/*- * Copyright (c) 2005 by David E. O'Brien . * Copyright (c) 2003,2004 by Quinton Dolan . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: if_nv.c,v 1.19 2004/08/12 14:00:05 q Exp $ */ /* * NVIDIA nForce MCP Networking Adapter driver * * This is a port of the NVIDIA MCP Linux ethernet driver distributed by NVIDIA * through their web site. * * All mainstream nForce and nForce2 motherboards are supported. This module * is as stable, sometimes more stable, than the linux version. (Recent * Linux stability issues seem to be related to some issues with newer * distributions using GCC 3.x, however this don't appear to effect FreeBSD * 5.x). * * In accordance with the NVIDIA distribution license it is necessary to * link this module against the nvlibnet.o binary object included in the * Linux driver source distribution. The binary component is not modified in * any way and is simply linked against a FreeBSD equivalent of the nvnet.c * linux kernel module "wrapper". * * The Linux driver uses a common code API that is shared between Win32 and * i386 Linux. This abstracts the low level driver functions and uses * callbacks and hooks to access the underlying hardware device. By using * this same API in a FreeBSD kernel module it is possible to support the * hardware without breaching the Linux source distributions licensing * requirements, or obtaining the hardware programming specifications. * * Although not conventional, it works, and given the relatively small * amount of hardware centric code, it's hopefully no more buggy than its * linux counterpart. * * NVIDIA now support the nForce3 AMD64 platform, however I have been * unable to access such a system to verify support. However, the code is * reported to work with little modification when compiled with the AMD64 * version of the NVIDIA Linux library. All that should be necessary to make * the driver work is to link it directly into the kernel, instead of as a * module, and apply the docs/amd64.diff patch in this source distribution to * the NVIDIA Linux driver source. * * This driver should work on all versions of FreeBSD since 4.9/5.1 as well * as recent versions of DragonFly. * * Written by Quinton Dolan * Portions based on existing FreeBSD network drivers. * NVIDIA API usage derived from distributed NVIDIA NVNET driver source files. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for vtophys */ #include /* for vtophys */ #include #include #include #include #include #include #include "miibus_if.h" /* Include NVIDIA Linux driver header files */ #include #define linux #include #include #include "os+%DIKED-nve.h" #include #include #undef linux #include MODULE_DEPEND(nve, pci, 1, 1, 1); MODULE_DEPEND(nve, ether, 1, 1, 1); MODULE_DEPEND(nve, miibus, 1, 1, 1); static int nve_probe(device_t); static int nve_attach(device_t); static int nve_detach(device_t); static void nve_init(void *); static void nve_init_locked(struct nve_softc *); static void nve_stop(struct nve_softc *); static void nve_shutdown(device_t); static int nve_init_rings(struct nve_softc *); static void nve_free_rings(struct nve_softc *); static void nve_ifstart(struct ifnet *); static void nve_ifstart_locked(struct ifnet *); static int nve_ioctl(struct ifnet *, u_long, caddr_t); static void nve_intr(void *); static void nve_tick(void *); static void nve_setmulti(struct nve_softc *); static void nve_watchdog(struct ifnet *); static void nve_update_stats(struct nve_softc *); static int nve_ifmedia_upd(struct ifnet *); static void nve_ifmedia_upd_locked(struct ifnet *); static void nve_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int nve_miibus_readreg(device_t, int, int); static void nve_miibus_writereg(device_t, int, int, int); static void nve_dmamap_cb(void *, bus_dma_segment_t *, int, int); static void nve_dmamap_tx_cb(void *, bus_dma_segment_t *, int, bus_size_t, int); static NV_SINT32 nve_osalloc(PNV_VOID, PMEMORY_BLOCK); static NV_SINT32 nve_osfree(PNV_VOID, PMEMORY_BLOCK); static NV_SINT32 nve_osallocex(PNV_VOID, PMEMORY_BLOCKEX); static NV_SINT32 nve_osfreeex(PNV_VOID, PMEMORY_BLOCKEX); static NV_SINT32 nve_osclear(PNV_VOID, PNV_VOID, NV_SINT32); static NV_SINT32 nve_osdelay(PNV_VOID, NV_UINT32); static NV_SINT32 nve_osallocrxbuf(PNV_VOID, PMEMORY_BLOCK, PNV_VOID *); static NV_SINT32 nve_osfreerxbuf(PNV_VOID, PMEMORY_BLOCK, PNV_VOID); static NV_SINT32 nve_ospackettx(PNV_VOID, PNV_VOID, NV_UINT32); static NV_SINT32 nve_ospacketrx(PNV_VOID, PNV_VOID, NV_UINT32, NV_UINT8 *, NV_UINT8); static NV_SINT32 nve_oslinkchg(PNV_VOID, NV_SINT32); static NV_SINT32 nve_osalloctimer(PNV_VOID, PNV_VOID *); static NV_SINT32 nve_osfreetimer(PNV_VOID, PNV_VOID); static NV_SINT32 nve_osinittimer(PNV_VOID, PNV_VOID, PTIMER_FUNC, PNV_VOID); static NV_SINT32 nve_ossettimer(PNV_VOID, PNV_VOID, NV_UINT32); static NV_SINT32 nve_oscanceltimer(PNV_VOID, PNV_VOID); static NV_SINT32 nve_ospreprocpkt(PNV_VOID, PNV_VOID, PNV_VOID *, NV_UINT8 *, NV_UINT8); static PNV_VOID nve_ospreprocpktnopq(PNV_VOID, PNV_VOID); static NV_SINT32 nve_osindicatepkt(PNV_VOID, PNV_VOID *, NV_UINT32); static NV_SINT32 nve_oslockalloc(PNV_VOID, NV_SINT32, PNV_VOID *); static NV_SINT32 nve_oslockacquire(PNV_VOID, NV_SINT32, PNV_VOID); static NV_SINT32 nve_oslockrelease(PNV_VOID, NV_SINT32, PNV_VOID); static PNV_VOID