/*- * Copyright (c) 2000 Mark R V Murray * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* NOTE NOTE NOTE - This is not finished! It will supply numbers, but it is not yet cryptographically secure!! */ #include #include #include #include #include #include #include #include #include #include #include #include /* #define DEBUG */ static void generator_gate(void); static void reseed(int); static void random_harvest_internal(struct timespec *nanotime, u_int64_t entropy, u_int bits, u_int frac, enum esource source); /* Structure holding the entropy state */ struct random_state random_state; /* When enough entropy has been harvested, asynchronously "stir" it in */ /* The regate task is run at splsofttq() */ static struct task regate_task[2]; struct context { u_int pool; } context[2] = { { 0 }, { 1 } }; static void regate(void *context, int pending) { #ifdef DEBUG printf("Regate task\n"); #endif reseed(((struct context *)context)->pool); } void random_init(void) { #ifdef DEBUG printf("Random init\n"); #endif random_state.gengateinterval = 10; random_state.bins = 10; random_state.pool[0].thresh = 100; random_state.pool[1].thresh = 160; random_state.slowoverthresh = 2; random_state.which = FAST; TASK_INIT(®ate_task[FAST], FAST, ®ate, (void *)&context[FAST]); TASK_INIT(®ate_task[SLOW], SLOW, ®ate, (void *)&context[SLOW]); random_init_harvester(random_harvest_internal); } void random_deinit(void) { #ifdef DEBUG printf("Random deinit\n"); #endif random_deinit_harvester(); } static void reseed(int fastslow) { /* Interrupt-context stack is a limited resource; make static */ /* large structures; XXX Revisit - needs to move to the large */ /* random_state structure. */ static unsigned char v[TIMEBIN][KEYSIZE]; /* v[i] */ unsigned char hash[KEYSIZE]; /* h' */ static BF_KEY hashkey; unsigned char ivec[8]; unsigned char temp[KEYSIZE]; struct entropy *bucket; int i, j; #ifdef DEBUG printf("Reseed type %d\n", fastslow); #endif /* 1. Hash the accumulated entropy into v[0] */ bzero((void *)&v[0], KEYSIZE); if (fastslow == SLOW) { /* Feed a hash of the slow pool into the fast pool */ for (i = 0; i < ENTROPYSOURCE; i++) { for (j = 0; j < ENTROPYBIN; j++) { bucket = &random_state.pool[SLOW].source[i].entropy[j]; if(bucket->nanotime.tv_sec || bucket->nanotime.tv_nsec) { BF_set_key(&hashkey, sizeof(struct entropy), (void *)bucket); BF_cbc_encrypt(v[0], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT); memcpy(&v[0], temp, KEYSIZE); bucket->nanotime.tv_sec = 0; bucket->nanotime.tv_nsec = 0; } } } } for (i = 0; i < ENTROPYSOURCE; i++) { for (j = 0; j < ENTROPYBIN; j++) { bucket = &random_state.pool[FAST].source[i].entropy[j]; if(bucket->nanotime.tv_sec || bucket->nanotime.tv_nsec) { BF_set_key(&hashkey, sizeof(struct entropy), (void *)bucket); BF_cbc_encrypt(v[0], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT); memcpy(&v[0], temp, KEYSIZE); bucket->nanotime.tv_sec = 0; bucket->nanotime.tv_nsec = 0; } } } /* 2. Compute hash values for all v. _Supposed_ to be computationally */ /* intensive. */ if (random_state.bins > TIMEBIN) random_state.bins = TIMEBIN; for (i = 1; i < random_state.bins; i++) { bzero((void *)&v[i], KEYSIZE); /* v[i] #= h(v[i-1]) */ BF_set_key(&hashkey, KEYSIZE, v[i - 1]); BF_cbc_encrypt(v[i], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT); memcpy(&v[i], temp, KEYSIZE); /* v[i] #= h(v[0]) */ BF_set_key(&hashkey, KEYSIZE, v[0]); BF_cbc_encrypt(v[i], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT); memcpy(&v[i], temp, KEYSIZE); /* v[i] #= h(i) */ BF_set_key(&hashkey, sizeof(int), (unsigned char *)&i); BF_cbc_encrypt(v[i], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT); memcpy(&v[i], temp, KEYSIZE); } /* 3. Compute a new Key. */ bzero((void *)hash, KEYSIZE); BF_set_key(&hashkey, KEYSIZE, (unsigned char *)&random_state.key); BF_cbc_encrypt(hash, temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT); memcpy(hash, temp, KEYSIZE); for (i = 1; i < random_state.bins; i++) { BF_set_key(&hashkey, KEYSIZE, v[i]); BF_cbc_encrypt(hash, temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT); memcpy(hash, temp, KEYSIZE); } BF_set_key(&random_state.key, KEYSIZE, hash); /* 4. Recompute the counter */ random_state.counter = 0; BF_cbc_encrypt((unsigned