used[id] >= trb_limit) { DPRINTFN(8, "Too many TDs queued.\n"); return (USB_ERR_NOMEM); } /* check for stopped condition, after putting transfer on interrupt queue */ if (pepext->trb_running == 0) { struct xhci_softc *sc = XHCI_BUS2SC(xfer->xroot->bus); DPRINTFN(8, "Not running\n"); /* start configuration */ (void)usb_proc_msignal(&sc->sc_config_proc, &sc->sc_config_msg[0], &sc->sc_config_msg[1]); return (0); } pepext->trb_used[id]++; /* get current TRB index */ i = pepext->trb_index[id]; /* get next TRB index */ inext = (i + 1); /* the last entry of the ring is a hardcoded link TRB */ if (inext >= (XHCI_MAX_TRANSFERS - 1)) inext = 0; /* offset for stream */ i += id * XHCI_MAX_TRANSFERS; inext += id * XHCI_MAX_TRANSFERS; /* compute terminating return address */ addr += (inext * sizeof(struct xhci_trb)); /* update next pointer of last link TRB */ td_last->td_trb[td_last->ntrb].qwTrb0 = htole64(addr); td_last->td_trb[td_last->ntrb].dwTrb2 = htole32(XHCI_TRB_2_IRQ_SET(0)); td_last->td_trb[td_last->ntrb].dwTrb3 = htole32(XHCI_TRB_3_IOC_BIT | XHCI_TRB_3_CYCLE_BIT | XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK)); #ifdef USB_DEBUG xhci_dump_trb(&td_last->td_trb[td_last->ntrb]); #endif usb_pc_cpu_flush(td_last->page_cache); /* write ahead chain end marker */ pepext->trb[inext].qwTrb0 = 0; pepext->trb[inext].dwTrb2 = 0; pepext->trb[inext].dwTrb3 = 0; /* update next pointer of link TRB */ pepext->trb[i].qwTrb0 = htole64((uint64_t)td_first->td_self); pepext->trb[i].dwTrb2 = htole32(XHCI_TRB_2_IRQ_SET(0)); #ifdef USB_DEBUG xhci_dump_trb(&pepext->trb[i]); #endif usb_pc_cpu_flush(pepext->page_cache); /* toggle cycle bit which activates the transfer chain */ pepext->trb[i].dwTrb3 = htole32(XHCI_TRB_3_CYCLE_BIT | XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK)); usb_pc_cpu_flush(pepext->page_cache); DPRINTF("qh_pos = %u\n", i); pepext->xfer[i] = xfer; xfer->qh_pos = i; xfer->flags_int.bandwidth_reclaimed = 1; pepext->trb_index[id] = inext; xhci_endpoint_doorbell(xfer); return (0); } static void xhci_root_intr(struct xhci_softc *sc) { uint16_t i; USB_BUS_LOCK_ASSERT(&sc->sc_bus, MA_OWNED); /* clear any old interrupt data */ memset(sc->sc_hub_idata, 0, sizeof(sc->sc_hub_idata)); for (i = 1; i <= sc->sc_noport; i++) { /* pick out CHANGE bits from the status register */ if (XREAD4(sc, oper, XHCI_PORTSC(i)) & ( XHCI_PS_CSC | XHCI_PS_PEC | XHCI_PS_OCC | XHCI_PS_WRC | XHCI_PS_PRC | XHCI_PS_PLC | XHCI_PS_CEC)) { sc->sc_hub_idata[i / 8] |= 1 << (i % 8); DPRINTF("port %d changed\n", i); } } uhub_root_intr(&sc->sc_bus, sc->sc_hub_idata, sizeof(sc->sc_hub_idata)); } /*------------------------------------------------------------------------* * xhci_device_done - XHCI done handler * * NOTE: This function can be called two times in a row on * the same USB transfer. From close and from interrupt. *------------------------------------------------------------------------*/ static void xhci_device_done(struct usb_xfer *xfer, usb_error_t error) { DPRINTFN(2, "xfer=%p, endpoint=%p, error=%d\n", xfer, xfer->endpoint, error); /* remove transfer from HW queue */ xhci_transfer_remove(xfer, error); /* dequeue transfer and start next transfer */ usbd_transfer_done(xfer, error); } /*------------------------------------------------------------------------* * XHCI data transfer support (generic type) *------------------------------------------------------------------------*/ static void xhci_device_generic_open(struct usb_xfer *xfer) { if (xfer->flags_int.isochronous_xfr) { switch (xfer->xroot->udev->speed) { case USB_SPEED_FULL: break; default: usb_hs_bandwidth_alloc(xfer); break; } } } static void xhci_device_generic_close(struct usb_xfer *xfer) { DPRINTF("\n"); xhci_device_done(xfer, USB_ERR_CANCELLED); if (xfer->flags_int.isochronous_xfr) { switch (xfer->xroot->udev->speed) { case USB_SPEED_FULL: break; default: usb_hs_bandwidth_free(xfer); break; } } } static void xhci_device_generic_multi_enter(struct usb_endpoint *ep, usb_stream_t stream_id, struct usb_xfer *enter_xfer) { struct usb_xfer *xfer; /* check if there is a current transfer */ xfer = ep->endpoint_q[stream_id].curr; if (xfer == NULL) return; /* * Check if the current transfer is started and then pickup * the next one, if any. Else wait for next start event due to * block on failure feature. */ if (!xfer->flags_int.bandwidth_reclaimed) return; xfer = TAILQ_FIRST(&ep->endpoint_q[stream_id].head); if (xfer == NULL) { /* * In case of enter we have to consider that the * transfer is queued by the USB core after the enter * method is called. */ xfer = enter_xfer; if (xfer == NULL) return; } /* try to multi buffer */ xhci_transfer_insert(xfer); } static void xhci_device_generic_enter(struct usb_xfer *xfer) { DPRINTF("\n"); /* setup TD's and QH */ xhci_setup_generic_chain(xfer); xhci_device_generic_multi_enter(xfer->endpoint, xfer->stream_id, xfer); } static void xhci_device_generic_start(struct usb_xfer *xfer) { DPRINTF("\n"); /* try to insert xfer on HW queue */ xhci_transfer_insert(xfer); /* try to multi buffer */ xhci_device_generic_multi_enter(xfer->endpoint, xfer->stream_id, NULL); /* add transfer last on interrupt queue */ usbd_transfer_enqueue(&xfer->xroot->bus->intr_q, xfer); /* start timeout, if any */ if (xfer->timeout != 0) usbd_transfer_timeout_ms(xfer, &xhci_timeout, xfer->timeout); } struct usb_pipe_methods xhci_device_generic_methods = { .open = xhci_device_generic_open, .close = xhci_device_generic_close, .enter = xhci_device_generic_enter, .start = xhci_device_generic_start, }; /*------------------------------------------------------------------------* * xhci root HUB support *------------------------------------------------------------------------* * Simulate a hardware HUB by handling all the necessary requests. *------------------------------------------------------------------------*/ #define HSETW(ptr, val) ptr = { (uint8_t)(val), (uint8_t)((val) >> 8) } static const struct usb_device_descriptor xhci_devd = { .bLength = sizeof(xhci_devd), .bDescriptorType = UDESC_DEVICE, /* type */ HSETW(.bcdUSB, 0x0300), /* USB version */ .bDeviceClass = UDCLASS_HUB, /* class */ .bDeviceSubClass = UDSUBCLASS_HUB, /* subclass */ .bDeviceProtocol = UDPROTO_SSHUB, /* protocol */ .bMaxPacketSize = 9, /* max packet size */ HSETW(.idVendor, 0x0000), /* vendor */ HSETW(.idProduct, 0x0000), /* product */ HSETW(.bcdDevice, 0x0100), /* device version */ .iManufacturer = 1, .iProduct = 2, .iSerialNumber = 0, .bNumConfigurations = 1, /* # of configurations */ }; static const struct xhci_bos_desc xhci_bosd = { .bosd = { .bLength = sizeof(xhci_bosd.bosd), .bDescriptorType = UDESC_BOS, HSETW(.wTotalLength, sizeof(xhci_bosd)), .bNumDeviceCaps = 3, }, .usb2extd = { .bLength = sizeof(xhci_bosd.usb2extd), .bDescriptorType = 1, .bDevCapabilityType = 2, .bmAttributes[0] = 2, }, .usbdcd = { .bLength = sizeof(xhci_bosd.usbdcd), .bDescriptorType = UDESC_DEVICE_CAPABILITY, .bDevCapabilityType = 3, .bmAttributes = 0, /* XXX */ HSETW(.wSpeedsSupported, 0x000C), .bFunctionalitySupport = 8, .bU1DevExitLat = 255, /* dummy - not used */ .wU2DevExitLat = { 0x00, 0x08 }, }, .cidd = { .bLength = sizeof(xhci_bosd.cidd), .bDescriptorType = 1, .bDevCapabilityType = 4, .bReserved = 0, .bContainerID = 0, /* XXX */ }, }; static const struct xhci_config_desc xhci_confd = { .confd = { .bLength = sizeof(xhci_confd.confd), .bDescriptorType = UDESC_CONFIG, .wTotalLength[0] = sizeof(xhci_confd), .bNumInterface = 1, .bConfigurationValue = 1, .iConfiguration = 0, .bmAttributes = UC_SELF_POWERED, .bMaxPower = 0 /* max power */ }, .ifcd = { .bLength = sizeof(xhci_confd.ifcd), .bDescriptorType = UDESC_INTERFACE, .bNumEndpoints = 1, .bInterfaceClass = UICLASS_HUB, .bInterfaceSubClass = UISUBCLASS_HUB, .bInterfaceProtocol = 0, }, .endpd = { .bLength = sizeof(xhci_confd.endpd), .bDescriptorType = UDESC_ENDPOINT, .bEndpointAddress = UE_DIR_IN | XHCI_INTR_ENDPT, .bmAttributes = UE_INTERRUPT, .wMaxPacketSize[0] = 2, /* max 15 ports */ .bInterval = 255, }, .endpcd = { .bLength = sizeof(xhci_confd.endpcd), .bDescriptorType = UDESC_ENDPOINT_SS_COMP, .bMaxBurst = 0, .bmAttributes = 0, }, }; static const struct usb_hub_ss_descriptor xhci_hubd = { .bLength = sizeof(xhci_hubd), .bDescriptorType = UDESC_SS_HUB, }; static usb_error_t xhci_roothub_exec(struct usb_device *udev, struct usb_device_request *req, const void **pptr, uint16_t *plength) { struct xhci_softc *sc = XHCI_BUS2SC(udev->bus); const char *str_ptr; const void *ptr; uint32_t port; uint32_t v; uint16_t len; uint16_t i; uint16_t value; uint16_t index; uint8_t j; usb_error_t err; USB_BUS_LOCK_ASSERT(&sc->sc_bus, MA_OWNED); /* buffer reset */ ptr = (const void *)&sc->sc_hub_desc; len = 0; err = 0; value = UGETW(req->wValue); index = UGETW(req->wIndex); DPRINTFN(3, "type=0x%02x request=0x%02x wLen=0x%04x " "wValue=0x%04x wIndex=0x%04x\n", req->bmRequestType, req->bRequest, UGETW(req->wLength), value, index); #define C(x,y) ((x) | ((y) << 8)) switch (C(req->bRequest, req->bmRequestType)) { case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE): case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE): case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT): /* * DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops * for the integrated root hub. */ break; case C(UR_GET_CONFIG, UT_READ_DEVICE): len = 1; sc->sc_hub_desc.temp[0] = sc->sc_conf; break; case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE): switch (value >> 8) { case UDESC_DEVICE: if ((value & 0xff) != 0) { err = USB_ERR_IOERROR; goto done; } len = sizeof(xhci_devd); ptr = (const void *)&xhci_devd; break; case UDESC_BOS: if ((value & 0xff) != 0) { err = USB_ERR_IOERROR; goto done; } len = sizeof(xhci_bosd); ptr = (const void *)&xhci_bosd; break; case UDESC_CONFIG: if ((value & 0xff) != 0) { err = USB_ERR_IOERROR; goto done; } len = sizeof(xhci_confd); ptr = (const void *)&xhci_confd; break; case UDESC_STRING: switch (value & 0xff) { case 0: /* Language table */ str_ptr = "\001"; break; case 1: /* Vendor */ str_ptr = sc->sc_vendor; break; case 2: /* Product */ str_ptr = "XHCI root HUB"; break; default: str_ptr = ""; break; } len = usb_make_str_desc( sc->sc_hub_desc.temp, sizeof(sc->sc_hub_desc.temp), str_ptr); break; default: err = USB_ERR_IOERROR; goto done; } break; case C(UR_GET_INTERFACE, UT_READ_INTERFACE): len = 1; sc->sc_hub_desc.temp[0] = 0; break; case C(UR_GET_STATUS, UT_READ_DEVICE): len = 2; USETW(sc->sc_hub_desc.stat.wStatus, UDS_SELF_POWERED); break; case C(UR_GET_STATUS, UT_READ_INTERFACE): case C(UR_GET_STATUS, UT_READ_ENDPOINT): len = 2; USETW(sc->sc_hub_desc.stat.wStatus, 0); break; case C(UR_SET_ADDRESS, UT_WRITE_DEVICE): if (value >= XHCI_MAX_DEVICES) { err = USB_ERR_IOERROR; goto done; } break; case C(UR_SET_CONFIG, UT_WRITE_DEVICE): if (value != 0 && value != 1) { err = USB_ERR_IOERROR; goto done; } sc->sc_conf = value; break; case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_DEVICE): case C(UR_SET_FEATURE, UT_WRITE_INTERFACE): case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT): err = USB_ERR_IOERROR; goto done; case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE): break; case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT): break; /* Hub requests */ case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): DPRINTFN(9, "UR_CLEAR_PORT_FEATURE\n"); if ((index < 1) || (index > sc->sc_noport)) { err = USB_ERR_IOERROR; goto done; } port = XHCI_PORTSC(index); v = XREAD4(sc, oper, port); i = XHCI_PS_PLS_GET(v); v &= ~XHCI_PS_CLEAR; switch (value) { case UHF_C_BH_PORT_RESET: XWRITE4(sc, oper, port, v | XHCI_PS_WRC); break; case UHF_C_PORT_CONFIG_ERROR: XWRITE4(sc, oper, port, v | XHCI_PS_CEC); break; case UHF_C_PORT_SUSPEND: case UHF_C_PORT_LINK_STATE: XWRITE4(sc, oper, port, v | XHCI_PS_PLC); break; case UHF_C_PORT_CONNECTION: XWRITE4(sc, oper, port, v | XHCI_PS_CSC); break; case UHF_C_PORT_ENABLE: XWRITE4(sc, oper, port, v | XHCI_PS_PEC); break; case UHF_C_PORT_OVER_CURRENT: XWRITE4(sc, oper, port, v | XHCI_PS_OCC); break; case UHF_C_PORT_RESET: XWRITE4(sc, oper, port, v | XHCI_PS_PRC); break; case UHF_PORT_ENABLE: XWRITE4(sc, oper, port, v | XHCI_PS_PED); break; case UHF_PORT_POWER: XWRITE4(sc, oper, port, v & ~XHCI_PS_PP); break; case UHF_PORT_INDICATOR: XWRITE4(sc, oper, port, v & ~XHCI_PS_PIC_SET(3)); break; case UHF_PORT_SUSPEND: /* U3 -> U15 */ if (i == 3) { XWRITE4(sc, oper, port, v | XHCI_PS_PLS_SET(0xF) | XHCI_PS_LWS); } /* wait 20ms for resume sequence to complete */ usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 50); /* U0 */ XWRITE4(sc, oper, port, v | XHCI_PS_PLS_SET(0) | XHCI_PS_LWS); break; default: err = USB_ERR_IOERROR; goto done; } break; case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE): if ((value & 0xff) != 0) { err = USB_ERR_IOERROR; goto done; } v = XREAD4(sc, capa, XHCI_HCSPARAMS0); sc->sc_hub_desc.hubd = xhci_hubd; sc->sc_hub_desc.hubd.bNbrPorts = sc->sc_noport; if (XHCI_HCS0_PPC(v)) i = UHD_PWR_INDIVIDUAL; else i = UHD_PWR_GANGED; if (XHCI_HCS0_PIND(v)) i |= UHD_PORT_IND; i |= UHD_OC_INDIVIDUAL; USETW(sc->sc_hub_desc.hubd.wHubCharacteristics, i); /* see XHCI section 5.4.9: */ sc->sc_hub_desc.hubd.bPwrOn2PwrGood = 10; for (j = 1; j <= sc->sc_noport; j++) { v = XREAD4(sc, oper, XHCI_PORTSC(j)); if (v & XHCI_PS_DR) { sc->sc_hub_desc.hubd. DeviceRemovable[j / 8] |= 1U << (j % 8); } } len = sc->sc_hub_desc.hubd.bLength; break; case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE): len = 16; memset(sc->sc_hub_desc.temp, 0, 16); break; case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): DPRINTFN(9, "UR_GET_STATUS i=%d\n", index); if ((index < 1) || (index > sc->sc_noport)) { err = USB_ERR_IOERROR; goto done; } v = XREAD4(sc, oper, XHCI_PORTSC(index)); DPRINTFN(9, "port status=0x%08x\n", v); i = UPS_PORT_LINK_STATE_SET(XHCI_PS_PLS_GET(v)); switch (XHCI_PS_SPEED_GET(v)) { case 3: i |= UPS_HIGH_SPEED; break; case 2: i |= UPS_LOW_SPEED; break; case 1: /* FULL speed */ break; default: i |= UPS_OTHER_SPEED; break; } if (v & XHCI_PS_CCS) i |= UPS_CURRENT_CONNECT_STATUS; if (v & XHCI_PS_PED) i |= UPS_PORT_ENABLED; if (v & XHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR; if (v & XHCI_PS_PR) i |= UPS_RESET; if (v & XHCI_PS_PP) { /* * The USB 3.0 RH is using the * USB 2.0's power bit */ i |= UPS_PORT_POWER; } USETW(sc->sc_hub_desc.ps.wPortStatus, i); i = 0; if (v & XHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS; if (v & XHCI_PS_PEC) i |= UPS_C_PORT_ENABLED; if (v & XHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR; if (v & XHCI_PS_WRC) i |= UPS_C_BH_PORT_RESET; if (v & XHCI_PS_PRC) i |= UPS_C_PORT_RESET; if (v & XHCI_PS_PLC) i |= UPS_C_PORT_LINK_STATE; if (v & XHCI_PS_CEC) i |= UPS_C_PORT_CONFIG_ERROR; USETW(sc->sc_hub_desc.ps.wPortChange, i); len = sizeof(sc->sc_hub_desc.ps); break; case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE): err = USB_ERR_IOERROR; goto done; case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): i = index >> 8; index &= 0x00FF; if ((index < 1) || (index > sc->sc_noport)) { err = USB_ERR_IOERROR; goto