nve_osreturnbufvirt(PNV_VOID, PNV_VOID); static device_method_t nve_methods[] = { /* Device interface */ DEVMETHOD(device_probe, nve_probe), DEVMETHOD(device_attach, nve_attach), DEVMETHOD(device_detach, nve_detach), DEVMETHOD(device_shutdown, nve_shutdown), /* Bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, nve_miibus_readreg), DEVMETHOD(miibus_writereg, nve_miibus_writereg), {0, 0} }; static driver_t nve_driver = { "nve", nve_methods, sizeof(struct nve_softc) }; static devclass_t nve_devclass; static int nve_pollinterval = 0; SYSCTL_INT(_hw, OID_AUTO, nve_pollinterval, CTLFLAG_RW, &nve_pollinterval, 0, "delay between interface polls"); DRIVER_MODULE(nve, pci, nve_driver, nve_devclass, 0, 0); DRIVER_MODULE(miibus, nve, miibus_driver, miibus_devclass, 0, 0); static struct nve_type nve_devs[] = { {NVIDIA_VENDORID, NFORCE_MCPNET1_DEVICEID, "NVIDIA nForce MCP Networking Adapter"}, {NVIDIA_VENDORID, NFORCE_MCPNET2_DEVICEID, "NVIDIA nForce MCP2 Networking Adapter"}, {NVIDIA_VENDORID, NFORCE_MCPNET3_DEVICEID, "NVIDIA nForce MCP3 Networking Adapter"}, {NVIDIA_VENDORID, NFORCE_MCPNET4_DEVICEID, "NVIDIA nForce MCP4 Networking Adapter"}, {NVIDIA_VENDORID, NFORCE_MCPNET5_DEVICEID, "NVIDIA nForce MCP5 Networking Adapter"}, {NVIDIA_VENDORID, NFORCE_MCPNET6_DEVICEID, "NVIDIA nForce MCP6 Networking Adapter"}, {NVIDIA_VENDORID, NFORCE_MCPNET7_DEVICEID, "NVIDIA nForce MCP7 Networking Adapter"}, {NVIDIA_VENDORID, NFORCE_MCPNET8_DEVICEID, "NVIDIA nForce MCP8 Networking Adapter"}, {NVIDIA_VENDORID, NFORCE_MCPNET9_DEVICEID, "NVIDIA nForce MCP9 Networking Adapter"}, {NVIDIA_VENDORID, NFORCE_MCPNET10_DEVICEID, "NVIDIA nForce MCP10 Networking Adapter"}, {NVIDIA_VENDORID, NFORCE_MCPNET11_DEVICEID, "NVIDIA nForce MCP11 Networking Adapter"}, {NVIDIA_VENDORID, NFORCE_MCPNET12_DEVICEID, "NVIDIA nForce MCP12 Networking Adapter"}, {NVIDIA_VENDORID, NFORCE_MCPNET13_DEVICEID, "NVIDIA nForce MCP13 Networking Adapter"}, {0, 0, NULL} }; /* DMA MEM map callback function to get data segment physical address */ static void nve_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nsegs, int error) { if (error) return; KASSERT(nsegs == 1, ("Too many DMA segments returned when mapping DMA memory")); *(bus_addr_t *)arg = segs->ds_addr; } /* DMA RX map callback function to get data segment physical address */ static void nve_dmamap_rx_cb(void *arg, bus_dma_segment_t * segs, int nsegs, bus_size_t mapsize, int error) { if (error) return; *(bus_addr_t *)arg = segs->ds_addr; } /* * DMA TX buffer callback function to allocate fragment data segment * addresses */ static void nve_dmamap_tx_cb(void *arg, bus_dma_segment_t * segs, int nsegs, bus_size_t mapsize, int error) { struct nve_tx_desc *info; info = arg; if (error) return; KASSERT(nsegs < NV_MAX_FRAGS, ("Too many DMA segments returned when mapping mbuf")); info->numfrags = nsegs; bcopy(segs, info->frags, nsegs * sizeof(bus_dma_segment_t)); } /* Probe for supported hardware ID's */ static int nve_probe(device_t dev) { struct nve_type *t; t = nve_devs; /* Check for matching PCI DEVICE ID's */ while (t->name != NULL) { if ((pci_get_vendor(dev) == t->vid_id) && (pci_get_device(dev) == t->dev_id)) { device_set_desc(dev, t->name); return (0); } t++; } return (ENXIO); } /* Attach driver and initialise hardware for use */ static int nve_attach(device_t dev) { u_char eaddr[ETHER_ADDR_LEN]; struct nve_softc *sc; struct ifnet *ifp; OS_API *osapi; ADAPTER_OPEN_PARAMS OpenParams; int error = 0, i, rid; if (bootverbose) device_printf(dev, "nvenetlib.o version %s\n", DRIVER_VERSION); DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_attach - entry\n"); sc = device_get_softc(dev); /* Allocate mutex */ mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->stat_callout, &sc->mtx, 0); sc->dev = dev; /* Preinitialize data structures */ bzero(&OpenParams, sizeof(ADAPTER_OPEN_PARAMS)); /* Enable bus mastering */ pci_enable_busmaster(dev); /* Allocate memory mapped address space */ rid = NV_RID; sc->res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0, ~0, 1, RF_ACTIVE); if (sc->res == NULL) { device_printf(dev, "couldn't map memory\n"); error = ENXIO; goto fail; } sc->sc_st = rman_get_bustag(sc->res); sc->sc_sh = rman_get_bushandle(sc->res); /* Allocate interrupt */ rid = 0; sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); if (sc->irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } /* Allocate DMA tags */ error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * NV_MAX_FRAGS, NV_MAX_FRAGS, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->mtag); if (error) { device_printf(dev, "couldn't allocate dma tag\n"); goto fail; } error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct nve_rx_desc) * RX_RING_SIZE, 1, sizeof(struct nve_rx_desc) * RX_RING_SIZE, 0, busdma_lock_mutex, &Giant, &sc->rtag); if (error) { device_printf(dev, "couldn't allocate dma tag\n"); goto fail; } error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct nve_tx_desc) * TX_RING_SIZE, 1, sizeof(struct nve_tx_desc) * TX_RING_SIZE, 0, busdma_lock_mutex, &Giant, &sc->ttag); if (error) { device_printf(dev, "couldn't allocate dma tag\n"); goto fail; } /* Allocate DMA safe memory and get the DMA addresses. */ error = bus_dmamem_alloc(sc->ttag, (void **)&sc->tx_desc, BUS_DMA_WAITOK, &sc->tmap); if (error) { device_printf(dev, "couldn't allocate dma