/*- * FreeBSD/CAM specific routines for LSI '909 FC adapters. * FreeBSD Version. * * Copyright (c) 2000, 2001 by Greg Ansley * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Copyright (c) 2002, 2006 by Matthew Jacob * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon including * a substantially similar Disclaimer requirement for further binary * redistribution. * 3. Neither the names of the above listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Support from Chris Ellsworth in order to make SAS adapters work * is gratefully acknowledged. */ /*- * Copyright (c) 2004, Avid Technology, Inc. and its contributors. * Copyright (c) 2005, WHEEL Sp. z o.o. * Copyright (c) 2004, 2005 Justin T. Gibbs * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon including * a substantially similar Disclaimer requirement for further binary * redistribution. * 3. Neither the names of the above listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include "dev/mpt/mpilib/mpi_ioc.h" /* XXX Fix Event Handling!!! */ #include "dev/mpt/mpilib/mpi_init.h" #include "dev/mpt/mpilib/mpi_targ.h" #include #include static void mpt_poll(struct cam_sim *); static timeout_t mpt_timeout; static void mpt_action(struct cam_sim *, union ccb *); static int mpt_setwidth(struct mpt_softc *, int, int); static int mpt_setsync(struct mpt_softc *, int, int, int); static void mpt_calc_geometry(struct ccb_calc_geometry *ccg, int extended); static mpt_reply_handler_t mpt_scsi_reply_handler; static mpt_reply_handler_t mpt_scsi_tmf_reply_handler; static int mpt_scsi_reply_frame_handler(struct mpt_softc *mpt, request_t *req, MSG_DEFAULT_REPLY *reply_frame); static int mpt_bus_reset(struct mpt_softc *, int /*sleep_ok*/); static int mpt_spawn_recovery_thread(struct mpt_softc *mpt); static void mpt_terminate_recovery_thread(struct mpt_softc *mpt); static void mpt_recovery_thread(void *arg); static int mpt_scsi_send_tmf(struct mpt_softc *, u_int /*type*/, u_int /*flags*/, u_int /*channel*/, u_int /*target*/, u_int /*lun*/, u_int /*abort_ctx*/, int /*sleep_ok*/); static void mpt_recover_commands(struct mpt_softc *mpt); static uint32_t scsi_io_handler_id = MPT_HANDLER_ID_NONE; static uint32_t scsi_tmf_handler_id = MPT_HANDLER_ID_NONE; static mpt_probe_handler_t mpt_cam_probe; static mpt_attach_handler_t mpt_cam_attach; static mpt_event_handler_t mpt_cam_event; static mpt_reset_handler_t mpt_cam_ioc_reset; static mpt_detach_handler_t mpt_cam_detach; static struct mpt_personality mpt_cam_personality = { .name = "mpt_cam", .probe = mpt_cam_probe, .attach = mpt_cam_attach, .event = mpt_cam_event, .reset = mpt_cam_ioc_reset, .detach = mpt_cam_detach, }; DECLARE_MPT_PERSONALITY(mpt_cam, SI_ORDER_SECOND); int mpt_cam_probe(struct mpt_softc *mpt) { /* * Only attach to nodes that support the initiator * role or have RAID physical devices that need * CAM pass-thru support. */ if ((mpt->mpt_proto_flags & MPI_PORTFACTS_PROTOCOL_INITIATOR) != 0 || (mpt->ioc_page2 != NULL && mpt->ioc_page2->MaxPhysDisks != 0)) return (0); return (ENODEV); } int mpt_cam_attach(struct mpt_softc *mpt) { struct cam_devq *devq; mpt_handler_t handler; int maxq; int error; MPTLOCK_2_CAMLOCK(mpt); TAILQ_INIT(&mpt->request_timeout_list); mpt->bus = 0; maxq = (mpt->mpt_global_credits < MPT_MAX_REQUESTS(mpt))? mpt->mpt_global_credits : MPT_MAX_REQUESTS(mpt); handler.reply_handler = mpt_scsi_reply_handler; error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler, &scsi_io_handler_id); if (error != 0) goto cleanup; handler.reply_handler = mpt_scsi_tmf_reply_handler; error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler, &scsi_tmf_handler_id); if (error != 0) goto cleanup; /* * We keep one request reserved for timeout TMF requests. */ mpt->tmf_req = mpt_get_request(mpt, /*sleep_ok*/FALSE); if (mpt->tmf_req == NULL) { mpt_prt(mpt, "Unable to allocate dedicated TMF request!\n"); error = ENOMEM; goto cleanup; } /* * Mark the request as free even though not on the free list. * There is only one TMF request allowed to be outstanding at * a time and the TMF routines perform their own allocation * tracking using the standard state flags. */ mpt->tmf_req->state = REQ_STATE_FREE; maxq--; if (mpt_spawn_recovery_thread(mpt) != 0) { mpt_prt(mpt, "Unable to spawn recovery thread!\n"); error = ENOMEM; goto cleanup; } /* * Create the device queue for our SIM(s). */ devq = cam_simq_alloc(maxq); if (devq == NULL) { mpt_prt(mpt, "Unable to allocate CAM SIMQ!\n"); error = ENOMEM; goto cleanup; } /* * Construct our SIM entry. */ mpt->sim = cam_sim_alloc(mpt_action, mpt_poll, "mpt", mpt, mpt->unit, 1, maxq, devq); if (mpt->sim == NULL) { mpt_prt(mpt, "Unable to allocate CAM SIM!\n"); cam_simq_free(devq); error = ENOMEM; goto cleanup; } /* * Register exactly the bus. */ if (xpt_bus_register(mpt->sim, 0) != CAM_SUCCESS) { mpt_prt(mpt, "Bus registration Failed!\n"); error = ENOMEM; goto cleanup; } if (xpt_create_path(&mpt->path, NULL, cam_sim_path(mpt->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { mpt_prt(mpt, "Unable to allocate Path!\n"); error = ENOMEM; goto cleanup; } /* * Only register a second bus for RAID physical * devices if the controller supports RAID. */ if (mpt->ioc_page2 == NULL || mpt->ioc_page2->MaxPhysDisks == 0) return (0); /* * Create a "bus" to export all hidden disks to CAM. */ mpt->phydisk_sim = cam_sim_alloc(mpt_action, mpt_poll, "mpt", mpt, mpt->unit, 1, maxq, devq); if (mpt->phydisk_sim == NULL) { mpt_prt(mpt, "Unable to allocate Physical Disk CAM SIM!\n"); error = ENOMEM; goto cleanup; } /* * Register exactly the bus. */ if (xpt_bus_register(mpt->phydisk_sim, 1) != CAM_SUCCESS) { mpt_prt(mpt, "Physical Disk Bus registration Failed!\n"); error = ENOMEM; goto cleanup; } if (xpt_create_path(&mpt->phydisk_path, NULL, cam_sim_path(mpt->phydisk_sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { mpt_prt(mpt, "Unable to allocate Physical Disk Path!