done; } port = XHCI_PORTSC(index); v = XREAD4(sc, oper, port) & ~XHCI_PS_CLEAR; switch (value) { case UHF_PORT_U1_TIMEOUT: if (XHCI_PS_SPEED_GET(v) != 4) { err = USB_ERR_IOERROR; goto done; } port = XHCI_PORTPMSC(index); v = XREAD4(sc, oper, port); v &= ~XHCI_PM3_U1TO_SET(0xFF); v |= XHCI_PM3_U1TO_SET(i); XWRITE4(sc, oper, port, v); break; case UHF_PORT_U2_TIMEOUT: if (XHCI_PS_SPEED_GET(v) != 4) { err = USB_ERR_IOERROR; goto done; } port = XHCI_PORTPMSC(index); v = XREAD4(sc, oper, port); v &= ~XHCI_PM3_U2TO_SET(0xFF); v |= XHCI_PM3_U2TO_SET(i); XWRITE4(sc, oper, port, v); break; case UHF_BH_PORT_RESET: XWRITE4(sc, oper, port, v | XHCI_PS_WPR); break; case UHF_PORT_LINK_STATE: XWRITE4(sc, oper, port, v | XHCI_PS_PLS_SET(i) | XHCI_PS_LWS); /* 4ms settle time */ usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 250); break; case UHF_PORT_ENABLE: DPRINTFN(3, "set port enable %d\n", index); break; case UHF_PORT_SUSPEND: DPRINTFN(6, "suspend port %u (LPM=%u)\n", index, i); j = XHCI_PS_SPEED_GET(v); if ((j < 1) || (j > 3)) { /* non-supported speed */ err = USB_ERR_IOERROR; goto done; } XWRITE4(sc, oper, port, v | XHCI_PS_PLS_SET(i ? 2 /* LPM */ : 3) | XHCI_PS_LWS); break; case UHF_PORT_RESET: DPRINTFN(6, "reset port %d\n", index); XWRITE4(sc, oper, port, v | XHCI_PS_PR); break; case UHF_PORT_POWER: DPRINTFN(3, "set port power %d\n", index); XWRITE4(sc, oper, port, v | XHCI_PS_PP); break; case UHF_PORT_TEST: DPRINTFN(3, "set port test %d\n", index); break; case UHF_PORT_INDICATOR: DPRINTFN(3, "set port indicator %d\n", index); v &= ~XHCI_PS_PIC_SET(3); v |= XHCI_PS_PIC_SET(1); XWRITE4(sc, oper, port, v); break; default: err = USB_ERR_IOERROR; goto done; } break; case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER): case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER): case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER): case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER): break; default: err = USB_ERR_IOERROR; goto done; } done: *plength = len; *pptr = ptr; return (err); } static void xhci_xfer_setup(struct usb_setup_params *parm) { struct usb_page_search page_info; struct usb_page_cache *pc; struct xhci_softc *sc; struct usb_xfer *xfer; void *last_obj; uint32_t ntd; uint32_t n; sc = XHCI_BUS2SC(parm->udev->bus); xfer = parm->curr_xfer; /* * The proof for the "ntd" formula is illustrated like this: * * +------------------------------------+ * | | * | |remainder -> | * | +-----+---+ | * | | xxx | x | frm 0 | * | +-----+---++ | * | | xxx | xx | frm 1 | * | +-----+----+ | * | ... | * +------------------------------------+ * * "xxx" means a completely full USB transfer descriptor * * "x" and "xx" means a short USB packet * * For the remainder of an USB transfer modulo * "max_data_length" we need two USB transfer descriptors. * One to transfer the remaining data and one to finalise with * a zero length packet in case the "force_short_xfer" flag is * set. We only need two USB transfer descriptors in the case * where the transfer length of the first one is a factor of * "max_frame_size". The rest of the needed USB transfer * descriptors is given by the buffer size divided by the * maximum data payload. */ parm->hc_max_packet_size = 0x400; parm->hc_max_packet_count = 16 * 3; parm->hc_max_frame_size = XHCI_TD_PAYLOAD_MAX; xfer->flags_int.bdma_enable = 1; usbd_transfer_setup_sub(parm); if (xfer->flags_int.isochronous_xfr) { ntd = ((1 * xfer->nframes) + (xfer->max_data_length / xfer->max_hc_frame_size)); } else if (xfer->flags_int.control_xfr) { ntd = ((2 * xfer->nframes) + 1 /* STATUS */ + (xfer->max_data_length / xfer->max_hc_frame_size)); } else { ntd = ((2 * xfer->nframes) + (xfer->max_data_length / xfer->max_hc_frame_size)); } alloc_dma_set: if (parm->err) return; /* * Allocate