char *)&random_state.counter, temp, sizeof(random_state.counter), &random_state.key, random_state.ivec, BF_ENCRYPT); memcpy(&random_state.counter, temp, random_state.counter); /* 5. Reset entropy estimate accumulators to zero */ for (i = 0; i <= fastslow; i++) { for (j = 0; j < ENTROPYSOURCE; j++) { random_state.pool[i].source[j].bits = 0; random_state.pool[i].source[j].frac = 0; } } /* 6. Wipe memory of intermediate values */ bzero((void *)v, sizeof(v)); bzero((void *)temp, sizeof(temp)); bzero((void *)hash, sizeof(hash)); /* 7. Dump to seed file (XXX done by external process?) */ } u_int read_random(char *buf, u_int count) { static int cur = 0; static int gate = 1; u_int i; u_int retval; u_int64_t genval; intrmask_t mask; /* The reseed task must not be jumped on */ mask = splsofttq(); if (gate) { generator_gate(); random_state.outputblocks = 0; gate = 0; } if (count >= sizeof(random_state.counter)) { retval = 0; for (i = 0; i < count; i += sizeof(random_state.counter)) { random_state.counter++; BF_cbc_encrypt((unsigned char *)&random_state.counter, (unsigned char *)&genval, sizeof(random_state.counter), &random_state.key, random_state.ivec, BF_ENCRYPT); memcpy(&buf[i], &genval, sizeof(random_state.counter)); if (++random_state.outputblocks >= random_state.gengateinterval) { generator_gate(); random_state.outputblocks = 0; } retval += sizeof(random_state.counter); } } else { if (!cur) { random_state.counter++; BF_cbc_encrypt((unsigned char *)&random_state.counter, (unsigned char *)&genval, sizeof(random_state.counter), &random_state.key, random_state.ivec, BF_ENCRYPT); memcpy(buf, &genval, count); cur = sizeof(random_state.counter) - count; if (++random_state.outputblocks >= random_state.gengateinterval) { generator_gate(); random_state.outputblocks = 0; } retval = count; } else { retval = cur < count ? cur : count; memcpy(buf, (char *)&random_state.counter + (sizeof(random_state.counter) - retval), retval); cur -= retval; } } splx(mask); return retval; } void write_random(char *buf, u_int count) { u_int i; intrmask_t mask; struct timespec nanotime; /* The reseed task must not be jumped on */ mask = splsofttq(); for (i = 0; i < count/sizeof(u_int64_t); i++) { getnanotime(&nanotime); random_harvest_internal(&nanotime, *(u_int64_t *)&buf[i*sizeof(u_int64_t)], 0, 0, RANDOM_WRITE); } reseed(FAST); splx(mask); } static void generator_gate(void) { int i; unsigned char temp[KEYSIZE]; intrmask_t mask; #ifdef DEBUG printf("Generator gate\n"); #endif /* The reseed task must not be jumped on */ mask = splsofttq(); for (i = 0; i < KEYSIZE; i += sizeof(random_state.counter)) { random_state.counter++; BF_cbc_encrypt((unsigned char *)&random_state.counter, &(temp[i]), sizeof(random_state.counter), &random_state.key, random_state.ivec, BF_ENCRYPT); } BF_set_key(&random_state.key, KEYSIZE, temp); bzero((void *)temp, KEYSIZE); splx(mask); } /* Entropy harvesting routine. This is supposed to be fast; do */ /* not do anything slow in here! */ static void random_harvest_internal(struct timespec *nanotime, u_int64_t entropy, u_int bits, u_int frac, enum esource origin) { u_int insert; int which; /* fast or slow */ struct entropy *bucket; struct source *source; struct pool *pool; intrmask_t mask; #ifdef DEBUG printf("Random harvest\n"); #endif if (origin < ENTROPYSOURCE) { /* Called inside irq handlers; protect from interference */ mask = splhigh(); which = random_state.which; pool = &random_state.pool[which]; source = &pool->source[origin]; insert = source->current + 1; if (insert >= ENTROPYBIN) insert = 0; bucket = &source->entropy[insert]; if (!bucket->nanotime.tv_sec && !bucket->nanotime.tv_nsec) { /* nanotime provides clock jitter */ bucket->nanotime = *nanotime; /* the harvested entropy */ bucket->data = entropy; /* update the estimates - including "fractional bits" */ source->bits += bits; source->frac += frac; if (source->frac >= 1024) { source->bits += source->frac / 1024; source->frac %= 1024; } if (source->bits >= pool->thresh) { /* XXX Slowoverthresh nees to be considered */ taskqueue_enqueue(taskqueue_swi, ®ate_task[which]); } /* bump the insertion point */ source->current = insert; /* toggle the pool for next insertion */ random_state.which = !random_state.which; } splx(mask); } }