\n"); error = ENOMEM; goto cleanup; } CAMLOCK_2_MPTLOCK(mpt); return (0); cleanup: CAMLOCK_2_MPTLOCK(mpt); mpt_cam_detach(mpt); return (error); } void mpt_cam_detach(struct mpt_softc *mpt) { mpt_handler_t handler; mpt_terminate_recovery_thread(mpt); handler.reply_handler = mpt_scsi_reply_handler; mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler, scsi_io_handler_id); handler.reply_handler = mpt_scsi_tmf_reply_handler; mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler, scsi_tmf_handler_id); if (mpt->tmf_req != NULL) { mpt_free_request(mpt, mpt->tmf_req); mpt->tmf_req = NULL; } if (mpt->sim != NULL) { xpt_free_path(mpt->path); xpt_bus_deregister(cam_sim_path(mpt->sim)); cam_sim_free(mpt->sim, TRUE); mpt->sim = NULL; } if (mpt->phydisk_sim != NULL) { xpt_free_path(mpt->phydisk_path); xpt_bus_deregister(cam_sim_path(mpt->phydisk_sim)); cam_sim_free(mpt->phydisk_sim, TRUE); mpt->phydisk_sim = NULL; } } /* This routine is used after a system crash to dump core onto the * swap device. */ static void mpt_poll(struct cam_sim *sim) { struct mpt_softc *mpt; mpt = (struct mpt_softc *)cam_sim_softc(sim); MPT_LOCK(mpt); mpt_intr(mpt); MPT_UNLOCK(mpt); } /* * Watchdog timeout routine for SCSI requests. */ static void mpt_timeout(void *arg) { union ccb *ccb; struct mpt_softc *mpt; request_t *req; ccb = (union ccb *)arg; #ifdef NOTYET mpt = mpt_find_softc(mpt); if (mpt == NULL) return; #else mpt = ccb->ccb_h.ccb_mpt_ptr; #endif MPT_LOCK(mpt); req = ccb->ccb_h.ccb_req_ptr; mpt_prt(mpt, "Request %p:serno Timed out.\n", req, req->serno); if ((req->state & REQ_STATE_QUEUED) == REQ_STATE_QUEUED) { TAILQ_REMOVE(&mpt->request_pending_list, req, links); TAILQ_INSERT_TAIL(&mpt->request_timeout_list, req, links); req->state |= REQ_STATE_TIMEDOUT; mpt_wakeup_recovery_thread(mpt); } MPT_UNLOCK(mpt); } /* * Callback routine from "bus_dmamap_load" or, in simple cases, called directly. * * Takes a list of physical segments and builds the SGL for SCSI IO command * and forwards the commard to the IOC after one last check that CAM has not * aborted the transaction. */ static void mpt_execute_req(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) { request_t *req, *trq; char *mpt_off; union ccb *ccb; struct mpt_softc *mpt; int seg, first_lim; uint32_t flags, nxt_off; bus_dmasync_op_t op; MSG_SCSI_IO_REQUEST *mpt_req; SGE_SIMPLE64 *se; SGE_CHAIN64 *ce; req = (request_t *)arg; ccb = req->ccb; mpt = ccb->ccb_h.ccb_mpt_ptr; req = ccb->ccb_h.ccb_req_ptr; mpt_req = req->req_vbuf; mpt_off = req->req_vbuf; if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) { error = EFBIG; } bad: if (error != 0) { if (error != EFBIG && error != ENOMEM) mpt_prt(mpt, "mpt_execute_req: err %d\n", error); if (ccb->ccb_h.status == CAM_REQ_INPROG) { xpt_freeze_devq(ccb->ccb_h.path, 1); ccb->ccb_h.status = CAM_DEV_QFRZN; if (error == EFBIG) { ccb->ccb_h.status |= CAM_REQ_TOO_BIG; } else if (error == ENOMEM) { if (mpt->outofbeer == 0) { mpt->outofbeer = 1; xpt_freeze_simq(mpt->sim, 1); mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n"); } ccb->ccb_h.status |= CAM_REQUEUE_REQ; } else ccb->ccb_h.status |= CAM_REQ_CMP_ERR; } ccb->ccb_h.status &= ~CAM_SIM_QUEUED; xpt_done(ccb); CAMLOCK_2_MPTLOCK(mpt); mpt_free_request(mpt, req); MPTLOCK_2_CAMLOCK(mpt); return; } /* * No data to transfer? * Just make a single simple SGL with zero length. */ if (mpt->verbose >= MPT_PRT_DEBUG) { int tidx = ((char *)&mpt_req->SGL) - mpt_off; memset(&mpt_off[tidx], 0xff, MPT_REQUEST_AREA - tidx); } if (nseg == 0) { SGE_SIMPLE32 *se1 = (SGE_SIMPLE32 *) &mpt_req->SGL; MPI_pSGE_SET_FLAGS(se1, (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST)); goto out; } mpt_req->DataLength = ccb->csio.dxfer_len; flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_64_BIT_ADDRESSING; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) flags |= MPI_SGE_FLAGS_HOST_TO_IOC; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { op = BUS_DMASYNC_PREREAD; } else { op = BUS_DMASYNC_PREWRITE; } if (!(ccb->ccb_h.flags & (CAM_SG_LIST_PHYS|CAM_DATA_PHYS))) { bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op); } /* * Okay, fill in what we can at the end of the command frame. * If we have up to MPT_NSGL_FIRST, we can fit them all into * the command frame. * * Otherwise, we fill up through MPT_NSGL_FIRST less one * SIMPLE64 pointers and start doing CHAIN64 entries after * that. */ if (nseg < MPT_NSGL_FIRST(mpt)) { first_lim = nseg; } else { /* * Leave room for CHAIN element */ first_lim = MPT_NSGL_FIRST(mpt) - 1; } se = (SGE_SIMPLE64 *) &mpt_req->SGL; for (seg = 0; seg < first_lim; seg++, se++, dm_segs++) { uint32_t tf; bzero(se, sizeof (*se)); se->Address.Low = dm_segs->ds_addr; if (sizeof(bus_addr_t) > 4) { se->Address.High = ((uint64_t) dm_segs->ds_addr) >> 32; } MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len); tf = flags; if (seg == first_lim - 1) { tf |= MPI_SGE_FLAGS_LAST_ELEMENT; } if (seg == nseg - 1) { tf |= MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_END_OF_BUFFER; } MPI_pSGE_SET_FLAGS(se, tf); } if (seg == nseg) { goto out; } /* * Tell the IOC where to find the first chain element. */ mpt_req->ChainOffset = ((char *)se - (char *)mpt_req) >> 2; nxt_off = MPT_RQSL(mpt); trq = req; /* * Make up the rest of the data segments out of a chain element * (contiained in the current request frame) which points to * SIMPLE64 elements in the next request frame, possibly ending * with *another* chain element (if there's more). */ while (seg < nseg) { int this_seg_lim; uint32_t tf, cur_off; bus_addr_t chain_list_addr; /* * Point to the chain descriptor. Note that the chain * descriptor is at the end of the *previous* list (whether * chain or simple). */ ce = (SGE_CHAIN64 *) se; /* * Before we change our current pointer, make sure we won't * overflow the request area with this frame. Note that we * test against 'greater than' here as it's okay in this case * to have next offset be just outside the request area. */ if ((nxt_off + MPT_RQSL(mpt)) > MPT_REQUEST_AREA) { nxt_off = MPT_REQUEST_AREA; goto next_chain; } /* * Set our SGE element pointer to the beginning of the chain * list and update our next chain list offset. */ se = (SGE_SIMPLE64 *) &mpt_off[nxt_off]; cur_off = nxt_off; nxt_off += MPT_RQSL(mpt); /* * Now initialized the chain descriptor. */ bzero(ce, sizeof (SGE_CHAIN64)); /* * Get the physical address of the chain list. */ chain_list_addr = trq->req_pbuf; chain_list_addr += cur_off; if (sizeof (bus_addr_t) > 4) { ce->Address.High = (uint32_t) ((uint64_t)chain_list_addr >> 32); } ce->Address.Low = (uint32_t) chain_list_addr; ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT | MPI_SGE_FLAGS_64_BIT_ADDRESSING; /* * If we have more than a frame's worth of segments left, * set up the chain list to have the last element be another * chain descriptor. */ if ((nseg - seg) > MPT_NSGL(mpt)) { this_seg_lim = seg + MPT_NSGL(mpt) - 1; /* * The length of the chain is the length in bytes of the * number of segments plus the next chain element. * * The next chain descriptor offset is the length, * in words, of the number of segments. */ ce->Length = (this_seg_lim - seg) * sizeof (SGE_SIMPLE64); ce->NextChainOffset = ce->Length >> 2; ce->Length += sizeof (SGE_CHAIN64); } else { this_seg_lim = nseg; ce->Length = (this_seg_lim - seg) * sizeof (SGE_SIMPLE64); } /* * Fill in the chain list SGE elements with our segment data. * * If we're the last element in this chain list, set the last * element flag. If we're the completely last element period, * set the end of list and end of buffer flags. */ while (seg < this_seg_lim) { bzero(se, sizeof (*se)); se->Address.Low = dm_segs->ds_addr; if (sizeof (bus_addr_t) > 4) { se->Address.High = ((uint64_t)dm_segs->ds_addr) >> 32; } MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len); tf = flags; if (seg == this_seg_lim - 1) { tf |= MPI_SGE_FLAGS_LAST_ELEMENT; } if (seg == nseg - 1) { tf |= MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_END_OF_BUFFER; } MPI_pSGE_SET_FLAGS(se, tf); se++; seg++; dm_segs++; } next_chain: /* * If we have more segments to do and we've used up all of * the space in a request area, go allocate another one * and chain to that. */ if (seg < nseg && nxt_off >= MPT_REQUEST_AREA) { request_t *nrq = mpt_get_request(mpt, FALSE); if (nrq == NULL) { error = ENOMEM; goto bad; } /* * Append the new request area on the tail of our list. */ if ((trq = req->chain) == NULL) { req->chain = nrq; } else { while (trq->chain != NULL) { trq = trq->chain; } trq->chain = nrq; } trq = nrq; mpt_off = trq->req_vbuf; mpt_req = trq->req_vbuf; if (mpt->verbose >= MPT_PRT_DEBUG) { memset(mpt_off, 0xff, MPT_REQUEST_AREA); } nxt_off = 0; } } out: /* * Last time we need to check if this CCB needs to be aborted. */ if (ccb->ccb_h.status != CAM_REQ_INPROG) { if (nseg && (ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) bus_dmamap_unload(mpt->buffer_dmat, req->dmap); CAMLOCK_2_MPTLOCK(mpt); mpt_free_request(mpt, req); MPTLOCK_2_CAMLOCK(mpt); xpt_done(ccb); return; } ccb->ccb_h.status |= CAM_SIM_QUEUED; CAMLOCK_2_MPTLOCK(mpt); if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) { ccb->ccb_h.timeout_ch = timeout(mpt_timeout, (caddr_t)ccb, (ccb->ccb_h.timeout * hz) / 1000); } else { callout_handle_init(&ccb->ccb_h.timeout_ch); } if (mpt->verbose >= MPT_PRT_DEBUG) { int nc = 0; mpt_print_scsi_io_request(req->req_vbuf); for (trq = req->chain; trq; trq = trq->chain) { printf(" Additional Chain Area %d\n", nc++); mpt_dump_sgl(trq->req_vbuf, 0); } } mpt_send_cmd(mpt, req); MPTLOCK_2_CAMLOCK(mpt); } static void mpt_start(struct cam_sim *sim, union ccb *ccb) { request_t *req; struct mpt_softc *mpt; MSG_SCSI_IO_REQUEST *mpt_req; struct ccb_scsiio *csio = &ccb->csio; struct ccb_hdr *ccbh = &ccb->ccb_h; int raid_passthru; /* Get the pointer for the physical addapter */ mpt = ccb->ccb_h.ccb_mpt_ptr; raid_passthru = (sim == mpt->phydisk_sim); CAMLOCK_2_MPTLOCK(mpt); /* Get a request structure off the free list */ if ((req = mpt_get_request(mpt, /*sleep_ok*/FALSE)) == NULL) { if (mpt->outofbeer == 0) { mpt->outofbeer = 1; xpt_freeze_simq(mpt->sim, 1); mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n"); } MPTLOCK_2_CAMLOCK(mpt); ccb->ccb_h.status = CAM_REQUEUE_REQ; xpt_done(ccb); return; } MPTLOCK_2_CAMLOCK(mpt); #if 0 COWWWWW if (raid_passthru) { status = mpt_raid_quiesce_disk(mpt, mpt->raid_disks + ccb->ccb_h.target_id, request_t *req) } #endif /* * Link the ccb and the request structure so we can find * the other knowing either the request or the ccb */ req->ccb = ccb; ccb->ccb_h.ccb_req_ptr = req; /* Now we build the command for the IOC */ mpt_req = req->req_vbuf; bzero(mpt_req, sizeof *mpt_req); mpt_req->Function = MPI_FUNCTION_SCSI_IO_REQUEST; if (raid_passthru) mpt_req->Function = MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH; mpt_req->Bus = mpt->bus; mpt_req->SenseBufferLength = (csio->sense_len < MPT_SENSE_SIZE) ? csio->sense_len : MPT_SENSE_SIZE; /* * We use the message context to find the request structure when we * Get the command completion interrupt from the IOC. */ mpt_req->MsgContext = htole32(req->index | scsi_io_handler_id); /* Which physical device to do the I/O on */ mpt_req->TargetID = ccb->ccb_h.target_id; /* * XXX Assumes Single level, Single byte, CAM LUN type. */ mpt_req->LUN[1] = ccb->ccb_h.target_lun; /* Set the direction of the transfer */ if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) mpt_req->Control = MPI_SCSIIO_CONTROL_READ; else if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) mpt_req->Control = MPI_SCSIIO_CONTROL_WRITE; else mpt_req->Control = MPI_SCSIIO_CONTROL_NODATATRANSFER; if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) { switch(ccb->csio.tag_action) { case MSG_HEAD_OF_Q_TAG: mpt_req->Control |= MPI_SCSIIO_CONTROL_HEADOFQ; break; case MSG_ACA_TASK: mpt_req->Control |= MPI_SCSIIO_CONTROL_ACAQ; break; case MSG_ORDERED_Q_TAG: mpt_req->Control |= MPI_SCSIIO_CONTROL_ORDEREDQ; break; case MSG_SIMPLE_Q_TAG: default: mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ; break; } } else { if (mpt->is_fc) mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ; else /* XXX No such thing for a target doing packetized. */ mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED; } if (mpt->is_fc == 0 && mpt->is_sas == 0) { if (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) { mpt_req->Control |= MPI_SCSIIO_CONTROL_NO_DISCONNECT; } } /* Copy the scsi command block into place */ if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) bcopy(csio->cdb_io.cdb_ptr, mpt_req->CDB, csio->cdb_len); else bcopy(csio->cdb_io.cdb_bytes, mpt_req->CDB, csio->cdb_len); mpt_req->CDBLength = csio->cdb_len; mpt_req->DataLength = csio->dxfer_len; mpt_req->SenseBufferLowAddr = req->sense_pbuf; /* * If we have any data to send with this command, * map it into bus space. */ if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) { if ((ccbh->flags & CAM_SCATTER_VALID) == 0) { /* * We've been given a pointer to a single buffer. */ if ((ccbh->flags & CAM_DATA_PHYS) == 0) { /* * Virtual address that needs to translated into * one or more physical address ranges. */ int error; error = bus_dmamap_load(mpt->buffer_dmat, req->dmap, csio->data_ptr, csio->dxfer_len, mpt_execute_req, req, 0); if (error == EINPROGRESS) { /* * So as to maintain ordering, * freeze the controller queue * until our mapping is * returned. */ xpt_freeze_simq(mpt->sim, 1); ccbh->status |= CAM_RELEASE_SIMQ; } } else { /* * We have been given a pointer to single * physical buffer. */ struct bus_dma_segment seg; seg.ds_addr = (bus_addr_t)(vm_offset_t)csio->data_ptr; seg.ds_len = csio->dxfer_len; mpt_execute_req(req, &seg, 