memory\n"); goto fail; } bzero(sc->tx_desc, sizeof(struct nve_tx_desc) * TX_RING_SIZE); error = bus_dmamap_load(sc->ttag, sc->tmap, sc->tx_desc, sizeof(struct nve_tx_desc) * TX_RING_SIZE, nve_dmamap_cb, &sc->tx_addr, 0); if (error) { device_printf(dev, "couldn't map dma memory\n"); goto fail; } error = bus_dmamem_alloc(sc->rtag, (void **)&sc->rx_desc, BUS_DMA_WAITOK, &sc->rmap); if (error) { device_printf(dev, "couldn't allocate dma memory\n"); goto fail; } bzero(sc->rx_desc, sizeof(struct nve_rx_desc) * RX_RING_SIZE); error = bus_dmamap_load(sc->rtag, sc->rmap, sc->rx_desc, sizeof(struct nve_rx_desc) * RX_RING_SIZE, nve_dmamap_cb, &sc->rx_addr, 0); if (error) { device_printf(dev, "couldn't map dma memory\n"); goto fail; } /* Initialize rings. */ if (nve_init_rings(sc)) { device_printf(dev, "failed to init rings\n"); error = ENXIO; goto fail; } /* Setup NVIDIA API callback routines */ osapi = &sc->osapi; osapi->pOSCX = sc; osapi->pfnAllocMemory = nve_osalloc; osapi->pfnFreeMemory = nve_osfree; osapi->pfnAllocMemoryEx = nve_osallocex; osapi->pfnFreeMemoryEx = nve_osfreeex; osapi->pfnClearMemory = nve_osclear; osapi->pfnStallExecution = nve_osdelay; osapi->pfnAllocReceiveBuffer = nve_osallocrxbuf; osapi->pfnFreeReceiveBuffer = nve_osfreerxbuf; osapi->pfnPacketWasSent = nve_ospackettx; osapi->pfnPacketWasReceived = nve_ospacketrx; osapi->pfnLinkStateHasChanged = nve_oslinkchg; osapi->pfnAllocTimer = nve_osalloctimer; osapi->pfnFreeTimer = nve_osfreetimer; osapi->pfnInitializeTimer = nve_osinittimer; osapi->pfnSetTimer = nve_ossettimer; osapi->pfnCancelTimer = nve_oscanceltimer; osapi->pfnPreprocessPacket = nve_ospreprocpkt; osapi->pfnPreprocessPacketNopq = nve_ospreprocpktnopq; osapi->pfnIndicatePackets = nve_osindicatepkt; osapi->pfnLockAlloc = nve_oslockalloc; osapi->pfnLockAcquire = nve_oslockacquire; osapi->pfnLockRelease = nve_oslockrelease; osapi->pfnReturnBufferVirtual = nve_osreturnbufvirt; sc->linkup = FALSE; sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + FCS_LEN; /* TODO - We don't support hardware offload yet */ sc->hwmode = 1; sc->media = 0; /* Set NVIDIA API startup parameters */ OpenParams.MaxDpcLoop = 2; OpenParams.MaxRxPkt = RX_RING_SIZE; OpenParams.MaxTxPkt = TX_RING_SIZE; OpenParams.SentPacketStatusSuccess = 1; OpenParams.SentPacketStatusFailure = 0; OpenParams.MaxRxPktToAccumulate = 6; OpenParams.ulPollInterval = nve_pollinterval; OpenParams.SetForcedModeEveryNthRxPacket = 0; OpenParams.SetForcedModeEveryNthTxPacket = 0; OpenParams.RxForcedInterrupt = 0; OpenParams.TxForcedInterrupt = 0; OpenParams.pOSApi = osapi; OpenParams.pvHardwareBaseAddress = rman_get_virtual(sc->res); OpenParams.bASFEnabled = 0; OpenParams.ulDescriptorVersion = sc->hwmode; OpenParams.ulMaxPacketSize = sc->max_frame_size; OpenParams.DeviceId = pci_get_device(dev); /* Open NVIDIA Hardware API */ error = ADAPTER_Open(&OpenParams, (void **)&(sc->hwapi), &sc->phyaddr); if (error) { device_printf(dev, "failed to open NVIDIA Hardware API: 0x%x\n", error); goto fail; } /* TODO - Add support for MODE2 hardware offload */ bzero(&sc->adapterdata, sizeof(sc->adapterdata)); sc->adapterdata.ulMediaIF = sc->media; sc->adapterdata.ulModeRegTxReadCompleteEnable = 1; sc->hwapi->pfnSetCommonData(sc->hwapi->pADCX, &sc->adapterdata); /* MAC is loaded backwards into h/w reg */ sc->hwapi->pfnGetNodeAddress(sc->hwapi->pADCX, sc->original_mac_addr); for (i = 0; i < 6; i++) { eaddr[i] = sc->original_mac_addr[5 - i]; } sc->hwapi->pfnSetNodeAddress(sc->hwapi->pADCX, eaddr); /* Display ethernet address ,... */ device_printf(dev, "Ethernet address %6D\n", eaddr, ":"); /* Allocate interface structures */ ifp = sc->ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); error = ENOSPC; goto fail; } /* Probe device for MII interface to PHY */ DEBUGOUT(NVE_DEBUG_INIT, "nve: do mii_phy_probe\n"); if (mii_phy_probe(dev, &sc->miibus, nve_ifmedia_upd, nve_ifmedia_sts)) { device_printf(dev, "MII without any phy!\n"); error = ENXIO; goto fail; } /* Setup interface parameters */ ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = nve_ioctl; ifp->if_output = ether_output; ifp->if_start = nve_ifstart; ifp->if_watchdog = nve_watchdog; ifp->if_timer = 0; ifp->if_init = nve_init; ifp->if_mtu = ETHERMTU; ifp->if_baudrate = IF_Mbps(100); IFQ_SET_MAXLEN(&ifp->if_snd, TX_RING_SIZE - 1); ifp->if_snd.ifq_drv_maxlen = TX_RING_SIZE - 1; IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities |= IFCAP_VLAN_MTU; /* Attach to OS's managers. */ ether_ifattach(ifp, eaddr); /* Activate our interrupt handler. - attach last to avoid lock */ error = bus_setup_intr(sc->dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, nve_intr, sc, &sc->sc_ih); if (error) { device_printf(sc->dev, "couldn't set up interrupt handler\n"); goto fail; } DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_attach - exit\n"); fail: if (error) nve_detach(dev); return (error); } /* Detach interface for module unload */ static int nve_detach(device_t dev) { struct nve_softc *sc = device_get_softc(dev); struct ifnet *ifp; KASSERT(mtx_initialized(&sc->mtx), ("mutex not initialized")); DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_detach - entry\n"); ifp = sc->ifp; if (device_is_attached(dev)) { NVE_LOCK(sc); nve_stop(sc); NVE_UNLOCK(sc); callout_drain(&sc->stat_callout); ether_ifdetach(ifp); } if (sc->miibus) device_delete_child(dev, sc->miibus); bus_generic_detach(dev); /* Reload unreversed address back into MAC in original state */ if (sc->original_mac_addr) sc->hwapi->pfnSetNodeAddress(sc->hwapi->pADCX, sc->original_mac_addr); DEBUGOUT(NVE_DEBUG_DEINIT, "nve: do pfnClose\n"); /* Detach from NVIDIA hardware API */ if (sc->hwapi->pfnClose) sc->hwapi->pfnClose(sc->hwapi->pADCX, FALSE); /* Release resources */ if (sc->sc_ih) bus_teardown_intr(sc->dev, sc->irq, sc->sc_ih); if (sc->irq) bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq); if (sc->res) bus_release_resource(sc->dev, SYS_RES_MEMORY, NV_RID, sc->res); nve_free_rings(sc); if (sc->tx_desc) { bus_dmamap_unload(sc->rtag, sc->rmap); bus_dmamem_free(sc->rtag, sc->rx_desc, sc->rmap); bus_dmamap_destroy(sc->rtag, sc->rmap); } if (sc->mtag) bus_dma_tag_destroy(sc->mtag); if (sc->ttag) bus_dma_tag_destroy(sc->ttag); if (sc->rtag) bus_dma_tag_destroy(sc->rtag); if (ifp) if_free(ifp); mtx_destroy(&sc->mtx); DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_detach - exit\n"); return (0); } /* Initialise interface and start it "RUNNING" */ static void nve_init(void *xsc) { struct nve_softc *sc = xsc; NVE_LOCK(sc); nve_init_locked(sc); NVE_UNLOCK(sc); } static void nve_init_locked(struct nve_softc *sc) { struct ifnet *ifp; int error; NVE_LOCK_ASSERT(sc); DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_init - entry (%d)\n", sc->linkup); ifp = sc->ifp; /* Do nothing if already running */ if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; nve_stop(sc); DEBUGOUT(NVE_DEBUG_INIT, "nve: do pfnInit\n"); nve_ifmedia_upd_locked(ifp); /* Setup Hardware interface and allocate memory structures */ error = sc->hwapi->pfnInit(sc->hwapi->pADCX, 0, /* force speed */ 0, /* force full duplex */ 0, /* force mode */ 0, /* force async mode */ &sc->linkup); if (error) { device_printf(sc->dev, "failed to start NVIDIA Hardware interface\n"); return; } /* Set the MAC address */ sc->hwapi->pfnSetNodeAddress(sc->hwapi->pADCX, IF_LLADDR(sc->ifp)); sc->hwapi->pfnEnableInterrupts(sc->hwapi->pADCX); sc->hwapi->pfnStart(sc->hwapi->pADCX); /* Setup multicast filter */ nve_setmulti(sc); /* Update interface parameters */ ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&sc->stat_callout, hz, nve_tick, sc); DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_init - exit\n"); return; } /* Stop interface activity ie. not "RUNNING" */ static void nve_stop(struct nve_softc *sc) { struct ifnet *ifp; NVE_LOCK_ASSERT(sc); DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_stop - entry\n"); ifp = sc->ifp; ifp->if_timer = 0; /* Cancel tick timer */ callout_stop(&sc->stat_callout); /* Stop hardware activity */ sc->hwapi->pfnDisableInterrupts(sc->hwapi->pADCX); sc->hwapi->pfnStop(sc->hwapi->pADCX, 0); DEBUGOUT(NVE_DEBUG_DEINIT, "nve: do pfnDeinit\n"); /* Shutdown interface and deallocate memory buffers */ if (sc->hwapi->pfnDeinit) sc->hwapi->pfnDeinit(sc->hwapi->pADCX, 0); sc->linkup = 0; sc->cur_rx = 0; sc->pending_rxs = 0; sc->pending_txs = 0; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_stop - exit\n"); return; } /* Shutdown interface for unload/reboot */ static void nve_shutdown(device_t dev) { struct nve_softc *sc; DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_shutdown\n"); sc = device_get_softc(dev); /* Stop hardware activity */ NVE_LOCK(sc); nve_stop(sc); NVE_UNLOCK(sc); } /* Allocate TX ring buffers */ static int nve_init_rings(struct nve_softc *sc) { int error, i; DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_init_rings - entry\n"); sc->cur_rx = sc->cur_tx = sc->pending_rxs = sc->pending_txs = 0; /* Initialise RX ring */ for (i = 0; i < RX_RING_SIZE; i++) { struct nve_rx_desc *desc = sc->rx_desc + i; struct nve_map_buffer *buf = &desc->buf; buf->mbuf = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (buf->mbuf == NULL) { device_printf(sc->dev, "couldn't allocate mbuf\n"); nve_free_rings(sc); return (ENOBUFS); } buf->mbuf->m_len = buf->mbuf->m_pkthdr.len = MCLBYTES; m_adj(buf->mbuf, ETHER_ALIGN); error = bus_dmamap_create(sc->mtag, 0, &buf->map); if (error) { device_printf(sc->dev, "couldn't create dma map\n"); nve_free_rings(sc); return (error); } error = bus_dmamap_load_mbuf(sc->mtag, buf->map, buf->mbuf, nve_dmamap_rx_cb, &desc->paddr, 0); if (error) { device_printf(sc->dev, "couldn't dma map mbuf\n"); nve_free_rings(sc); return (error); } bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREREAD); desc->buflength = buf->mbuf->m_len; desc->vaddr = mtod(buf->mbuf, caddr_t); } bus_dmamap_sync(sc->rtag, sc->rmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Initialize TX ring */ for (i = 0; i < TX_RING_SIZE; i++) { struct nve_tx_desc *desc = sc->tx_desc + i; struct nve_map_buffer *buf = &desc->buf; buf->mbuf = NULL; error = bus_dmamap_create(sc->mtag, 0, &buf->map); if (error) { device_printf(sc->dev, "couldn't create dma map\n"); nve_free_rings(sc); return (error); } } bus_dmamap_sync(sc->ttag, sc->tmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_init_rings - exit\n"); return (error); } /* Free the TX ring buffers */ static void nve_free_rings(struct nve_softc *sc) { int i; DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_free_rings - entry\n"); for (i = 0; i < RX_RING_SIZE; i++) { struct nve_rx_desc *desc = sc->rx_desc + i; struct nve_map_buffer *buf = &desc->buf; if (buf->mbuf) { bus_dmamap_unload(sc->mtag, buf->map); bus_dmamap_destroy(sc->mtag, buf->map); m_freem(buf->mbuf); } buf->mbuf = NULL; } for (i = 0; i < TX_RING_SIZE; i++) { struct nve_tx_desc *desc = sc->tx_desc + i; struct nve_map_buffer *buf = &desc->buf; if (buf->mbuf) { bus_dmamap_unload(sc->mtag, buf->map); bus_dmamap_destroy(sc->mtag, buf->map); m_freem(buf->mbuf); } buf->mbuf = NULL; } DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_free_rings - exit\n"); } /* Main loop for sending packets from OS to interface */ static void nve_ifstart(struct ifnet *ifp) { struct nve_softc *sc = ifp->if_softc; NVE_LOCK(sc); nve_ifstart_locked(ifp); NVE_UNLOCK(sc); } static void nve_ifstart_locked(struct ifnet *ifp) { struct nve_softc *sc = ifp->if_softc; struct nve_map_buffer *buf; struct mbuf *m0, *m; struct nve_tx_desc *desc; ADAPTER_WRITE_DATA txdata; int error, i; DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_ifstart - entry\n"); NVE_LOCK_ASSERT(sc); /* If link is down/busy or queue is empty do nothing */ if (ifp->if_drv_flags & IFF_DRV_OACTIVE || IFQ_DRV_IS_EMPTY(&ifp->if_snd)) return; /* Transmit queued packets until sent or TX ring is full */ while (sc->pending_txs < TX_RING_SIZE) { desc = sc->tx_desc + sc->cur_tx; buf = &desc->buf; /* Get next packet to send. */ IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); /* If nothing to send, return. */ if (m0 == NULL) return; /* * On nForce4, the chip doesn't interrupt on transmit, * so try to flush transmitted packets from the queue * if it's getting large (see note in nve_watchdog). */ if (sc->pending_txs > TX_RING_SIZE/2) { sc->hwapi->pfnDisableInterrupts(sc->hwapi->pADCX); sc->hwapi->pfnHandleInterrupt(sc->hwapi->pADCX); sc->hwapi->pfnEnableInterrupts(sc->hwapi->pADCX); } /* Map MBUF for DMA access */ error = bus_dmamap_load_mbuf(sc->mtag, buf->map, m0, nve_dmamap_tx_cb, desc, BUS_DMA_NOWAIT); if (error && error != EFBIG) { m_freem(m0); sc->tx_errors++; continue; } /* * Packet has too many fragments - defrag into new mbuf * cluster */ if (error) { m = m_defrag(m0, M_DONTWAIT); if (m == NULL) { m_freem(m0); sc->tx_errors++; continue; } m0 = m; error = bus_dmamap_load_mbuf(sc->mtag, buf->map, m, nve_dmamap_tx_cb, desc, BUS_DMA_NOWAIT); if (error) { m_freem(m); sc->tx_errors++; continue; } } /* Do sync on DMA bounce buffer */ bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREWRITE); buf->mbuf = m0; txdata.ulNumberOfElements = desc->numfrags; txdata.pvID = (PVOID)desc; /* Put fragments into API element list */ txdata.ulTotalLength = buf->mbuf->m_len; for (i = 0; i < desc->numfrags; i++) { txdata.sElement[i].ulLength = (ulong)desc->frags[i].ds_len; txdata.sElement[i].pPhysical = (PVOID)desc->frags[i].ds_addr; } /* Send packet to Nvidia API for transmission */ error = sc->hwapi->pfnWrite(sc->hwapi->pADCX, &txdata); switch (error) { case ADAPTERERR_NONE: /* Packet was queued in API TX queue successfully */ sc->pending_txs++; sc->cur_tx = (sc->cur_tx + 1) % TX_RING_SIZE; break; case ADAPTERERR_TRANSMIT_QUEUE_FULL: /* The API TX queue is full - requeue the packet */ device_printf(sc->dev, "nve_ifstart: transmit queue is full\n"); ifp->if_drv_flags |= IFF_DRV_OACTIVE; bus_dmamap_unload(sc->mtag, buf->map); IFQ_DRV_PREPEND(&ifp->if_snd, buf->mbuf); buf->mbuf = NULL; return; default: /* The API failed to queue/send the packet so dump it */ device_printf(sc->dev, "nve_ifstart: transmit error\n"); bus_dmamap_unload(sc->mtag, buf->map); m_freem(buf->mbuf); buf->mbuf = NULL; sc->tx_errors++; return; } /* Set watchdog timer. */ ifp->if_timer = 8; /* Copy packet to BPF tap */ BPF_MTAP(ifp, m0); } ifp->if_drv_flags |= IFF_DRV_OACTIVE; DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_ifstart - exit\n"); } /* Handle IOCTL events */ static int nve_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct nve_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; DEBUGOUT(NVE_DEBUG_IOCTL, "nve: nve_ioctl - entry\n"); switch (command) { case SIOCSIFMTU: /* Set MTU size */ NVE_LOCK(sc); if (ifp->if_mtu == ifr->ifr_mtu) { NVE_UNLOCK(sc); break; } if (ifr->ifr_mtu + ifp->if_hdrlen <= MAX_PACKET_SIZE_1518) { ifp->if_mtu = ifr->ifr_mtu; nve_stop(sc); nve_init_locked(sc); } else error = EINVAL; NVE_UNLOCK(sc); break; case SIOCSIFFLAGS: /* Setup interface flags */ NVE_LOCK(sc); if (ifp->if_flags & IFF_UP) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { nve_init_locked(sc); NVE_UNLOCK(sc); break; } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { nve_stop(sc); NVE_UNLOCK(sc); break; } } /* Handle IFF_PROMISC and IFF_ALLMULTI flags. */ nve_setmulti(sc); NVE_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: /* Setup multicast filter */ NVE_LOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { nve_setmulti(sc); } NVE_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: /* Get/Set interface media parameters */ mii = device_get_softc(sc->miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: /* Everything else we forward to generic ether ioctl */ error = ether_ioctl(ifp, (int)command, data); break; } DEBUGOUT(NVE_DEBUG_IOCTL, "nve: nve_ioctl - exit\n"); return (error); } /* Interrupt service routine */ static void nve_intr(void *arg) { struct nve_softc *sc = arg; struct ifnet *ifp = sc->ifp; DEBUGOUT(NVE_DEBUG_INTERRUPT, "nve: nve_intr - entry\n"); NVE_LOCK(sc); if (!ifp->if_flags & IFF_UP) { nve_stop(sc); NVE_UNLOCK(sc); return; } /* Handle interrupt event */ if (sc->hwapi->pfnQueryInterrupt(sc->hwapi->pADCX)) { sc->hwapi->pfnHandleInterrupt(sc->hwapi->pADCX); sc->hwapi->pfnEnableInterrupts(sc->hwapi->pADCX); } if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) nve_ifstart_locked(ifp); /* If no pending packets we don't need a timeout */ if (sc->pending_txs == 0) sc->ifp->if_timer = 0; NVE_UNLOCK(sc); DEBUGOUT(NVE_DEBUG_INTERRUPT, "nve: nve_intr - exit\n"); return; } /* Setup multicast filters */ static void nve_setmulti(struct nve_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; PACKET_FILTER hwfilter; int i; u_int8_t andaddr[6], oraddr[6]; NVE_LOCK_ASSERT(sc); DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_setmulti - entry\n"); ifp = sc->ifp; /* Initialize filter */ hwfilter.ulFilterFlags = 0; for (i = 0; i < 6; i++) { hwfilter.acMulticastAddress[i] = 0; hwfilter.acMulticastMask[i] = 0; } if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) { /* Accept all packets */ hwfilter.ulFilterFlags |= ACCEPT_ALL_PACKETS; sc->hwapi->pfnSetPacketFilter(sc->hwapi->pADCX, &hwfilter); return; } /* Setup multicast filter */ IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { u_char *addrp; if (ifma->ifma_addr->sa_family != AF_LINK) continue; addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); for (i = 0; i < 6; i++) { u_int8_t mcaddr = addrp[i]; andaddr[i] &= mcaddr; oraddr[i] |= mcaddr; } } IF_ADDR_UNLOCK(ifp); for (i = 0; i < 6; i++) { hwfilter.acMulticastAddress[i] = andaddr[i] & oraddr[i]; hwfilter.acMulticastMask[i] = andaddr[i] | (~oraddr[i]); } /* Send filter to NVIDIA API */ sc->hwapi->pfnSetPacketFilter(sc->hwapi->pADCX, &hwfilter); DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_setmulti - exit\n"); return; } /* Change the current media/mediaopts */ static int nve_ifmedia_upd(struct ifnet *ifp) { struct nve_softc *sc = ifp->if_softc; NVE_LOCK(sc); nve_ifmedia_upd_locked(ifp); NVE_UNLOCK(sc); return (0); } static void nve_ifmedia_upd_locked(struct ifnet *ifp) { struct nve_softc *sc = ifp->if_softc; struct mii_data *mii; DEBUGOUT(NVE_DEBUG_MII, "nve: nve_ifmedia_upd\n"); NVE_LOCK_ASSERT(sc); mii = device_get_softc(sc->miibus); if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) { mii_phy_reset(miisc); } } mii_mediachg(mii); } /* Update current miibus PHY status of media */ static void nve_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct nve_softc *sc; struct mii_data *mii; DEBUGOUT(NVE_DEBUG_MII, "nve: nve_ifmedia_sts\n"); sc = ifp->if_softc; NVE_LOCK(sc); mii = device_get_softc(sc->miibus); mii_pollstat(mii); NVE_UNLOCK(sc); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } /* miibus tick timer - maintain link status */ static void nve_tick(void *xsc) { struct nve_softc *sc = xsc; struct mii_data *mii; struct ifnet *ifp; NVE_LOCK_ASSERT(sc); ifp = sc->ifp; nve_update_stats(sc); mii = device_get_softc(sc->miibus); mii_tick(mii); if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) nve_ifstart_locked(ifp); } callout_reset(&sc->stat_callout, hz, nve_tick, sc); return; } /* Update ifnet data structure with collected interface stats from API */ static void nve_update_stats(struct nve_softc *sc) { struct ifnet *ifp = sc->ifp; ADAPTER_STATS stats; NVE_LOCK_ASSERT(sc); if (sc->hwapi) { sc->hwapi->pfnGetStatistics(sc->hwapi->pADCX, &stats); ifp->if_ipackets = stats.ulSuccessfulReceptions; ifp->if_ierrors = stats.ulMissedFrames + stats.ulFailedReceptions + stats.ulCRCErrors + stats.ulFramingErrors + stats.ulOverFlowErrors; ifp->if_opackets = stats.ulSuccessfulTransmissions; ifp->if_oerrors = sc->tx_errors + stats.ulFailedTransmissions + stats.ulRetryErrors + stats.ulUnderflowErrors + stats.ulLossOfCarrierErrors + stats.ulLateCollisionErrors; ifp->if_collisions = stats.ulLateCollisionErrors; } return; } /* miibus Read PHY register wrapper - calls Nvidia API entry point */ static int nve_miibus_readreg(device_t dev, int phy, int reg) { struct nve_softc *sc = device_get_softc(dev); ULONG data; DEBUGOUT(NVE_DEBUG_MII, "nve: nve_miibus_readreg - entry\n"); ADAPTER_ReadPhy(sc->hwapi->pADCX, phy, reg, &data); DEBUGOUT(NVE_DEBUG_MII, "nve: nve_miibus_readreg - exit\n"); return (data); } /* miibus Write PHY register wrapper - calls Nvidia API entry point */ static void nve_miibus_writereg(device_t dev, int phy, int reg, int data) { struct nve_softc *sc = device_get_softc(dev); DEBUGOUT(NVE_DEBUG_MII, "nve: nve_miibus_writereg - entry\n"); ADAPTER_WritePhy(sc->hwapi->pADCX, phy, reg, (ulong)data); DEBUGOUT(NVE_DEBUG_MII, "nve: nve_miibus_writereg - exit\n"); return; } /* Watchdog timer to prevent PHY lockups */ static void nve_watchdog(struct ifnet *ifp) { struct nve_softc *sc = ifp->if_softc; int pending_txs_start; NVE_LOCK(sc); /* * The nvidia driver blob defers tx completion notifications. * Thus, sometimes the watchdog timer will go off when the * tx engine is fine, but the tx completions are just deferred. * Try kicking the driver blob to clear out any pending tx * completions. If that clears up any of the pending tx * operations, then just return without printing the warning * message or resetting the adapter, as we can then conclude * the chip hasn't actually