/*- * Copyright (c) 2006 M. Warner Losh. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef DEV_MMC_BRIDGE_H #define DEV_MMC_BRIDGE_H /* * This file defines interfaces for the mmc bridge. The names chosen * are similar to or the same as the names used in Linux to allow for * easy porting of what Linux calls mmc host drivers. I use the * FreeBSD terminology of bridge and bus for consistancy with other * drivers in the system. This file corresponds roughly to the Linux * linux/mmc/host.h file. * * A mmc bridge is a chipset that can have one or more mmc and/or sd * cards attached to it. mmc cards are attached on a bus topology, * while sd and sdio cards are attached using a star topology (meaning * in practice each sd card has its own, independent slot). Each * mmcbr is assumed to be derived from the mmcbr. This is done to * allow for easier addition of bridges (as each bridge does not need * to be added to the mmcbus file). * * Attached to the mmc bridge is an mmcbus. The mmcbus is described * in dev/mmc/bus.h. */ /* * mmc_ios is a structure that is used to store the state of the mmc/sd * bus configuration. This include the bus' clock speed, its voltage, * the bus mode for command output, the SPI chip select, some power * states and the bus width. */ enum mmc_vdd { vdd_150 = 0, vdd_155, vdd_160, vdd_165, vdd_170, vdd_180, vdd_190, vdd_200, vdd_210, vdd_220, vdd_230, vdd_240, vdd_250, vdd_260, vdd_270, vdd_280, vdd_290, vdd_300, vdd_310, vdd_320, vdd_330, vdd_340, vdd_350, vdd_360 }; enum mmc_power_mode { power_off = 0, power_up, power_on }; enum mmc_bus_mode { opendrain = 1, pushpull }; enum mmc_chip_select { cs_dontcare = 0, cs_high, cs_low }; enum mmc_bus_width { bus_width_1 = 0, bus_width_4 = 2, bus_width_8 = 3 }; struct mmc_ios { uint32_t clock; /* Speed of the clock in Hz to move data */ enum mmc_vdd vdd; /* Voltage to apply to the power pins/ */ enum mmc_bus_mode bus_mode; enum mmc_chip_select chip_select; enum mmc_bus_width bus_width; enum mmc_power_mode power_mode; }; enum mmc_card_mode { mode_mmc, mode_sd }; struct mmc_host { int f_min; int f_max; uint32_t host_ocr; uint32_t ocr; uint32_t caps; #define MMC_CAP_4_BIT_DATA (1 << 0) /* Can do 4-bit data transfers */ #define MMC_CAP_8_BIT_DATA (1 << 1) /* Can do 8-bit data transfers */ enum mmc_card_mode mode; struct mmc_ios ios; /* Current state of the host */ }; #endif /* DEV_MMC_BRIDGE_H */