1, 0); } } else { /* * We have been given a list of addresses. * This case could be easily supported but they are not * currently generated by the CAM subsystem so there * is no point in wasting the time right now. */ struct bus_dma_segment *segs; if ((ccbh->flags & CAM_SG_LIST_PHYS) == 0) { mpt_execute_req(req, NULL, 0, EFAULT); } else { /* Just use the segments provided */ segs = (struct bus_dma_segment *)csio->data_ptr; mpt_execute_req(req, segs, csio->sglist_cnt, 0); } } } else { mpt_execute_req(req, NULL, 0, 0); } } static int mpt_bus_reset(struct mpt_softc *mpt, int sleep_ok) { int error; u_int status; error = mpt_scsi_send_tmf(mpt, MPI_SCSITASKMGMT_TASKTYPE_RESET_BUS, mpt->is_fc ? MPI_SCSITASKMGMT_MSGFLAGS_LIP_RESET_OPTION : 0, /*bus*/0, /*target_id*/0, /*target_lun*/0, /*abort_ctx*/0, sleep_ok); if (error != 0) { /* * mpt_scsi_send_tmf hard resets on failure, so no * need to do so here. */ mpt_prt(mpt, "mpt_bus_reset: mpt_scsi_send_tmf returned %d\n", error); return (EIO); } /* Wait for bus reset to be processed by the IOC. */ error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_DONE, REQ_STATE_DONE, sleep_ok, /*time_ms*/5000); status = mpt->tmf_req->IOCStatus; mpt->tmf_req->state = REQ_STATE_FREE; if (error) { mpt_prt(mpt, "mpt_bus_reset: Reset timed-out." "Resetting controller.\n"); mpt_reset(mpt, /*reinit*/TRUE); return (ETIMEDOUT); } else if ((status & MPI_IOCSTATUS_MASK) != MPI_SCSI_STATUS_SUCCESS) { mpt_prt(mpt, "mpt_bus_reset: TMF Status %d." "Resetting controller.\n", status); mpt_reset(mpt, /*reinit*/TRUE); return (EIO); } return (0); } static int mpt_cam_event(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg) { mpt_lprt(mpt, MPT_PRT_ALWAYS, "mpt_cam_event: 0x%x\n", msg->Event & 0xFF); switch(msg->Event & 0xFF) { case MPI_EVENT_UNIT_ATTENTION: mpt_prt(mpt, "Bus: 0x%02x TargetID: 0x%02x\n", (msg->Data[0] >> 8) & 0xff, msg->Data[0] & 0xff); break; case MPI_EVENT_IOC_BUS_RESET: /* We generated a bus reset */ mpt_prt(mpt, "IOC Bus Reset Port: %d\n", (msg->Data[0] >> 8) & 0xff); xpt_async(AC_BUS_RESET, mpt->path, NULL); break; case MPI_EVENT_EXT_BUS_RESET: /* Someone else generated a bus reset */ mpt_prt(mpt, "Ext Bus Reset\n"); /* * These replies don't return EventData like the MPI * spec says they do */ xpt_async(AC_BUS_RESET, mpt->path, NULL); break; case MPI_EVENT_RESCAN: /* * In general this means a device has been added * to the loop. */ mpt_prt(mpt, "Rescan Port: %d\n", (msg->Data[0] >> 8) & 0xff); /* xpt_async(AC_FOUND_DEVICE, path, NULL); */ break; case MPI_EVENT_LINK_STATUS_CHANGE: mpt_prt(mpt, "Port %d: LinkState: %s\n", (msg->Data[1] >> 8) & 0xff, ((msg->Data[0] & 0xff) == 0)? "Failed" : "Active"); break; case MPI_EVENT_LOOP_STATE_CHANGE: switch ((msg->Data[0] >> 16) & 0xff) { case 0x01: mpt_prt(mpt, "Port 0x%x: FC LinkEvent: LIP(%02x,%02x) " "(Loop Initialization)\n", (msg->Data[1] >> 8) & 0xff, (msg->Data[0] >> 8) & 0xff, (msg->Data[0] ) & 0xff); switch ((msg->Data[0] >> 8) & 0xff) { case 0xF7: if ((msg->Data[0] & 0xff) == 0xF7) { printf("Device needs AL_PA\n"); } else { printf("Device %02x doesn't like " "FC performance\n", msg->Data[0] & 0xFF); } break; case 0xF8: if ((msg->Data[0] & 0xff) == 0xF7) { printf("Device had loop failure at its " "receiver prior to acquiring " "AL_PA\n"); } else { printf("Device %02x detected loop " "failure at its receiver\n", msg->Data[0] & 0xFF); } break; default: printf("Device %02x requests that device " "%02x reset itself\n", msg->Data[0] & 0xFF, (msg->Data[0] >> 8) & 0xFF); break; } break; case 0x02: mpt_prt(mpt, "Port 0x%x: FC LinkEvent: " "LPE(%02x,%02x) (Loop Port Enable)\n", (msg->Data[1] >> 8) & 0xff, /* Port */ (msg->Data[0] >> 8) & 0xff, /* Character 3 */ (msg->Data[0] ) & 0xff /* Character 4 */); break; case 0x03: mpt_prt(mpt, "Port 0x%x: FC LinkEvent: " "LPB(%02x,%02x) (Loop Port Bypass)\n", (msg->Data[1] >> 8) & 0xff, /* Port */ (msg->Data[0] >> 8) & 0xff, /* Character 3 */ (msg->Data[0] ) & 0xff /* Character 4 */); break; default: mpt_prt(mpt, "Port 0x%x: FC LinkEvent: Unknown " "FC event (%02x %02x %02x)\n", (msg->Data[1] >> 8) & 0xff, /* Port */ (msg->Data[0] >> 16) & 0xff, /* Event */ (msg->Data[0] >> 8) & 0xff, /* Character 3 */ (msg->Data[0] ) & 0xff /* Character 4 */); } break; case MPI_EVENT_LOGOUT: mpt_prt(mpt, "FC Logout Port: %d N_PortID: %02x\n", (msg->Data[1] >> 8) & 0xff, msg->Data[0]); break; case MPI_EVENT_EVENT_CHANGE: mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_cam_event: MPI_EVENT_EVENT_CHANGE\n"); break; case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE: /* * Devices are attachin'..... */ mpt_prt(mpt, "mpt_cam_event: MPI_EVENT_SAS_DEVICE_STATUS_CHANGE\n"); break; default: return (/*handled*/0); } return (/*handled*/1); } /* * Reply path for all SCSI I/O requests, called from our * interrupt handler by extracting our handler index from * the MsgContext field of the reply from the IOC. * * This routine is optimized for the common case of a * completion without error. All exception handling is * offloaded to non-inlined helper routines to minimize * cache footprint. */ static int mpt_scsi_reply_handler(struct mpt_softc *mpt, request_t *req, MSG_DEFAULT_REPLY *reply_frame) { MSG_SCSI_IO_REQUEST *scsi_req; union ccb *ccb; scsi_req = (MSG_SCSI_IO_REQUEST *)req->req_vbuf; ccb = req->ccb; if (ccb == NULL) { mpt_prt(mpt, "Completion without CCB. Flags %#x, Func %#x\n", req->state, scsi_req->Function); mpt_print_scsi_io_request(scsi_req); return (/*free_reply*/TRUE); } untimeout(mpt_timeout, ccb, ccb->ccb_h.timeout_ch); if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { bus_dmasync_op_t op; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) op = BUS_DMASYNC_POSTREAD; else op = BUS_DMASYNC_POSTWRITE; bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op); bus_dmamap_unload(mpt->buffer_dmat, req->dmap); } if (reply_frame == NULL) { /* * Context only reply, completion * without error status. */ ccb->csio.resid = 0; mpt_set_ccb_status(ccb, CAM_REQ_CMP); ccb->csio.scsi_status = SCSI_STATUS_OK; } else { mpt_scsi_reply_frame_handler(mpt, req, reply_frame); } if (mpt->outofbeer) { ccb->ccb_h.status |= CAM_RELEASE_SIMQ; mpt->outofbeer = 0; mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n"); } ccb->ccb_h.status &= ~CAM_SIM_QUEUED; MPTLOCK_2_CAMLOCK(mpt); if (scsi_req->Function == MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH && scsi_req->CDB[0] == INQUIRY && (scsi_req->CDB[1] & SI_EVPD) == 0) { struct scsi_inquiry_data *inq; /* * Fake out the