crashed (it's still sending packets). */ pending_txs_start = sc->pending_txs; sc->hwapi->pfnDisableInterrupts(sc->hwapi->pADCX); sc->hwapi->pfnHandleInterrupt(sc->hwapi->pADCX); sc->hwapi->pfnEnableInterrupts(sc->hwapi->pADCX); if (sc->pending_txs < pending_txs_start) { NVE_UNLOCK(sc); return; } device_printf(sc->dev, "device timeout (%d)\n", sc->pending_txs); sc->tx_errors++; nve_stop(sc); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; nve_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) nve_ifstart_locked(ifp); NVE_UNLOCK(sc); return; } /* --- Start of NVOSAPI interface --- */ /* Allocate DMA enabled general use memory for API */ static NV_SINT32 nve_osalloc(PNV_VOID ctx, PMEMORY_BLOCK mem) { struct nve_softc *sc; bus_addr_t mem_physical; DEBUGOUT(NVE_DEBUG_API, "nve: nve_osalloc - %d\n", mem->uiLength); sc = (struct nve_softc *)ctx; mem->pLogical = (PVOID)contigmalloc(mem->uiLength, M_DEVBUF, M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0); if (!mem->pLogical) { device_printf(sc->dev, "memory allocation failed\n"); return (0); } memset(mem->pLogical, 0, (ulong)mem->uiLength); mem_physical = vtophys(mem->pLogical); mem->pPhysical = (PVOID)mem_physical; DEBUGOUT(NVE_DEBUG_API, "nve: nve_osalloc 0x%x/0x%x - %d\n", (uint)mem->pLogical, (uint)mem->pPhysical, (uint)mem->uiLength); return (1); } /* Free allocated memory */ static NV_SINT32 nve_osfree(PNV_VOID ctx, PMEMORY_BLOCK mem) { DEBUGOUT(NVE_DEBUG_API, "nve: nve_osfree - 0x%x - %d\n", (uint)mem->pLogical, (uint) mem->uiLength); contigfree(mem->pLogical, PAGE_SIZE, M_DEVBUF); return (1); } /* Copied directly from nvnet.c */ static NV_SINT32 nve_osallocex(PNV_VOID ctx, PMEMORY_BLOCKEX mem_block_ex) { MEMORY_BLOCK mem_block; DEBUGOUT(NVE_DEBUG_API, "nve: nve_osallocex\n"); mem_block_ex->pLogical = NULL; mem_block_ex->uiLengthOrig = mem_block_ex->uiLength; if ((mem_block_ex->AllocFlags & ALLOC_MEMORY_ALIGNED) && (mem_block_ex->AlignmentSize > 1)) { DEBUGOUT(NVE_DEBUG_API, " aligning on %d\n", mem_block_ex->AlignmentSize); mem_block_ex->uiLengthOrig += mem_block_ex->AlignmentSize; } mem_block.uiLength = mem_block_ex->uiLengthOrig; if (nve_osalloc(ctx, &mem_block) == 0) { return (0); } mem_block_ex->pLogicalOrig = mem_block.pLogical; mem_block_ex->pPhysicalOrigLow = (unsigned long)mem_block.pPhysical; mem_block_ex->pPhysicalOrigHigh = 0; mem_block_ex->pPhysical = mem_block.pPhysical; mem_block_ex->pLogical = mem_block.pLogical; if (mem_block_ex->uiLength != mem_block_ex->uiLengthOrig) { unsigned int offset; offset = mem_block_ex->pPhysicalOrigLow & (mem_block_ex->AlignmentSize - 1); if (offset) { mem_block_ex->pPhysical = (PVOID)((ulong)mem_block_ex->pPhysical + mem_block_ex->AlignmentSize - offset); mem_block_ex->pLogical = (PVOID)((ulong)mem_block_ex->pLogical + mem_block_ex->AlignmentSize - offset); } /* if (offset) */ } /* if (mem_block_ex->uiLength != *mem_block_ex->uiLengthOrig) */ return (1); } /* Copied directly from nvnet.c */ static NV_SINT32 nve_osfreeex(PNV_VOID ctx, PMEMORY_BLOCKEX mem_block_ex) { MEMORY_BLOCK mem_block; DEBUGOUT(NVE_DEBUG_API, "nve: nve_osfreeex\n"); mem_block.pLogical = mem_block_ex->pLogicalOrig; mem_block.pPhysical = (PVOID)((ulong)mem_block_ex->pPhysicalOrigLow); mem_block.uiLength = mem_block_ex->uiLengthOrig; return (nve_osfree(ctx, &mem_block)); } /* Clear memory region */ static NV_SINT32 nve_osclear(PNV_VOID ctx, PNV_VOID mem, NV_SINT32 length) { DEBUGOUT(NVE_DEBUG_API, "nve: nve_osclear\n"); memset(mem, 0, length); return (1); } /* Sleep for a tick */ static NV_SINT32 nve_osdelay(PNV_VOID ctx, NV_UINT32 usec) { DELAY(usec); return (1); } /* Allocate memory for rx buffer */ static NV_SINT32 nve_osallocrxbuf(PNV_VOID ctx, PMEMORY_BLOCK mem, PNV_VOID *id) { struct nve_softc *sc = ctx; struct nve_rx_desc *desc; struct nve_map_buffer *buf; int error; if (device_is_attached(sc->dev)) NVE_LOCK_ASSERT(sc); DEBUGOUT(NVE_DEBUG_API, "nve: nve_osallocrxbuf\n"); if (sc->pending_rxs == RX_RING_SIZE) { device_printf(sc->dev, "rx ring buffer is full\n"); goto fail; } desc = sc->rx_desc + sc->cur_rx; buf = &desc->buf; if (buf->mbuf == NULL) { buf->mbuf = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (buf->mbuf == NULL) { device_printf(sc->dev, "failed to allocate memory\n"); goto fail; } buf->mbuf->m_len = buf->mbuf->m_pkthdr.len = MCLBYTES; m_adj(buf->mbuf, ETHER_ALIGN); error = bus_dmamap_load_mbuf(sc->mtag, buf->map, buf->mbuf, nve_dmamap_rx_cb, &desc->paddr, 0); if (error) { device_printf(sc->dev, "failed to dmamap mbuf\n"); m_freem(buf->mbuf); buf->mbuf = NULL; goto fail; } bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREREAD); desc->buflength = buf->mbuf->m_len; desc->vaddr = mtod(buf->mbuf, caddr_t); } sc->pending_rxs++; sc->cur_rx = (sc->cur_rx + 1) % RX_RING_SIZE; mem->pLogical = (void *)desc->vaddr; mem->pPhysical = (void *)desc->paddr; mem->uiLength = desc->buflength; *id = (void *)desc; return (1); fail: return (0); } /* Free the rx buffer */ static NV_SINT32 nve_osfreerxbuf(PNV_VOID ctx, PMEMORY_BLOCK mem, PNV_VOID id) { struct nve_softc *sc = ctx; struct nve_rx_desc *desc; struct nve_map_buffer *buf; DEBUGOUT(NVE_DEBUG_API, "nve: nve_osfreerxbuf\n"); desc = (struct nve_rx_desc *) id; buf = &desc->buf; if (buf->mbuf) { bus_dmamap_unload(sc->mtag, buf->map); bus_dmamap_destroy(sc->mtag, buf->map); m_freem(buf->mbuf); } sc->pending_rxs--; buf->mbuf = NULL; return (1); } /* This gets called by the Nvidia API after our TX packet has been sent */ static NV_SINT32 nve_ospackettx(PNV_VOID ctx, PNV_VOID id, NV_UINT32 success) { struct nve_softc *sc = ctx; struct nve_map_buffer *buf; struct nve_tx_desc *desc = (struct nve_tx_desc *) id; struct ifnet *ifp; NVE_LOCK_ASSERT(sc); DEBUGOUT(NVE_DEBUG_API, "nve: nve_ospackettx\n"); ifp = sc->ifp; buf = &desc->buf; sc->pending_txs--; /* Unload and free mbuf cluster */ if (buf->mbuf == NULL) goto fail; bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->mtag, buf->map); m_freem(buf->mbuf); buf->mbuf = NULL; /* Send more packets if we have them */ if (sc->pending_txs < TX_RING_SIZE) sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->pending_txs < TX_RING_SIZE) nve_ifstart_locked(ifp); fail: return (1); } /* This gets called by the Nvidia API when a new packet has been received */ /* XXX What is newbuf used for? XXX */ static NV_SINT32 nve_ospacketrx(PNV_VOID ctx, PNV_VOID data, NV_UINT32 success, NV_UINT8 *newbuf, NV_UINT8 priority) { struct nve_softc *sc = ctx; struct ifnet *ifp; struct nve_rx_desc *desc; struct nve_map_buffer *buf; ADAPTER_READ_DATA *readdata; struct mbuf *m; NVE_LOCK_ASSERT(sc); DEBUGOUT(NVE_DEBUG_API, "nve: nve_ospacketrx\n"); ifp = sc->ifp; readdata = (ADAPTER_READ_DATA *) data; desc = readdata->pvID; buf = &desc->buf; bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTREAD); if (success) { /* Sync DMA bounce buffer. */ bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTREAD); /* First mbuf in packet holds the ethernet and packet headers */ buf->mbuf->m_pkthdr.rcvif = ifp; buf->mbuf->m_pkthdr.len = buf->mbuf->m_len = readdata->ulTotalLength; bus_dmamap_unload(sc->mtag, buf->map); /* Blat the mbuf pointer, kernel will free the mbuf cluster */ m = buf->mbuf; buf->mbuf = NULL; /* Give mbuf to OS. */ NVE_UNLOCK(sc); (*ifp->if_input)(ifp, m); NVE_LOCK(sc); if (readdata->ulFilterMatch & ADREADFL_MULTICAST_MATCH) ifp->if_imcasts++; } else { bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->mtag, buf->map); m_freem(buf->mbuf); buf->mbuf = NULL; } sc->cur_rx = desc - sc->rx_desc; sc->pending_rxs--; return (1); } /* This gets called by NVIDIA API when the PHY link state changes */ static NV_SINT32 nve_oslinkchg(PNV_VOID ctx, NV_SINT32 enabled) { DEBUGOUT(NVE_DEBUG_API, "nve: nve_oslinkchg\n"); return (1); } /* Setup a watchdog timer */ static NV_SINT32 nve_osalloctimer(PNV_VOID ctx, PNV_VOID *timer) { struct nve_softc *sc = (struct nve_softc *)ctx; DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_osalloctimer\n"); callout_init(&sc->ostimer, CALLOUT_MPSAFE); *timer = &sc->ostimer; return (1); } /* Free the timer */ static NV_SINT32 nve_osfreetimer(PNV_VOID ctx, PNV_VOID timer) { DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_osfreetimer\n"); callout_drain((struct callout *)timer); return (1); } /* Setup timer parameters */ static NV_SINT32 nve_osinittimer(PNV_VOID ctx, PNV_VOID timer, PTIMER_FUNC func, PNV_VOID parameters) { struct nve_softc *sc = (struct nve_softc *)ctx; DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_osinittimer\n"); sc->ostimer_func = func; sc->ostimer_params = parameters; return (1); } /* Set the timer to go off */ static NV_SINT32 nve_ossettimer(PNV_VOID ctx, PNV_VOID timer, NV_UINT32 delay) { struct nve_softc *sc = ctx; DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_ossettimer\n"); callout_reset((struct callout *)timer, delay, sc->ostimer_func, sc->ostimer_params); return (1); } /* Cancel the timer */ static NV_SINT32 nve_oscanceltimer(PNV_VOID ctx, PNV_VOID timer) { DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_oscanceltimer\n"); callout_stop((struct callout *)timer); return (1); } static NV_SINT32 nve_ospreprocpkt(PNV_VOID ctx, PNV_VOID readdata, PNV_VOID *id, NV_UINT8 *newbuffer, NV_UINT8 priority) { /* Not implemented */ DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_ospreprocpkt\n"); return (1); } static PNV_VOID nve_ospreprocpktnopq(PNV_VOID ctx, PNV_VOID readdata) { /* Not implemented */ DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_ospreprocpkt\n"); return (NULL); } static NV_SINT32 nve_osindicatepkt(PNV_VOID ctx, PNV_VOID *id, NV_UINT32 pktno) { /* Not implemented */ DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_osindicatepkt\n"); return (1); } /* Allocate mutex context (already done in nve_attach) */ static NV_SINT32 nve_oslockalloc(PNV_VOID ctx, NV_SINT32 type, PNV_VOID *pLock) { struct nve_softc *sc = (struct nve_softc *)ctx; DEBUGOUT(NVE_DEBUG_LOCK, "nve: nve_oslockalloc\n"); *pLock = (void **)sc; return (1); } /* Obtain a spin lock */ static NV_SINT32 nve_oslockacquire(PNV_VOID ctx, NV_SINT32 type, PNV_VOID lock) { DEBUGOUT(NVE_DEBUG_LOCK, "nve: nve_oslockacquire\n"); return (1); } /* Release lock */ static NV_SINT32 nve_oslockrelease(PNV_VOID ctx, NV_SINT32 type, PNV_VOID lock) { DEBUGOUT(NVE_DEBUG_LOCK, "nve: nve_oslockrelease\n"); return (1); } /* I have no idea what this is for */ static PNV_VOID nve_osreturnbufvirt(PNV_VOID ctx, PNV_VOID readdata) { /* Not implemented */ DEBUGOUT(NVE_DEBUG_LOCK, "nve: nve_osreturnbufvirt\n"); panic("nve: nve_osreturnbufvirtual not implemented\n"); return (NULL); } /* --- End on NVOSAPI interface --- */