/*- * Copyright (c) 2007-2009 * Damien Bergamini * Copyright (c) 2008 * Benjamin Close * Copyright (c) 2008 Sam Leffler, Errno Consulting * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network * adapters. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct iwn_ident { uint16_t vendor; uint16_t device; const char *name; }; static const struct iwn_ident iwn_ident_table[] = { { 0x8086, 0x0082, "Intel(R) Centrino(R) Advanced-N 6205" }, { 0x8086, 0x0083, "Intel(R) Centrino(R) Wireless-N 1000" }, { 0x8086, 0x0084, "Intel(R) Centrino(R) Wireless-N 1000" }, { 0x8086, 0x0085, "Intel(R) Centrino(R) Advanced-N 6205" }, { 0x8086, 0x0087, "Intel(R) Centrino(R) Advanced-N + WiMAX 6250" }, { 0x8086, 0x0089, "Intel(R) Centrino(R) Advanced-N + WiMAX 6250" }, { 0x8086, 0x008a, "Intel(R) Centrino(R) Wireless-N 1030" }, { 0x8086, 0x008b, "Intel(R) Centrino(R) Wireless-N 1030" }, { 0x8086, 0x0090, "Intel(R) Centrino(R) Advanced-N 6230" }, { 0x8086, 0x0091, "Intel(R) Centrino(R) Advanced-N 6230" }, { 0x8086, 0x0896, "Intel(R) Centrino(R) Wireless-N 130" }, { 0x8086, 0x4229, "Intel(R) Wireless WiFi Link 4965" }, { 0x8086, 0x422b, "Intel(R) Centrino(R) Ultimate-N 6300" }, { 0x8086, 0x422c, "Intel(R) Centrino(R) Advanced-N 6200" }, { 0x8086, 0x422d, "Intel(R) Wireless WiFi Link 4965" }, { 0x8086, 0x4230, "Intel(R) Wireless WiFi Link 4965" }, { 0x8086, 0x4232, "Intel(R) WiFi Link 5100" }, { 0x8086, 0x4233, "Intel(R) Wireless WiFi Link 4965" }, { 0x8086, 0x4235, "Intel(R) Ultimate N WiFi Link 5300" }, { 0x8086, 0x4236, "Intel(R) Ultimate N WiFi Link 5300" }, { 0x8086, 0x4237, "Intel(R) WiFi Link 5100" }, { 0x8086, 0x4238, "Intel(R) Centrino(R) Ultimate-N 6300" }, { 0x8086, 0x4239, "Intel(R) Centrino(R) Advanced-N 6200" }, { 0x8086, 0x423a, "Intel(R) WiMAX/WiFi Link 5350" }, { 0x8086, 0x423b, "Intel(R) WiMAX/WiFi Link 5350" }, { 0x8086, 0x423c, "Intel(R) WiMAX/WiFi Link 5150" }, { 0x8086, 0x423d, "Intel(R) WiMAX/WiFi Link 5150" }, { 0, 0, NULL } }; static int iwn_probe(device_t); static int iwn_attach(device_t); static int iwn4965_attach(struct iwn_softc *, uint16_t); static int iwn5000_attach(struct iwn_softc *, uint16_t); static void iwn_radiotap_attach(struct iwn_softc *); static void iwn_sysctlattach(struct iwn_softc *); static struct ieee80211vap *iwn_vap_create(struct ieee80211com *, const char name[IFNAMSIZ], int unit, int opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]); static void iwn_vap_delete(struct ieee80211vap *); static int iwn_detach(device_t); static int iwn_shutdown(device_t); static int iwn_suspend(device_t); static int iwn_resume(device_t); static int iwn_nic_lock(struct iwn_softc *); static int iwn_eeprom_lock(struct iwn_softc *); static int iwn_init_otprom(struct iwn_softc *); static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); static void iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, void **, bus_size_t, bus_size_t); static void iwn_dma_contig_free(struct iwn_dma_info *); static int iwn_alloc_sched(struct iwn_softc *); static void iwn_free_sched(struct iwn_softc *); static int iwn_alloc_kw(struct iwn_softc *); static void iwn_free_kw(struct iwn_softc *); static int iwn_alloc_ict(struct iwn_softc *); static void iwn_free_ict(struct iwn_softc *); static int iwn_alloc_fwmem(struct iwn_softc *); static void iwn_free_fwmem(struct iwn_softc *); static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, int); static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); static void iwn5000_ict_reset(struct iwn_softc *); static int iwn_read_eeprom(struct iwn_softc *, uint8_t macaddr[IEEE80211_ADDR_LEN]); static void iwn4965_read_eeprom(struct iwn_softc *); static void iwn4965_print_power_group(struct iwn_softc *, int); static void iwn5000_read_eeprom(struct iwn_softc *); static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *); static void iwn_read_eeprom_band(struct iwn_softc *, int); static void iwn_read_eeprom_ht40(struct iwn_softc *, int); static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *, struct ieee80211_channel *); static int iwn_setregdomain(struct ieee80211com *, struct ieee80211_regdomain *, int, struct ieee80211_channel[]); static void iwn_read_eeprom_enhinfo(struct iwn_softc *); static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN]); static void iwn_newassoc(struct ieee80211_node *, int); static int iwn_media_change(struct ifnet *); static int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void iwn_calib_timeout(void *); static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); static void iwn5000_rx_calib_results(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, uint8_t); static void iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *); static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); static void iwn_notif_intr(struct iwn_softc *); static void iwn_wakeup_intr(struct iwn_softc *); static void iwn_rftoggle_intr(struct iwn_softc *); static void iwn_fatal_intr(struct iwn_softc *); static void iwn_intr(void *); static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, uint16_t); static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, uint16_t); #ifdef notyet static void iwn5000_reset_sched(struct iwn_softc *, int, int); #endif static int iwn_tx_data(struct iwn_softc *, struct mbuf *, struct ieee80211_node *); static int iwn_tx_data_raw(struct iwn_softc *, struct mbuf *, struct ieee80211_node *, const struct ieee80211_bpf_params *params); static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void iwn_start(struct ifnet *); static void iwn_start_locked(struct ifnet *); static void iwn_watchdog(void *); static int iwn_ioctl(struct ifnet *, u_long, caddr_t); static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, int); static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, int); static int iwn_set_link_quality(struct iwn_softc *, struct ieee80211_node *); static int iwn_add_broadcast_node(struct iwn_softc *, int); static int iwn_updateedca(struct ieee80211com *); static void iwn_update_mcast(struct ifnet *); static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); static int iwn_set_critical_temp(struct iwn_softc *); static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); static void iwn4965_power_calibration(struct iwn_softc *, int); static int iwn4965_set_txpower(struct iwn_softc *, struct ieee80211_channel *, int); static int iwn5000_set_txpower(struct iwn_softc *, struct ieee80211_channel *, int); static int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); static int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); static int iwn_get_noise(const struct iwn_rx_general_stats *); static int iwn4965_get_temperature(struct iwn_softc *); static int iwn5000_get_temperature(struct iwn_softc *); static int iwn_init_sensitivity(struct iwn_softc *); static void iwn_collect_noise(struct iwn_softc *, const struct iwn_rx_general_stats *); static int iwn4965_init_gains(struct iwn_softc *); static int iwn5000_init_gains(struct iwn_softc *); static int iwn4965_set_gains(struct iwn_softc *); static int iwn5000_set_gains(struct iwn_softc *); static void iwn_tune_sensitivity(struct iwn_softc *, const struct iwn_rx_stats *); static int iwn_send_sensitivity(struct iwn_softc *); static int iwn_set_pslevel(struct iwn_softc *, int, int, int); static int iwn_send_btcoex(struct iwn_softc *); static int iwn_send_advanced_btcoex(struct iwn_softc *); static int iwn5000_runtime_calib(struct iwn_softc *); static int iwn_config(struct iwn_softc *); static uint8_t *ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int); static int iwn_scan(struct iwn_softc *); static int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap); static int iwn_run(struct iwn_softc *, struct ieee80211vap *vap); static int iwn_ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, int, int, int); static void iwn_ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); static int iwn_addba_request(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int, int, int); static int iwn_addba_response(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int, int, int); static int iwn_ampdu_tx_start(struct ieee80211com *, struct ieee80211_node *, uint8_t); static void iwn_ampdu_tx_stop(struct ieee80211_node *, struct ieee80211_tx_ampdu *); static void iwn4965_ampdu_tx_start(struct iwn_softc *, struct ieee80211_node *, int, uint8_t, uint16_t); static void iwn4965_ampdu_tx_stop(struct