device type so that only the * pass-thru device will attach. */ inq = (struct scsi_inquiry_data *)ccb->csio.data_ptr; inq->device &= ~0x1F; inq->device |= T_NODEVICE; } xpt_done(ccb); CAMLOCK_2_MPTLOCK(mpt); if ((req->state & REQ_STATE_TIMEDOUT) == 0) TAILQ_REMOVE(&mpt->request_pending_list, req, links); else TAILQ_REMOVE(&mpt->request_timeout_list, req, links); if ((req->state & REQ_STATE_NEED_WAKEUP) == 0) { mpt_free_request(mpt, req); return (/*free_reply*/TRUE); } req->state &= ~REQ_STATE_QUEUED; req->state |= REQ_STATE_DONE; wakeup(req); return (/*free_reply*/TRUE); } static int mpt_scsi_tmf_reply_handler(struct mpt_softc *mpt, request_t *req, MSG_DEFAULT_REPLY *reply_frame) { MSG_SCSI_TASK_MGMT_REPLY *tmf_reply; uint16_t status; KASSERT(req == mpt->tmf_req, ("TMF Reply not using mpt->tmf_req")); tmf_reply = (MSG_SCSI_TASK_MGMT_REPLY *)reply_frame; /* Record status of TMF for any waiters. */ req->IOCStatus = tmf_reply->IOCStatus; status = le16toh(tmf_reply->IOCStatus); mpt_lprt(mpt, (status == MPI_IOCSTATUS_SUCCESS)? MPT_PRT_DEBUG : MPT_PRT_ERROR, "TMF Complete: req %p:%u status 0x%x\n", req, req->serno, status); TAILQ_REMOVE(&mpt->request_pending_list, req, links); if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) { req->state |= REQ_STATE_DONE; wakeup(req); } else mpt->tmf_req->state = REQ_STATE_FREE; return (/*free_reply*/TRUE); } /* * Clean up all SCSI Initiator personality state in response * to a controller reset. */ static void mpt_cam_ioc_reset(struct mpt_softc *mpt, int type) { /* * The pending list is already run down by * the generic handler. Perform the same * operation on the timed out request list. */ mpt_complete_request_chain(mpt, &mpt->request_timeout_list, MPI_IOCSTATUS_INVALID_STATE); /* * Inform the XPT that a bus reset has occurred. */ xpt_async(AC_BUS_RESET, mpt->path, NULL); } /* * Parse additional completion information in the reply * frame for SCSI I/O requests. */ static int mpt_scsi_reply_frame_handler(struct mpt_softc *mpt, request_t *req, MSG_DEFAULT_REPLY *reply_frame) { union ccb *ccb; MSG_SCSI_IO_REPLY *scsi_io_reply; u_int ioc_status; u_int sstate; u_int loginfo; MPT_DUMP_REPLY_FRAME(mpt, reply_frame); KASSERT(reply_frame->Function == MPI_FUNCTION_SCSI_IO_REQUEST || reply_frame->Function == MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, ("MPT SCSI I/O Handler called with incorrect reply type")); KASSERT((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0, ("MPT SCSI I/O Handler called with continuation reply")); scsi_io_reply = (MSG_SCSI_IO_REPLY *)reply_frame; ioc_status = le16toh(scsi_io_reply->IOCStatus); loginfo = ioc_status & MPI_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE; ioc_status &= MPI_IOCSTATUS_MASK; sstate = scsi_io_reply->SCSIState; ccb = req->ccb; ccb->csio.resid = ccb->csio.dxfer_len - le32toh(scsi_io_reply->TransferCount); if ((sstate & MPI_SCSI_STATE_AUTOSENSE_VALID) != 0 && (ccb->ccb_h.flags & (CAM_SENSE_PHYS | CAM_SENSE_PTR)) == 0) { ccb->ccb_h.status |= CAM_AUTOSNS_VALID; ccb->csio.sense_resid = ccb->csio.sense_len - scsi_io_reply->SenseCount; bcopy(req->sense_vbuf, &ccb->csio.sense_data, min(ccb->csio.sense_len, scsi_io_reply->SenseCount)); } if ((sstate & MPI_SCSI_STATE_QUEUE_TAG_REJECTED) != 0) { /* * Tag messages rejected, but non-tagged retry * was successful. XXXX mpt_set_tags(mpt, devinfo, MPT_QUEUE_NONE); */ } switch(ioc_status) { case MPI_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: /* * XXX * Linux driver indicates that a zero * transfer length with this error code * indicates a CRC error. * * No need to swap the bytes for checking * against zero. */ if (scsi_io_reply->TransferCount == 0) { mpt_set_ccb_status(ccb, CAM_UNCOR_PARITY); break; } /* FALLTHROUGH */ case MPI_IOCSTATUS_SCSI_DATA_UNDERRUN: case MPI_IOCSTATUS_SUCCESS: case MPI_IOCSTATUS_SCSI_RECOVERED_ERROR: if ((sstate & MPI_SCSI_STATE_NO_SCSI_STATUS) != 0) { /* * Status was never returned for this transaction. */ mpt_set_ccb_status(ccb, CAM_UNEXP_BUSFREE); } else if (scsi_io_reply->SCSIStatus != SCSI_STATUS_OK) { ccb->csio.scsi_status = scsi_io_reply->SCSIStatus; mpt_set_ccb_status(ccb, CAM_SCSI_STATUS_ERROR); if ((sstate & MPI_SCSI_STATE_AUTOSENSE_FAILED) != 0) mpt_set_ccb_status(ccb, CAM_AUTOSENSE_FAIL); } else if ((sstate & MPI_SCSI_STATE_RESPONSE_INFO_VALID) != 0) { /* XXX Handle SPI-Packet and FCP-2 reponse info. */ mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR); } else mpt_set_ccb_status(ccb, CAM_REQ_CMP); break; case MPI_IOCSTATUS_SCSI_DATA_OVERRUN: mpt_set_ccb_status(ccb, CAM_DATA_RUN_ERR); break; case MPI_IOCSTATUS_SCSI_IO_DATA_ERROR: mpt_set_ccb_status(ccb, CAM_UNCOR_PARITY); break; case MPI_IOCSTATUS_SCSI_DEVICE_NOT_THERE: /* * Since selection timeouts and "device really not * there" are grouped into this error code, report * selection timeout. Selection timeouts are * typically retried before giving up on the device * whereas "device not there" errors are considered * unretryable. */ mpt_set_ccb_status(ccb, CAM_SEL_TIMEOUT); break; case MPI_IOCSTATUS_SCSI_PROTOCOL_ERROR: mpt_set_ccb_status(ccb, CAM_SEQUENCE_FAIL); break; case MPI_IOCSTATUS_SCSI_INVALID_BUS: mpt_set_ccb_status(ccb, CAM_PATH_INVALID); break; case MPI_IOCSTATUS_SCSI_INVALID_TARGETID: mpt_set_ccb_status(ccb, CAM_TID_INVALID); break; case MPI_IOCSTATUS_SCSI_TASK_MGMT_FAILED: ccb->ccb_h.status = CAM_UA_TERMIO; break; case MPI_IOCSTATUS_INVALID_STATE: /* * The IOC has been reset. Emulate a bus reset. */ /* FALLTHROUGH */ case MPI_IOCSTATUS_SCSI_EXT_TERMINATED: ccb->ccb_h.status = CAM_SCSI_BUS_RESET; break; case MPI_IOCSTATUS_SCSI_TASK_TERMINATED: case MPI_IOCSTATUS_SCSI_IOC_TERMINATED: /* * Don't clobber any timeout status that has * already been set for this transaction. We * want the SCSI layer to be able to differentiate * between the command we aborted due to timeout * and any innocent bystanders. */ if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) break; mpt_set_ccb_status(ccb, CAM_REQ_TERMIO); break; case MPI_IOCSTATUS_INSUFFICIENT_RESOURCES: mpt_set_ccb_status(ccb, CAM_RESRC_UNAVAIL); break; case MPI_IOCSTATUS_BUSY: mpt_set_ccb_status(ccb, CAM_BUSY); break; case MPI_IOCSTATUS_INVALID_FUNCTION: case MPI_IOCSTATUS_INVALID_SGL: case MPI_IOCSTATUS_INTERNAL_ERROR: case MPI_IOCSTATUS_INVALID_FIELD: default: /* XXX * Some of the above may need to kick * of a recovery action!!!! */ ccb->ccb_h.status = CAM_UNREC_HBA_ERROR; break; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) mpt_freeze_ccb(ccb); return (/*free_reply*/TRUE); } static void