queue heads and transfer descriptors */ last_obj = NULL; if (usbd_transfer_setup_sub_malloc( parm, &pc, sizeof(struct xhci_td), XHCI_TD_ALIGN, ntd)) { parm->err = USB_ERR_NOMEM; return; } if (parm->buf) { for (n = 0; n != ntd; n++) { struct xhci_td *td; usbd_get_page(pc + n, 0, &page_info); td = page_info.buffer; /* init TD */ td->td_self = page_info.physaddr; td->obj_next = last_obj; td->page_cache = pc + n; last_obj = td; usb_pc_cpu_flush(pc + n); } } xfer->td_start[xfer->flags_int.curr_dma_set] = last_obj; if (!xfer->flags_int.curr_dma_set) { xfer->flags_int.curr_dma_set = 1; goto alloc_dma_set; } } static usb_error_t xhci_configure_reset_endpoint(struct usb_xfer *xfer) { struct xhci_softc *sc = XHCI_BUS2SC(xfer->xroot->bus); struct usb_page_search buf_inp; struct usb_device *udev; struct xhci_endpoint_ext *pepext; struct usb_endpoint_descriptor *edesc; struct usb_page_cache *pcinp; usb_error_t err; usb_stream_t stream_id; uint8_t index; uint8_t epno; pepext = xhci_get_endpoint_ext(xfer->xroot->udev, xfer->endpoint->edesc); udev = xfer->xroot->udev; index = udev->controller_slot_id; pcinp = &sc->sc_hw.devs[index].input_pc; usbd_get_page(pcinp, 0, &buf_inp); edesc = xfer->endpoint->edesc; epno = edesc->bEndpointAddress; stream_id = xfer->stream_id; if ((edesc->bmAttributes & UE_XFERTYPE) == UE_CONTROL) epno |= UE_DIR_IN; epno = XHCI_EPNO2EPID(epno); if (epno == 0) return (USB_ERR_NO_PIPE); /* invalid */ XHCI_CMD_LOCK(sc); /* configure endpoint */ err = xhci_configure_endpoint_by_xfer(xfer); if (err != 0) { XHCI_CMD_UNLOCK(sc); return (err); } /* * Get the endpoint into the stopped state according to the * endpoint context state diagram in the XHCI specification: */ err = xhci_cmd_stop_ep(sc, 0, epno, index); if (err != 0) DPRINTF("Could not stop endpoint %u\n", epno); err = xhci_cmd_reset_ep(sc, 0, epno, index); if (err != 0) DPRINTF("Could not reset endpoint %u\n", epno); err = xhci_cmd_set_tr_dequeue_ptr(sc, (pepext->physaddr + (stream_id * sizeof(struct xhci_trb) * XHCI_MAX_TRANSFERS)) | XHCI_EPCTX_2_DCS_SET(1), stream_id, epno, index); if (err != 0) DPRINTF("Could not set dequeue ptr for endpoint %u\n", epno); /* * Get the endpoint into the running state according to the * endpoint context state diagram in the XHCI specification: */ xhci_configure_mask(udev, (1U << epno) | 1U, 0); err = xhci_cmd_evaluate_ctx(sc, buf_inp.physaddr, index); if (err != 0) DPRINTF("Could not configure endpoint %u\n", epno); err = xhci_cmd_configure_ep(sc, buf_inp.physaddr, 0, index); if (err != 0) DPRINTF("Could not configure endpoint %u\n", epno); XHCI_CMD_UNLOCK(sc); return (0); } static void xhci_xfer_unsetup(struct usb_xfer *xfer) { return; } static void xhci_start_dma_delay(struct usb_xfer *xfer) { struct xhci_softc *sc = XHCI_BUS2SC(xfer->xroot->bus); /* put transfer on interrupt queue (again) */ usbd_transfer_enqueue(&sc->sc_bus.intr_q, xfer); (void)usb_proc_msignal(&sc->sc_config_proc, &sc->sc_config_msg[0], &sc->sc_config_msg[1]); } static void xhci_configure_msg(struct usb_proc_msg *pm) { struct xhci_softc *sc; struct xhci_endpoint_ext *pepext; struct usb_xfer *xfer; sc = XHCI_BUS2SC(((struct usb_bus_msg *)pm)->bus); restart: TAILQ_FOREACH(xfer, &sc->sc_bus.intr_q.head, wait_entry) { pepext = xhci_get_endpoint_ext(xfer->xroot->udev, xfer->endpoint->edesc); if ((pepext->trb_halted != 0) || (pepext->trb_running == 0)) { uint8_t i; /* clear halted and running */ pepext->trb_halted = 0; pepext->trb_running = 0; /* nuke remaining buffered transfers */ for (i = 0; i != (XHCI_MAX_TRANSFERS - 1); i++) { /* * NOTE: We need to use the timeout * error code here else existing * isochronous clients can get * confused: */ if (pepext->xfer[i] != NULL) { xhci_device_done(pepext->xfer[i], USB_ERR_TIMEOUT); } } /* * NOTE: The USB transfer cannot vanish in * this state! */ USB_BUS_UNLOCK(&sc->sc_bus); xhci_configure_reset_endpoint(xfer); USB_BUS_LOCK(&sc->sc_bus); /* check if halted is still cleared */ if (pepext->trb_halted == 0) { pepext->trb_running = 1; memset(pepext->trb_index, 0, sizeof(pepext->trb_index)); } goto restart; } if (xfer->flags_int.did_dma_delay) { /* remove transfer from interrupt queue (again) */ usbd_transfer_dequeue(xfer); /* we are finally done */ usb_dma_delay_done_cb(xfer); /* queue changed - restart */ goto restart; } } TAILQ_FOREACH(xfer, &sc->sc_bus.intr_q.head, wait_entry) { /* try to insert xfer on HW queue */ xhci_transfer_insert(xfer); /* try to multi buffer */ xhci_device_generic_multi_enter(xfer->endpoint, xfer->stream_id, NULL); } } static void xhci_ep_init(struct usb_device *udev, struct usb_endpoint_descriptor *edesc, struct usb_endpoint *ep) { struct xhci_endpoint_ext *pepext; DPRINTFN(2, "endpoint=%p, addr=%d, endpt=%d, mode=%d\n", ep, udev->address, edesc->bEndpointAddress, udev->flags.usb_mode); if (udev->parent_hub == NULL) { /* root HUB has special endpoint handling */ return; } ep->methods = &xhci_device_generic_methods; pepext = xhci_get_endpoint_ext(udev, edesc); USB_BUS_LOCK(udev->bus); pepext->trb_halted = 1; pepext->trb_running = 0; USB_BUS_UNLOCK(udev->bus); } static void xhci_ep_uninit(struct usb_device *udev, struct usb_endpoint *ep) { } static void xhci_ep_clear_stall(struct usb_device *udev, struct usb_endpoint *ep) { struct xhci_endpoint_ext *pepext; DPRINTF("\n"); if (udev->flags.usb_mode != USB_MODE_HOST) { /* not supported */ return; } if (udev->parent_hub == NULL) { /* root HUB has special endpoint handling */ return; } pepext = xhci_get_endpoint_ext(udev, ep->edesc); USB_BUS_LOCK(udev->bus); pepext->trb_halted = 1; pepext->trb_running = 0; USB_BUS_UNLOCK(udev->bus); } static usb_error_t xhci_device_init(struct usb_device *udev) { struct xhci_softc *sc = XHCI_BUS2SC(udev->bus); usb_error_t err; uint8_t temp; /* no init for root HUB */ if (udev->parent_hub == NULL) return (0); XHCI_CMD_LOCK(sc); /* set invalid default */ udev->controller_slot_id = sc->sc_noslot + 1; /* try to get a new slot ID from the XHCI */ err = xhci_cmd_enable_slot(sc, &temp); if (err) { XHCI_CMD_UNLOCK(sc); return (err); } if (temp > sc->sc_noslot) { XHCI_CMD_UNLOCK(sc); return (USB_ERR_BAD_ADDRESS); } if (sc->sc_hw.devs[temp].state != XHCI_ST_DISABLED) { DPRINTF("slot %u already allocated.\n", temp); XHCI_CMD_UNLOCK(sc); return (USB_ERR_BAD_ADDRESS); } /* store slot ID for later reference */ udev->controller_slot_id = temp; /* reset data structure */ memset(&sc->sc_hw.devs[temp], 0, sizeof(sc->sc_hw.devs[0])); /* set mark slot allocated */ sc->sc_hw.devs[temp].state = XHCI_ST_ENABLED; err = xhci_alloc_device_ext(udev); XHCI_CMD_UNLOCK(sc); /* get device into default state */ if (err == 0) err = xhci_set_address(udev, NULL, 0); return (err); } static void xhci_device_uninit(struct usb_device *udev) { struct xhci_softc *sc = XHCI_BUS2SC(udev->bus); uint8_t index; /* no init for root HUB */ if (udev->parent_hub == NULL) return; XHCI_CMD_LOCK(sc); index = udev->controller_slot_id; if (index <= sc->sc_noslot) { xhci_cmd_disable_slot(sc, index); sc->sc_hw.devs[index].state = XHCI_ST_DISABLED; /* free device extension */ xhci_free_device_ext(udev); } XHCI_CMD_UNLOCK(sc); } static void xhci_get_dma_delay(struct usb_device *udev, uint32_t *pus) { /* * Wait until the hardware has finished any possible use of * the transfer descriptor(s) */ *pus = 2048; /* microseconds */ } static void xhci_device_resume(struct usb_device *udev) { struct xhci_softc *sc = XHCI_BUS2SC(udev->bus); uint8_t index; uint8_t n; uint8_t p; DPRINTF("\n"); /* check for root HUB */ if (udev->parent_hub == NULL) return; index = udev->controller_slot_id; XHCI_CMD_LOCK(sc); /* blindly resume all endpoints */ USB_BUS_LOCK(udev->bus); for (n = 1; n != XHCI_MAX_ENDPOINTS; n++) { for (p = 0; p != XHCI_MAX_STREAMS; p++) { XWRITE4(sc, door, XHCI_DOORBELL(index), n | XHCI_DB_SID_SET(p)); } } USB_BUS_UNLOCK(udev->bus); XHCI_CMD_UNLOCK(sc); } static void xhci_device_suspend(struct usb_device *udev) { struct xhci_softc *sc = XHCI_BUS2SC(udev->bus); uint8_t index; uint8_t n; usb_error_t err; DPRINTF("\n"); /* check for root HUB */ if (udev->parent_hub == NULL) return; index = udev->controller_slot_id; XHCI_CMD_LOCK(sc); /* blindly suspend all endpoints */ for (n = 1; n != XHCI_MAX_ENDPOINTS; n++) { err = xhci_cmd_stop_ep(sc, 1, n, index); if (err != 0) { DPRINTF("Failed to suspend endpoint " "%u on slot %u (ignored).\n", n, index); } } XHCI_CMD_UNLOCK(sc); } static void xhci_set_hw_power(struct usb_bus *bus) { DPRINTF("\n"); } static void xhci_device_state_change(struct usb_device *udev) { struct xhci_softc *sc = XHCI_BUS2SC(udev->bus); struct usb_page_search buf_inp; usb_error_t err; uint8_t index; /* check for root HUB */ if (udev->parent_hub == NULL) return; index = udev->controller_slot_id; DPRINTF("\n"); if (usb_get_device_state(udev) == USB_STATE_CONFIGURED) { err = uhub_query_info(udev, &sc->sc_hw.devs[index].nports, &sc->sc_hw.devs[index].tt); if (err != 0) sc->sc_hw.devs[index].nports = 0; } XHCI_CMD_LOCK(sc); switch (usb_get_device_state(udev)) { case USB_STATE_POWERED: if (sc->sc_hw.devs[index].state == XHCI_ST_DEFAULT) break; /* set default state */ sc->sc_hw.devs[index].state = XHCI_ST_DEFAULT; /* reset number of contexts */ sc->sc_hw.devs[index].context_num = 0; err = xhci_cmd_reset_dev(sc, index); if (err != 0) { DPRINTF("Device reset failed " "for slot %u.\n", index); } break; case USB_STATE_ADDRESSED: if (sc->sc_hw.devs[index].state == XHCI_ST_ADDRESSED) break; sc->sc_hw.devs[index].state = XHCI_ST_ADDRESSED; err = xhci_cmd_configure_ep(sc, 0, 1, index); if (err) { DPRINTF("Failed to deconfigure " "slot %u.\n", index); } break; case USB_STATE_CONFIGURED: if (sc->sc_hw.devs[index].state == XHCI_ST_CONFIGURED) break; /* set configured state */ sc->sc_hw.devs[index].state = XHCI_ST_CONFIGURED; /* reset number of contexts */ sc->sc_hw.devs[index].context_num = 0; usbd_get_page(&sc->sc_hw.devs[index].input_pc, 0, &buf_inp); xhci_configure_mask(udev, 3, 0); err = xhci_configure_device(udev); if (err != 0) { DPRINTF("Could not configure device " "at slot %u.\n", index); } err = xhci_cmd_evaluate_ctx(sc, buf_inp.physaddr, index); if (err != 0) { DPRINTF("Could not evaluate device " "context at slot %u.\n", index); } break; default: break; } XHCI_CMD_UNLOCK(sc); } static usb_error_t xhci_set_endpoint_mode(struct usb_device *udev, struct usb_endpoint *ep, uint8_t ep_mode) { switch (ep_mode) { case USB_EP_MODE_DEFAULT: return (0); case USB_EP_MODE_STREAMS: if ((ep->edesc->bmAttributes & UE_XFERTYPE) != UE_BULK || udev->speed != USB_SPEED_SUPER) return (USB_ERR_INVAL); return (0); default: return (USB_ERR_INVAL); } } struct usb_bus_methods xhci_bus_methods = { .endpoint_init = xhci_ep_init, .endpoint_uninit = xhci_ep_uninit, .xfer_setup = xhci_xfer_setup, .xfer_unsetup = xhci_xfer_unsetup, .get_dma_delay = xhci_get_dma_delay, .device_init = xhci_device_init, .device_uninit = xhci_device_uninit, .device_resume = xhci_device_resume, .device_suspend = xhci_device_suspend, .set_hw_power = xhci_set_hw_power, .roothub_exec = xhci_roothub_exec, .xfer_poll = xhci_do_poll, .start_dma_delay = xhci_start_dma_delay, .set_address = xhci_set_address, .clear_stall = xhci_ep_clear_stall, .device_state_change = xhci_device_state_change, .set_hw_power_sleep = xhci_set_hw_power_sleep, .set_endpoint_mode = xhci_set_endpoint_mode, };