iwn_softc *, int, uint8_t, uint16_t); static void iwn5000_ampdu_tx_start(struct iwn_softc *, struct ieee80211_node *, int, uint8_t, uint16_t); static void iwn5000_ampdu_tx_stop(struct iwn_softc *, int, uint8_t, uint16_t); static int iwn5000_query_calibration(struct iwn_softc *); static int iwn5000_send_calibration(struct iwn_softc *); static int iwn5000_send_wimax_coex(struct iwn_softc *); static int iwn5000_crystal_calib(struct iwn_softc *); static int iwn5000_temp_offset_calib(struct iwn_softc *); static int iwn4965_post_alive(struct iwn_softc *); static int iwn5000_post_alive(struct iwn_softc *); static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, int); static int iwn4965_load_firmware(struct iwn_softc *); static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, const uint8_t *, int); static int iwn5000_load_firmware(struct iwn_softc *); static int iwn_read_firmware_leg(struct iwn_softc *, struct iwn_fw_info *); static int iwn_read_firmware_tlv(struct iwn_softc *, struct iwn_fw_info *, uint16_t); static int iwn_read_firmware(struct iwn_softc *); static int iwn_clock_wait(struct iwn_softc *); static int iwn_apm_init(struct iwn_softc *); static void iwn_apm_stop_master(struct iwn_softc *); static void iwn_apm_stop(struct iwn_softc *); static int iwn4965_nic_config(struct iwn_softc *); static int iwn5000_nic_config(struct iwn_softc *); static int iwn_hw_prepare(struct iwn_softc *); static int iwn_hw_init(struct iwn_softc *); static void iwn_hw_stop(struct iwn_softc *); static void iwn_radio_on(void *, int); static void iwn_radio_off(void *, int); static void iwn_init_locked(struct iwn_softc *); static void iwn_init(void *); static void iwn_stop_locked(struct iwn_softc *); static void iwn_stop(struct iwn_softc *); static void iwn_scan_start(struct ieee80211com *); static void iwn_scan_end(struct ieee80211com *); static void iwn_set_channel(struct ieee80211com *); static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long); static void iwn_scan_mindwell(struct ieee80211_scan_state *); static void iwn_hw_reset(void *, int); #define IWN_DEBUG #ifdef IWN_DEBUG enum { IWN_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ IWN_DEBUG_RECV = 0x00000002, /* basic recv operation */ IWN_DEBUG_STATE = 0x00000004, /* 802.11 state transitions */ IWN_DEBUG_TXPOW = 0x00000008, /* tx power processing */ IWN_DEBUG_RESET = 0x00000010, /* reset processing */ IWN_DEBUG_OPS = 0x00000020, /* iwn_ops processing */ IWN_DEBUG_BEACON = 0x00000040, /* beacon handling */ IWN_DEBUG_WATCHDOG = 0x00000080, /* watchdog timeout */ IWN_DEBUG_INTR = 0x00000100, /* ISR */ IWN_DEBUG_CALIBRATE = 0x00000200, /* periodic calibration */ IWN_DEBUG_NODE = 0x00000400, /* node management */ IWN_DEBUG_LED = 0x00000800, /* led management */ IWN_DEBUG_CMD = 0x00001000, /* cmd submission */ IWN_DEBUG_FATAL = 0x80000000, /* fatal errors */ IWN_DEBUG_ANY = 0xffffffff }; #define DPRINTF(sc, m, fmt, ...) do { \ if (sc->sc_debug & (m)) \ printf(fmt, __VA_ARGS__); \ } while (0) static const char * iwn_intr_str(uint8_t cmd) { switch (cmd) { /* Notifications */ case IWN_UC_READY: return "UC_READY"; case IWN_ADD_NODE_DONE: return "ADD_NODE_DONE"; case IWN_TX_DONE: return "TX_DONE"; case IWN_START_SCAN: return "START_SCAN"; case IWN_STOP_SCAN: return "STOP_SCAN"; case IWN_RX_STATISTICS: return "RX_STATS"; case IWN_BEACON_STATISTICS: return "BEACON_STATS"; case IWN_STATE_CHANGED: return "STATE_CHANGED"; case IWN_BEACON_MISSED: return "BEACON_MISSED"; case IWN_RX_PHY: return "RX_PHY"; case IWN_MPDU_RX_DONE: return "MPDU_RX_DONE"; case IWN_RX_DONE: return "RX_DONE"; /* Command Notifications */ case IWN_CMD_RXON: return "IWN_CMD_RXON"; case IWN_CMD_RXON_ASSOC: return "IWN_CMD_RXON_ASSOC"; case IWN_CMD_EDCA_PARAMS: return "IWN_CMD_EDCA_PARAMS"; case IWN_CMD_TIMING: return "IWN_CMD_TIMING"; case IWN_CMD_LINK_QUALITY: return "IWN_CMD_LINK_QUALITY"; case IWN_CMD_SET_LED: return "IWN_CMD_SET_LED"; case IWN5000_CMD_WIMAX_COEX: return "IWN5000_CMD_WIMAX_COEX"; case IWN5000_CMD_CALIB_CONFIG: return "IWN5000_CMD_CALIB_CONFIG"; case IWN5000_CMD_CALIB_RESULT: return "IWN5000_CMD_CALIB_RESULT"; case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE"; case IWN_CMD_SET_POWER_MODE: return "IWN_CMD_SET_POWER_MODE"; case IWN_CMD_SCAN: return "IWN_CMD_SCAN"; case IWN_CMD_SCAN_RESULTS: return "IWN_CMD_SCAN_RESULTS"; case IWN_CMD_TXPOWER: return "IWN_CMD_TXPOWER"; case IWN_CMD_TXPOWER_DBM: return "IWN_CMD_TXPOWER_DBM"; case IWN5000_CMD_TX_ANT_CONFIG: return "IWN5000_CMD_TX_ANT_CONFIG"; case IWN_CMD_BT_COEX: return "IWN_CMD_BT_COEX"; case IWN_CMD_SET_CRITICAL_TEMP: return "IWN_CMD_SET_CRITICAL_TEMP"; case IWN_CMD_SET_SENSITIVITY: return "IWN_CMD_SET_SENSITIVITY"; case IWN_CMD_PHY_CALIB: return "IWN_CMD_PHY_CALIB"; } return "UNKNOWN INTR NOTIF/CMD"; } #else #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0) #endif static device_method_t iwn_methods[] = { /* Device interface */ DEVMETHOD(device_probe, iwn_probe), DEVMETHOD(device_attach, iwn_attach), DEVMETHOD(device_detach, iwn_detach), DEVMETHOD(device_shutdown, iwn_shutdown), DEVMETHOD(device_suspend, iwn_suspend), DEVMETHOD(device_resume, iwn_resume), { 0, 0 } }; static driver_t iwn_driver = { "iwn", iwn_methods, sizeof(struct iwn_softc) }; static devclass_t iwn_devclass; DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0); MODULE_VERSION(iwn, 1); MODULE_DEPEND(iwn, firmware, 1, 1, 1); MODULE_DEPEND(iwn, pci, 1, 1, 1); MODULE_DEPEND(iwn, wlan, 1, 1, 1); static int iwn_probe(device_t dev) { const struct iwn_ident *ident; for (ident = iwn_ident_table; ident->name != NULL; ident++) { if (pci_get_vendor(dev) == ident->vendor && pci_get_device(dev) == ident->device) { device_set_desc(dev, ident->name); return 0; } } return ENXIO; } static int iwn_attach(device_t dev) { struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev); struct ieee80211com *ic; struct ifnet *ifp; uint32_t reg; int i, error, result; uint8_t macaddr[IEEE80211_ADDR_LEN]; sc->sc_dev = dev; /* * Get the offset of the PCI Express Capability Structure in PCI * Configuration Space. */ error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); if (error != 0) { device_printf(dev, "PCIe capability structure not found!\n"); return error; } /* Clear device-specific "PCI retry timeout" register (41h). */ pci_write_config(dev, 0x41, 0, 1); /* Hardware bug workaround. */ reg = pci_read_config(dev, PCIR_COMMAND, 1); if (reg & PCIM_CMD_INTxDIS) { DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n", __func__); reg &= ~PCIM_CMD_INTxDIS; pci_write_config(dev, PCIR_COMMAND, reg, 1); } /* Enable bus-mastering. */ pci_enable_busmaster(dev); sc->mem_rid = PCIR_BAR(0); sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, RF_ACTIVE); if (sc->mem == NULL) { device_printf(dev, "can't map mem space\n"); error = ENOMEM; return error; } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); sc->irq_rid = 0; if ((result = pci_msi_count(dev)) == 1 && pci_alloc_msi(dev, &result) == 0) sc->irq_rid = 1; /* Install interrupt handler. */ sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, RF_ACTIVE | RF_SHAREABLE); if (sc->irq == NULL) { device_printf(dev, "can't map interrupt\n"); error = ENOMEM; goto fail; } IWN_LOCK_INIT(sc); /* Read hardware revision and attach. */ sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf; if (sc->hw_type == IWN_HW_REV_TYPE_4965) error = iwn4965_attach(sc, pci_get_device(dev)); else error = iwn5000_attach(sc, pci_get_device(dev)); if (error != 0) { device_printf(dev, "could not attach device, error %d\n", error); goto fail; } if ((error = iwn_hw_prepare(sc)) != 0) { device_printf(dev, "hardware not ready, error %d\n", error); goto fail; } /* Allocate DMA memory for firmware transfers. */ if ((error = iwn_alloc_fwmem(sc)) != 0) { device_printf(dev, "could not allocate memory for firmware, error %d\n", error); goto fail; } /* Allocate "Keep Warm" page. */ if ((error = iwn_alloc_kw(sc)) != 0) { device_printf(dev, "could not allocate keep warm page, error %d\n", error); goto fail; } /* Allocate ICT table for 5000 Series. */ if (sc->hw_type != IWN_HW_REV_TYPE_4965 && (error = iwn_alloc_ict(sc)) != 0) { device_printf(dev, "could not allocate ICT table, error %d\n", error); goto fail; } /* Allocate TX scheduler "rings". */ if ((error = iwn_alloc_sched(sc)) != 0) { device_printf(dev, "could not allocate TX scheduler rings, error %d\n", error); goto