mpt_action(struct cam_sim *sim, union ccb *ccb) { struct mpt_softc *mpt; struct ccb_trans_settings *cts; u_int tgt; int raid_passthru; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("mpt_action\n")); mpt = (struct mpt_softc *)cam_sim_softc(sim); raid_passthru = (sim == mpt->phydisk_sim); tgt = ccb->ccb_h.target_id; if (raid_passthru && ccb->ccb_h.func_code != XPT_PATH_INQ && ccb->ccb_h.func_code != XPT_RESET_BUS) { CAMLOCK_2_MPTLOCK(mpt); if (mpt_map_physdisk(mpt, ccb, &tgt) != 0) { ccb->ccb_h.status = CAM_DEV_NOT_THERE; MPTLOCK_2_CAMLOCK(mpt); xpt_done(ccb); return; } MPTLOCK_2_CAMLOCK(mpt); } ccb->ccb_h.ccb_mpt_ptr = mpt; switch (ccb->ccb_h.func_code) { case XPT_SCSI_IO: /* Execute the requested I/O operation */ /* * Do a couple of preliminary checks... */ if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) { if ((ccb->ccb_h.flags & CAM_CDB_PHYS) != 0) { ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } } /* Max supported CDB length is 16 bytes */ /* XXX Unless we implement the new 32byte message type */ if (ccb->csio.cdb_len > sizeof (((PTR_MSG_SCSI_IO_REQUEST)0)->CDB)) { ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); return; } ccb->csio.scsi_status = SCSI_STATUS_OK; mpt_start(sim, ccb); break; case XPT_RESET_BUS: mpt_lprt(mpt, MPT_PRT_DEBUG, "XPT_RESET_BUS\n"); if (!raid_passthru) { CAMLOCK_2_MPTLOCK(mpt); (void)mpt_bus_reset(mpt, /*sleep_ok*/FALSE); MPTLOCK_2_CAMLOCK(mpt); } /* * mpt_bus_reset is always successful in that it * will fall back to a hard reset should a bus * reset attempt fail. */ mpt_set_ccb_status(ccb, CAM_REQ_CMP); xpt_done(ccb); break; case XPT_ABORT: /* * XXX: Need to implement */ ccb->ccb_h.status = CAM_UA_ABORT; xpt_done(ccb); break; #ifdef CAM_NEW_TRAN_CODE #define IS_CURRENT_SETTINGS(c) (c->type == CTS_TYPE_CURRENT_SETTINGS) #else #define IS_CURRENT_SETTINGS(c) (c->flags & CCB_TRANS_CURRENT_SETTINGS) #endif #define DP_DISC_ENABLE 0x1 #define DP_DISC_DISABL 0x2 #define DP_DISC (DP_DISC_ENABLE|DP_DISC_DISABL) #define DP_TQING_ENABLE 0x4 #define DP_TQING_DISABL 0x8 #define DP_TQING (DP_TQING_ENABLE|DP_TQING_DISABL) #define DP_WIDE 0x10 #define DP_NARROW 0x20 #define DP_WIDTH (DP_WIDE|DP_NARROW) #define DP_SYNC 0x40 case XPT_SET_TRAN_SETTINGS: /* Nexus Settings */ cts = &ccb->cts; if (!IS_CURRENT_SETTINGS(cts)) { mpt_prt(mpt, "Attempt to set User settings\n"); ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } if (mpt->is_fc == 0 && mpt->is_sas == 0) { uint8_t dval = 0; u_int period = 0, offset = 0; #ifndef CAM_NEW_TRAN_CODE if (cts->valid & CCB_TRANS_DISC_VALID) { dval |= DP_DISC_ENABLE; } if (cts->valid & CCB_TRANS_TQ_VALID) { dval |= DP_TQING_ENABLE; } if (cts->valid & CCB_TRANS_BUS_WIDTH_VALID) { if (cts->bus_width) dval |= DP_WIDE; else dval |= DP_NARROW; } /* * Any SYNC RATE of nonzero and SYNC_OFFSET * of nonzero will cause us to go to the * selected (from NVRAM) maximum value for * this device. At a later point, we'll * allow finer control. */ if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) && (cts->valid & CCB_TRANS_SYNC_OFFSET_VALID)) { dval |= DP_SYNC; period = cts->sync_period; offset = cts->sync_offset; } #else struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi; struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi; if ((spi->valid & CTS_SPI_VALID_DISC) != 0) { if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) dval |= DP_DISC_ENABLE; else dval |= DP_DISC_DISABL; } if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) { if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) dval |= DP_TQING_ENABLE; else dval |= DP_TQING_DISABL; } if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) { if (spi->bus_width == MSG_EXT_WDTR_BUS_16_BIT) dval |= DP_WIDE; else dval |= DP_NARROW; } if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) && (spi->valid & CTS_SPI_VALID_SYNC_RATE) && (spi->sync_period && spi->sync_offset)) { dval |= DP_SYNC; period = spi->sync_period; offset = spi->sync_offset; } #endif CAMLOCK_2_MPTLOCK(mpt); if (dval & DP_DISC_ENABLE) { mpt->mpt_disc_enable |= (1 << tgt); } else if (dval & DP_DISC_DISABL) { mpt->mpt_disc_enable &= ~(1 << tgt); } if (dval & DP_TQING_ENABLE) { mpt->mpt_tag_enable |= (1 << tgt); } else if (dval & DP_TQING_DISABL) { mpt->mpt_tag_enable &= ~(1 << tgt); } if (dval & DP_WIDTH) { if (mpt_setwidth(mpt, tgt, dval & DP_WIDE)) { mpt_prt(mpt, "Set width Failed!\n"); ccb->ccb_h.status = CAM_REQ_CMP_ERR; MPTLOCK_2_CAMLOCK(mpt); xpt_done(ccb); break; } } if (dval & DP_SYNC) { if (mpt_setsync(mpt, tgt, period, offset)) { mpt_prt(mpt, "Set sync Failed!\n"); ccb->ccb_h.status = CAM_REQ_CMP_ERR; MPTLOCK_2_CAMLOCK(mpt); xpt_done(ccb); break; } } MPTLOCK_2_CAMLOCK(mpt); mpt_lprt(mpt, MPT_PRT_DEBUG, "SET tgt %d flags %x period %x off %x\n", tgt, dval, period, offset); } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; case XPT_GET_TRAN_SETTINGS: cts = &ccb->cts; if (mpt->is_fc) { #ifndef CAM_NEW_TRAN_CODE /* * a lot of normal SCSI things don't make sense. */ cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB; cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID; /* * How do you measure the width of a high * speed serial bus? Well, in bytes. * * Offset and period make no sense, though, so we set * (above) a 'base' transfer speed to be gigabit. */ cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; #else struct ccb_trans_settings_fc *fc = &cts->xport_specific.fc; cts->protocol = PROTO_SCSI; cts->protocol_version = SCSI_REV_2; cts->transport = XPORT_FC; cts->transport_version = 0; fc->valid = CTS_FC_VALID_SPEED; fc->bitrate = 100000; /* XXX: Need for 2Gb/s */ /* XXX: need a port database for each target */ #endif } else if (mpt->is_sas) { #ifndef CAM_NEW_TRAN_CODE cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB; cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID; /* * How do you measure the width of a high * speed serial bus? Well, in bytes. * * Offset and period make no sense, though, so we set * (above) a 'base' transfer speed to be gigabit. */ cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; #else struct ccb_trans_settings_sas *sas = &cts->xport_specific.sas; cts->protocol = PROTO_SCSI; cts->protocol_version = SCSI_REV_3; cts->transport = XPORT_SAS; cts->transport_version = 0; sas->valid = CTS_SAS_VALID_SPEED; sas->bitrate = 300000; /* XXX: Default 3Gbps */ #endif } else { #ifdef CAM_NEW_TRAN_CODE struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi; struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi; #endif uint8_t dval, pval, oval; int rv; /* * We aren't going off of Port PAGE2 params for * tagged queuing or disconnect capabilities * for current settings. For goal settings, * we assert all capabilities- we've had some * problems with reading NVRAM data. */ if (IS_CURRENT_SETTINGS(cts)) { CONFIG_PAGE_SCSI_DEVICE_0 tmp; dval = 0; tmp = mpt->mpt_dev_page0[tgt]; CAMLOCK_2_MPTLOCK(mpt); rv = mpt_read_cur_cfg_page(mpt, tgt, &tmp.Header, sizeof(tmp), /*sleep_ok*/FALSE, /*timeout_ms*/5000); if (rv) { mpt_prt(mpt, "cannot get target %d DP0\n", tgt); } mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Tgt %d Page 0: NParms %x " "Information %x\n", tgt, tmp.NegotiatedParameters, tmp.Information); MPTLOCK_2_CAMLOCK(mpt); if (tmp.NegotiatedParameters & MPI_SCSIDEVPAGE0_NP_WIDE) dval |= DP_WIDE; if (mpt->mpt_disc_enable & (1 << tgt)) { dval |= DP_DISC_ENABLE; } if (mpt->mpt_tag_enable & (1 << tgt)) { dval |= DP_TQING_ENABLE; } oval = (tmp.NegotiatedParameters >> 16) & 0xff; pval = (tmp.NegotiatedParameters >> 8) & 0xff; } else { /* * XXX: Fix wrt NVRAM someday. Attempts * XXX: to read port page2 device data * XXX: just returns zero in these areas. */ dval = DP_WIDE|DP_DISC|DP_TQING; oval = (mpt->mpt_port_page0.Capabilities >> 16); pval = (mpt->mpt_port_page0.Capabilities >> 8); } #ifndef CAM_NEW_TRAN_CODE cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB); if (dval & DP_DISC_ENABLE) { cts->flags |= CCB_TRANS_DISC_ENB; } if (dval & DP_TQING_ENABLE) { cts->flags |= CCB_TRANS_TAG_ENB; } if (dval & DP_WIDE) { cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; } else { cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; } cts->valid = CCB_TRANS_BUS_WIDTH_VALID | CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID; if (oval) { cts->sync_period = pval; cts->sync_offset = oval; cts->valid |= CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID; } #else cts->protocol = PROTO_SCSI; cts->protocol_version = SCSI_REV_2; cts->transport = XPORT_SPI; cts->transport_version = 2; scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; if (dval & DP_DISC_ENABLE) { spi->flags |= CTS_SPI_FLAGS_DISC_ENB; } if (dval & DP_TQING_ENABLE) { scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; } if (oval && pval) { spi->sync_offset = oval; spi->sync_period = pval; spi->valid |= CTS_SPI_VALID_SYNC_OFFSET; spi->valid |= CTS_SPI_VALID_SYNC_RATE; } spi->valid |= CTS_SPI_VALID_BUS_WIDTH; if (dval & DP_WIDE) { spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; } else { spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; } if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) { scsi->valid = CTS_SCSI_VALID_TQ; spi->valid |= CTS_SPI_VALID_DISC; } else { scsi->valid = 0; } #endif mpt_lprt(mpt, MPT_PRT_DEBUG, "GET %s tgt %d flags %x period %x offset %x\n", IS_CURRENT_SETTINGS(cts) ? "ACTIVE" : "NVRAM", tgt, dval, pval, oval); } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; case XPT_CALC_GEOMETRY: { struct ccb_calc_geometry *ccg; ccg = &ccb->ccg; if (ccg->block_size == 0) { ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } mpt_calc_geometry(ccg, /*extended*/1); xpt_done(ccb); break; } case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; cpi->target_sprt = 0; cpi->hba_eng_cnt = 0; cpi->max_lun = 7; cpi->bus_id = cam_sim_bus(sim); /* XXX Report base speed more accurately for FC/SAS, etc.*/ if (raid_passthru) { cpi->max_target = mpt->ioc_page2->MaxPhysDisks; cpi->hba_misc = PIM_NOBUSRESET; cpi->initiator_id = cpi->max_target + 1; cpi->hba_inquiry = PI_TAG_ABLE; if (mpt->is_fc) { cpi->base_transfer_speed = 100000; } else if (mpt->is_sas) { cpi->base_transfer_speed = 300000; } else { cpi->base_transfer_speed = 3300; cpi->hba_inquiry |= PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16; } } else if (mpt->is_fc) { /* XXX SHOULD BE BASED UPON IOC FACTS XXX */ cpi->max_target = 255; cpi->hba_misc = PIM_NOBUSRESET; cpi->initiator_id = cpi->max_target + 1; cpi->base_transfer_speed = 100000; cpi->hba_inquiry = PI_TAG_ABLE; } else if (mpt->is_sas) { cpi->max_target = 63; /* XXX */ cpi->hba_misc = PIM_NOBUSRESET; cpi->initiator_id = cpi->max_target; cpi->base_transfer_speed = 300000; cpi->hba_inquiry = PI_TAG_ABLE; } else { cpi->initiator_id = mpt->mpt_ini_id; cpi->base_transfer_speed = 3300; cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16; cpi->hba_misc = 0; cpi->max_target = 15; } strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "LSI", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } default: ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } } static int mpt_setwidth(struct mpt_softc *mpt, int tgt, int onoff) { CONFIG_PAGE_SCSI_DEVICE_1 tmp; int rv; tmp = mpt->mpt_dev_page1[tgt]; if (onoff) { tmp.RequestedParameters |= MPI_SCSIDEVPAGE1_RP_WIDE; } else { tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_WIDE; } rv = mpt_write_cur_cfg_page(mpt, tgt, &tmp.Header, sizeof(tmp), /*sleep_ok*/FALSE, /*timeout_ms*/5000); if (rv) { mpt_prt(mpt, "mpt_setwidth: write cur page failed\n"); return (-1); } rv = mpt_read_cur_cfg_page(mpt, tgt, &tmp.Header, sizeof(tmp), /*sleep_ok*/FALSE, /*timeout_ms*/5000); if (rv) { mpt_prt(mpt, "mpt_setwidth: read cur page failed\n"); return (-1); } mpt->mpt_dev_page1[tgt] = tmp; mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Target %d Page 1: RequestedParameters %x Config %x\n", tgt, mpt->mpt_dev_page1[tgt].RequestedParameters, mpt->mpt_dev_page1[tgt].Configuration); return (0); } static int mpt_setsync(struct mpt_softc *mpt, int tgt, int period, int offset) { CONFIG_PAGE_SCSI_DEVICE_1 tmp; int rv; tmp = mpt->mpt_dev_page1[tgt]; tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK; tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK; tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_DT; tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_QAS; tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_IU; /* * XXX: For now, we're ignoring specific settings */ if (period && offset) { int factor, offset, np; factor = (mpt->mpt_port_page0.Capabilities >> 8) & 0xff; offset = (mpt->mpt_port_page0.Capabilities >> 16) & 0xff; np = 0; if (factor < 0x9) { np |= MPI_SCSIDEVPAGE1_RP_QAS; np |= MPI_SCSIDEVPAGE1_RP_IU; } if (factor < 0xa) { np |= MPI_SCSIDEVPAGE1_RP_DT; } np |= (factor << 8) | (offset << 16); tmp.RequestedParameters |= np; } rv = mpt_write_cur_cfg_page(mpt, tgt, &tmp.Header, sizeof(tmp), /*sleep_ok*/FALSE, /*timeout_ms*/5000); if (rv) { mpt_prt(mpt, "mpt_setsync: write cur page failed\n"); return (-1); } rv = mpt_read_cur_cfg_page(mpt, tgt, &tmp.Header, sizeof(tmp), /*sleep_ok*/FALSE, /*timeout_ms*/500); if (rv) { mpt_prt(mpt, "mpt_setsync: read cur page failed\n"); return (-1); } mpt->mpt_dev_page1[tgt] = tmp; mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Target %d Page 1: RParams %x Config %x\n", tgt, mpt->mpt_dev_page1[tgt].RequestedParameters, mpt->mpt_dev_page1[tgt].Configuration); return (0); } static void mpt_calc_geometry(struct ccb_calc_geometry *ccg, int extended) { #if __FreeBSD_version >= 500000 cam_calc_geometry(ccg, extended); #else uint32_t size_mb; uint32_t secs_per_cylinder; size_mb = ccg->volume_size / ((1024L * 1024L) / ccg->block_size); if (size_mb > 1024 && extended) { ccg->heads = 255; ccg->secs_per_track = 63; } else { ccg->heads = 64; ccg->secs_per_track = 32; } secs_per_cylinder = ccg->heads * ccg->secs_per_track; ccg->cylinders = ccg->volume_size / secs_per_cylinder; ccg->ccb_h.status = CAM_REQ_CMP; #endif } /****************************** Timeout Recovery ******************************/ static int mpt_spawn_recovery_thread(struct mpt_softc *mpt) { int error; error = mpt_kthread_create(mpt_recovery_thread, mpt, &mpt->recovery_thread, /*flags*/0, /*altstack*/0, "mpt_recovery%d", mpt->unit); return (error); } /* * Lock is not held on entry. */ static void mpt_terminate_recovery_thread(struct mpt_softc *mpt) { MPT_LOCK(mpt); if (mpt->recovery_thread == NULL) { MPT_UNLOCK(mpt); return; } mpt->shutdwn_recovery = 1; wakeup(mpt); /* * Sleep on a slightly different location * for this interlock just for added safety. */ mpt_sleep(mpt, &mpt->recovery_thread, PUSER, "thtrm", 0); MPT_UNLOCK(mpt); } static void mpt_recovery_thread(void *arg) { struct mpt_softc *mpt; #if __FreeBSD_version >= 500000 mtx_lock(&Giant); #endif mpt = (struct mpt_softc *)arg; MPT_LOCK(mpt); for (;;) { if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0 && mpt->shutdwn_recovery == 0) mpt_sleep(mpt, mpt, PUSER, "idle", 0); if (mpt->shutdwn_recovery != 0) break; MPT_UNLOCK(mpt); mpt_recover_commands(mpt); MPT_LOCK(mpt); } mpt->recovery_thread = NULL; wakeup(&mpt->recovery_thread); MPT_UNLOCK(mpt); #if __FreeBSD_version >= 500000 mtx_unlock(&Giant); #endif kthread_exit(0); } static int mpt_scsi_send_tmf(struct mpt_softc *mpt, u_int type, u_int flags, u_int channel, u_int target, u_int lun, u_int abort_ctx, int sleep_ok) { MSG_SCSI_TASK_MGMT *tmf_req; int error; /* * Wait for any current TMF request to complete. * We're only allowed to issue one TMF at a time. */ error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_FREE, REQ_STATE_MASK, sleep_ok, MPT_TMF_MAX_TIMEOUT); if (error != 0) { mpt_reset(mpt, /*reinit*/TRUE); return (ETIMEDOUT); } mpt->tmf_req->state = REQ_STATE_ALLOCATED|REQ_STATE_QUEUED; TAILQ_INSERT_HEAD(&mpt->request_pending_list, mpt->tmf_req, links); tmf_req = (MSG_SCSI_TASK_MGMT *)mpt->tmf_req->req_vbuf; bzero(tmf_req, sizeof(*tmf_req)); tmf_req->TargetID = target; tmf_req->Bus = channel; tmf_req->ChainOffset = 0; tmf_req->Function = MPI_FUNCTION_SCSI_TASK_MGMT; tmf_req->Reserved = 0; tmf_req->TaskType = type; tmf_req->Reserved1 = 0; tmf_req->MsgFlags = flags; tmf_req->MsgContext = htole32(mpt->tmf_req->index | scsi_tmf_handler_id); bzero(&tmf_req->LUN, sizeof(tmf_req->LUN) + sizeof(tmf_req->Reserved2)); tmf_req->LUN[1] = lun; tmf_req->TaskMsgContext = abort_ctx; mpt_lprt(mpt, MPT_PRT_INFO, "Issuing TMF %p with MsgContext of 0x%x\n", tmf_req, tmf_req->MsgContext); if (mpt->verbose > MPT_PRT_DEBUG) mpt_print_request(tmf_req); error = mpt_send_handshake_cmd(mpt, sizeof(*tmf_req), tmf_req); if (error != 0) mpt_reset(mpt, /*reinit*/TRUE); return (error); } /* * When a command times out, it is placed on the requeust_timeout_list * and we wake our recovery thread. The MPT-Fusion architecture supports * only a single TMF operation at a time, so we serially abort/bdr, etc, * the timedout transactions. The next TMF is issued either by the * completion handler of the current TMF waking our recovery thread, * or the TMF timeout handler causing a hard reset sequence. */ static void mpt_recover_commands(struct mpt_softc *mpt) { request_t *req; union ccb *ccb; int error; MPT_LOCK(mpt); if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) { /* * No work to do- leave. */ mpt_prt(mpt, "mpt_recover_commands: no requests.\n"); MPT_UNLOCK(mpt); return; } /* * Flush any commands whose completion coincides with their timeout. */ mpt_intr(mpt); if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) { /* * The timedout commands have already * completed. This typically means * that either the timeout value was on * the hairy edge of what the device * requires or - more likely - interrupts * are not happening. */ mpt_prt(mpt, "Timedout requests already complete. " "Interrupts may not be functioning.\n"); mpt_enable_ints(mpt); MPT_UNLOCK(mpt); return; } /* * We have no visibility into the current state of the * controller, so attempt to abort the commands in the * order they timed-out. */ while ((req = TAILQ_FIRST(&mpt->request_timeout_list)) != NULL) { u_int status; u_int32_t serno = req->serno; mpt_prt(mpt, "Attempting to Abort Req %p:%u\n", req, serno); ccb = req->ccb; mpt_set_ccb_status(ccb, CAM_CMD_TIMEOUT); error = mpt_scsi_send_tmf(mpt, MPI_SCSITASKMGMT_TASKTYPE_ABORT_TASK, /*MsgFlags*/0, mpt->bus, ccb->ccb_h.target_id, ccb->ccb_h.target_lun, htole32(req->index | scsi_io_handler_id), /*sleep_ok*/TRUE); if (error != 0) { mpt_prt(mpt, "Abort Req %p:%u failed to start TMF\n", req, serno); /* * mpt_scsi_send_tmf hard resets on failure, so no * need to do so here. Our queue should be emptied * by the hard reset. */ continue; } error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_DONE, REQ_STATE_DONE, /*sleep_ok*/TRUE, /*time_ms*/500); status = mpt->tmf_req->IOCStatus; if (error != 0) { /* * If we've errored out and the transaction is still * pending, reset the controller. */ mpt_prt(mpt, "Abort Req %p:%d timed-out. " "Resetting controller\n", req, serno); mpt_reset(mpt, /*reinit*/TRUE); continue; } /* * TMF is complete. */ TAILQ_REMOVE(&mpt->request_timeout_list, req, links); mpt->tmf_req->state = REQ_STATE_FREE; if ((status & MPI_IOCSTATUS_MASK) == MPI_SCSI_STATUS_SUCCESS) continue; mpt_lprt(mpt, MPT_PRT_DEBUG, "Abort Req %p: %u Failed " "with status 0x%x\n. Resetting bus.", req, serno, status); /* * If the abort attempt fails for any reason, reset the bus. * We should find all of the timed-out commands on our * list are in the done state after this completes. */ mpt_bus_reset(mpt, /*sleep_ok*/TRUE); } MPT_UNLOCK(mpt); }