fail; } /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ for (i = 0; i < sc->ntxqs; i++) { if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { device_printf(dev, "could not allocate TX ring %d, error %d\n", i, error); goto fail; } } /* Allocate RX ring. */ if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { device_printf(dev, "could not allocate RX ring, error %d\n", error); goto fail; } /* Clear pending interrupts. */ IWN_WRITE(sc, IWN_INT, 0xffffffff); ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); if (ifp == NULL) { device_printf(dev, "can not allocate ifnet structure\n"); goto fail; } ic = ifp->if_l2com; ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_MONITOR /* monitor mode supported */ | IEEE80211_C_BGSCAN /* background scanning */ | IEEE80211_C_TXPMGT /* tx power management */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_WPA | IEEE80211_C_SHPREAMBLE /* short preamble supported */ #if 0 | IEEE80211_C_IBSS /* ibss/adhoc mode */ #endif | IEEE80211_C_WME /* WME */ ; /* Read MAC address, channels, etc from EEPROM. */ if ((error = iwn_read_eeprom(sc, macaddr)) != 0) { device_printf(dev, "could not read EEPROM, error %d\n", error); goto fail; } /* Count the number of available chains. */ sc->ntxchains = ((sc->txchainmask >> 2) & 1) + ((sc->txchainmask >> 1) & 1) + ((sc->txchainmask >> 0) & 1); sc->nrxchains = ((sc->rxchainmask >> 2) & 1) + ((sc->rxchainmask >> 1) & 1) + ((sc->rxchainmask >> 0) & 1); if (bootverbose) { device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n", sc->ntxchains, sc->nrxchains, sc->eeprom_domain, macaddr, ":"); } if (sc->sc_flags & IWN_FLAG_HAS_11N) { ic->ic_rxstream = sc->nrxchains; ic->ic_txstream = sc->ntxchains; ic->ic_htcaps = IEEE80211_HTCAP_SMPS_OFF /* SMPS mode disabled */ | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width*/ | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ #ifdef notyet | IEEE80211_HTCAP_GREENFIELD #if IWN_RBUF_SIZE == 8192 | IEEE80211_HTCAP_MAXAMSDU_7935 /* max A-MSDU length */ #else | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ #endif #endif /* s/w capabilities */ | IEEE80211_HTC_HT /* HT operation */ | IEEE80211_HTC_AMPDU /* tx A-MPDU */ #ifdef notyet | IEEE80211_HTC_AMSDU /* tx A-MSDU */ #endif ; } if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = iwn_init; ifp->if_ioctl = iwn_ioctl; ifp->if_start = iwn_start; IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; IFQ_SET_READY(&ifp->if_snd); ieee80211_ifattach(ic, macaddr); ic->ic_vap_create = iwn_vap_create; ic->ic_vap_delete = iwn_vap_delete; ic->ic_raw_xmit = iwn_raw_xmit; ic->ic_node_alloc = iwn_node_alloc; sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start; ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop; ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; sc->sc_addba_request = ic->ic_addba_request; ic->ic_addba_request = iwn_addba_request; sc->sc_addba_response = ic->ic_addba_response; ic->ic_addba_response = iwn_addba_response; sc->sc_addba_stop = ic->ic_addba_stop; ic->ic_addba_stop = iwn_ampdu_tx_stop; ic->ic_newassoc = iwn_newassoc; ic->ic_wme.wme_update = iwn_updateedca; ic->ic_update_mcast = iwn_update_mcast; ic->ic_scan_start = iwn_scan_start; ic->ic_scan_end = iwn_scan_end; ic->ic_set_channel = iwn_set_channel; ic->ic_scan_curchan = iwn_scan_curchan; ic->ic_scan_mindwell = iwn_scan_mindwell; ic->ic_setregdomain = iwn_setregdomain; iwn_radiotap_attach(sc); callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc); TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc); TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc); iwn_sysctlattach(sc); /* * Hook our interrupt after all initialization is complete. */ error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, iwn_intr, sc, &sc->sc_ih); if (error != 0) { device_printf(dev, "can't establish interrupt, error %d\n", error); goto fail; } if (bootverbose) ieee80211_announce(ic); return 0; fail: iwn_detach(dev); return error; } static int iwn4965_attach(struct iwn_softc *sc, uint16_t pid) { struct iwn_ops *ops = &sc->ops; ops->load_firmware = iwn4965_load_firmware; ops->read_eeprom = iwn4965_read_eeprom; ops->post_alive = iwn4965_post_alive; ops->nic_config = iwn4965_nic_config; ops->update_sched = iwn4965_update_sched; ops->get_temperature = iwn4965_get_temperature; ops->get_rssi = iwn4965_get_rssi; ops->set_txpower = iwn4965_set_txpower; ops->init_gains = iwn4965_init_gains; ops->set_gains = iwn4965_set_gains; ops->add_node = iwn4965_add_node; ops->tx_done = iwn4965_tx_done; ops->ampdu_tx_start = iwn4965_ampdu_tx_start; ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; sc->ntxqs = IWN4965_NTXQUEUES; sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE; sc->ndmachnls = IWN4965_NDMACHNLS; sc->broadcast_id = IWN4965_ID_BROADCAST; sc->rxonsz = IWN4965_RXONSZ; sc->schedsz = IWN4965_SCHEDSZ; sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; sc->fwsz = IWN4965_FWSZ; sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; sc->limits = &iwn4965_sensitivity_limits; sc->fwname = "iwn4965fw"; /* Override chains masks, ROM is known to be broken. */ sc->txchainmask = IWN_ANT_AB; sc->rxchainmask = IWN_ANT_ABC; return 0; } static int iwn5000_attach(struct iwn_softc *sc, uint16_t pid) { struct iwn_ops *ops = &sc->ops; ops->load_firmware = iwn5000_load_firmware; ops->read_eeprom = iwn5000_read_eeprom; ops->post_alive = iwn5000_post_alive; ops->nic_config = iwn5000_nic_config; ops->update_sched = iwn5000_update_sched; ops->get_temperature = iwn5000_get_temperature; ops->get_rssi = iwn5000_get_rssi; ops->set_txpower = iwn5000_set_txpower; ops->init_gains = iwn5000_init_gains; ops->set_gains = iwn5000_set_gains; ops->add_node = iwn5000_add_node; ops->tx_done = iwn5000_tx_done; ops->ampdu_tx_start = iwn5000_ampdu_tx_start; ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; sc->ntxqs = IWN5000_NTXQUEUES; sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE; sc->ndmachnls = IWN5000_NDMACHNLS; sc->broadcast_id = IWN5000_ID_BROADCAST; sc->rxonsz = IWN5000_RXONSZ; sc->schedsz = IWN5000_SCHEDSZ; sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; sc->fwsz = IWN5000_FWSZ; sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; switch (sc->hw_type) { case IWN_HW_REV_TYPE_5100: sc->limits = &iwn5000_sensitivity_limits; sc->fwname = "iwn5000fw"; /* Override chains masks, ROM is known to be broken. */ sc->txchainmask = IWN_ANT_B; sc->rxchainmask = IWN_ANT_AB; break; case IWN_HW_REV_TYPE_5150: sc->limits = &iwn5150_sensitivity_limits; sc->fwname = "iwn5150fw"; break; case IWN_HW_REV_TYPE_5300: case IWN_HW_REV_TYPE_5350: sc->limits = &iwn5000_sensitivity_limits; sc->fwname = "iwn5000fw"; break; case IWN_HW_REV_TYPE_1000: sc->limits = &iwn1000_sensitivity_limits; sc->fwname = "iwn1000fw"; break; case IWN_HW_REV_TYPE_6000: sc->limits = &iwn6000_sensitivity_limits; sc->fwname = "iwn6000fw"; if (pid == 0x422c || pid == 0x4239) { sc->sc_flags |= IWN_FLAG_INTERNAL_PA; /* Override chains masks, ROM is known to be broken. */ sc->txchainmask = IWN_ANT_BC; sc->rxchainmask = IWN_ANT_BC; } break; case IWN_HW_REV_TYPE_6050: sc->limits = &iwn6000_sensitivity_limits; sc->fwname = "iwn6050fw"; /* Override chains masks, ROM is known to be broken. */ sc->txchainmask = IWN_ANT_AB; sc->rxchainmask = IWN_ANT_AB; break; case IWN_HW_REV_TYPE_6005: sc->limits = &iwn6000_sensitivity_limits; if (pid != 0x0082 && pid != 0x0085) { sc->fwname = "iwn6000g2bfw"; sc->sc_flags |= IWN_FLAG_ADV_BTCOEX; } else sc->fwname = "iwn6000g2afw"; break; default: device_printf(sc->sc_dev, "adapter type %d not supported\n", sc->hw_type); return ENOTSUP; } return 0; } /* * Attach the interface to 802.11 radiotap. */ static void iwn_radiotap_attach(struct iwn_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), IWN_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), IWN_RX_RADIOTAP_PRESENT); } static void iwn_sysctlattach(struct iwn_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); #ifdef IWN_DEBUG sc->sc_debug = 0; SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs"); #endif } static struct ieee80211vap * iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, int opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct iwn_vap *ivp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap), M_80211_VAP, M_NOWAIT | M_ZERO); if (ivp == NULL) return NULL; vap = &ivp->iv_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); vap->iv_bmissthreshold = 10; /* override default */ /* Override with driver methods. */ ivp->iv_newstate = vap->iv_newstate; vap->iv_newstate = iwn_newstate; ieee80211_ratectl_init(vap); /* Complete setup. */ ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status); ic->ic_opmode = opmode; return vap; } static void iwn_vap_delete(struct ieee80211vap *vap) { struct iwn_vap *ivp = IWN_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(ivp, M_80211_VAP); } static int iwn_detach(device_t dev) { struct iwn_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic; int qid; if (ifp != NULL) { ic = ifp->if_l2com; ieee80211_draintask(ic, &sc->sc_reinit_task); ieee80211_draintask(ic, &sc->sc_radioon_task); ieee80211_draintask(ic, &sc->sc_radiooff_task); iwn_stop(sc); callout_drain(&sc->watchdog_to); callout_drain(&sc->calib_to); ieee80211_ifdetach(ic); } /* Uninstall interrupt handler. */ if (sc->irq != NULL) { bus_teardown_intr(dev, sc->irq, sc->sc_ih); bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); if (sc->irq_rid == 1) pci_release_msi(dev); } /* Free DMA resources. */ iwn_free_rx_ring(sc, &sc->rxq); for (qid = 0; qid < sc->ntxqs; qid++) iwn_free_tx_ring(sc, &sc->txq[qid]); iwn_free_sched(sc); iwn_free_kw(sc); if (sc->ict != NULL) iwn_free_ict(sc); iwn_free_fwmem(sc); if (sc->mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); if (ifp != NULL) if_free(ifp); IWN_LOCK_DESTROY(sc); return 0; } static int iwn_shutdown(device_t dev) { struct iwn_softc *sc = device_get_softc(dev); iwn_stop(sc); return 0; } static int iwn_suspend(device_t dev) { struct iwn_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); iwn_stop(sc); if (vap != NULL) ieee80211_stop(vap); return 0; } static int iwn_resume(device_t dev) { struct iwn_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); /* Clear device-specific "PCI retry timeout" register (41h). */ pci_write_config(dev, 0x41, 0, 1); if (ifp->if_flags & IFF_UP) { iwn_init(sc); if (vap != NULL) ieee80211_init(vap); if (ifp->if_drv_flags & IFF_DRV_RUNNING) iwn_start(ifp); } return 0; } static int iwn_nic_lock(struct iwn_softc *sc) { int ntries; /* Request exclusive access to NIC. */ IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); /* Spin until we actually get the lock. */ for (ntries = 0; ntries < 1000; ntries++) { if ((IWN_READ(sc, IWN_GP_CNTRL) & (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == IWN_GP_CNTRL_MAC_ACCESS_ENA) return 0; DELAY(10); } return ETIMEDOUT; } static __inline void iwn_nic_unlock(struct iwn_softc *sc) { IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); } static __inline uint32_t iwn_prph_read(struct iwn_softc *sc, uint32_t addr) { IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); IWN_BARRIER_READ_WRITE(sc); return IWN_READ(sc, IWN_PRPH_RDATA); } static __inline void iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) { IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); IWN_BARRIER_WRITE(sc); IWN_WRITE(sc, IWN_PRPH_WDATA, data); } static __inline void iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) { iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); } static __inline void iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) { iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); } static __inline void iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, const uint32_t *data, int count) { for (; count > 0; count--, data++, addr += 4) iwn_prph_write(sc, addr, *data); } static __inline uint32_t iwn_mem_read(struct iwn_softc *sc, uint32_t addr) { IWN_WRITE(sc, IWN_MEM_RADDR, addr); IWN_BARRIER_READ_WRITE(sc); return IWN_READ(sc, IWN_MEM_RDATA); } static __inline void iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) { IWN_WRITE(sc, IWN_MEM_WADDR, addr); IWN_BARRIER_WRITE(sc); IWN_WRITE(sc, IWN_MEM_WDATA, data); } static __inline void iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) { uint32_t tmp; tmp = iwn_mem_read(sc, addr & ~3); if (addr & 3) tmp = (tmp & 0x0000ffff) | data << 16; else tmp = (tmp & 0xffff0000) | data; iwn_mem_write(sc, addr & ~3, tmp); } static __inline void iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, int count) { for (; count > 0; count--, addr += 4) *data++ = iwn_mem_read(sc, addr); } static __inline void iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, int count) { for (; count > 0; count--, addr += 4) iwn_mem_write(sc, addr, val); } static int iwn_eeprom_lock(struct iwn_softc *sc) { int i, ntries; for (i = 0; i < 100; i++) { /* Request exclusive access to EEPROM. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); /* Spin until we actually get the lock. */ for (ntries = 0; ntries < 100; ntries++) { if (IWN_READ(sc, IWN_HW_IF_CONFIG) & IWN_HW_IF_CONFIG_EEPROM_LOCKED) return 0; DELAY(10); } } return ETIMEDOUT; } static __inline void iwn_eeprom_unlock(struct iwn_softc *sc) { IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); } /* * Initialize access by host to One Time Programmable ROM. * NB: This kind of ROM can be found on 1000 or 6000 Series only. */ static int iwn_init_otprom(struct iwn_softc *sc) { uint16_t prev, base, next; int count, error; /* Wait for clock stabilization before accessing prph. */ if ((error = iwn_clock_wait(sc)) != 0) return error; if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); DELAY(5); iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); iwn_nic_unlock(sc); /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ if (sc->hw_type != IWN_HW_REV_TYPE_1000) { IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, IWN_RESET_LINK_PWR_MGMT_DIS); } IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); /* Clear ECC status. */ IWN_SETBITS(sc, IWN_OTP_GP, IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); /* * Find the block before last block (contains the EEPROM image) * for HW without OTP shadow RAM. */ if (sc->hw_type == IWN_HW_REV_TYPE_1000) { /* Switch to absolute addressing mode. */ IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); base = prev = 0; for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { error = iwn_read_prom_data(sc, base, &next, 2); if (error != 0) return error; if (next == 0) /* End of linked-list. */ break; prev = base; base = le16toh(next); } if (count == 0 || count == IWN1000_OTP_NBLOCKS) return EIO; /* Skip "next" word. */ sc->prom_base = prev + 1; } return 0; } static int iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) { uint8_t *out = data; uint32_t val, tmp; int ntries; addr += sc->prom_base; for (; count > 0; count -= 2, addr++) { IWN_WRITE(sc, IWN_EEPROM, addr << 2); for (ntries = 0; ntries < 10; ntries++) { val = IWN_READ(sc, IWN_EEPROM); if (val & IWN_EEPROM_READ_VALID) break; DELAY(5); } if (ntries == 10) { device_printf(sc->sc_dev, "timeout reading ROM at 0x%x\n", addr); return ETIMEDOUT; } if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { /* OTPROM, check for ECC errors. */ tmp = IWN_READ(sc, IWN_OTP_GP); if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { device_printf(sc->sc_dev, "OTPROM ECC error at 0x%x\n", addr); return EIO; } if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { /* Correctable ECC error, clear bit. */ IWN_SETBITS(sc, IWN_OTP_GP, IWN_OTP_GP_ECC_CORR_STTS); } } *out++ = val >> 16; if (count > 1) *out++ = val >> 24; } return 0; } static void iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { if (error != 0) return; KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); *(bus_addr_t *)arg = segs[0].ds_addr; } static int iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, void **kvap, bus_size_t size, bus_size_t alignment) { int error; dma->tag = NULL; dma->size = size; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag); if (error != 0) goto fail; error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); if (error != 0) goto fail; error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); if (error != 0) goto fail; bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); if (kvap != NULL) *kvap = dma->vaddr; return 0; fail: iwn_dma_contig_free(dma); return error; } static void iwn_dma_contig_free(struct iwn_dma_info *dma) { if (dma->map != NULL) { if (dma->vaddr != NULL) { bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->tag, dma->map); bus_dmamem_free(dma->tag, &dma->vaddr, dma->map); dma->vaddr = NULL; } bus_dmamap_destroy(dma->tag, dma->map); dma->map = NULL; } if (dma->tag != NULL) { bus_dma_tag_destroy(dma->tag); dma->tag = NULL; } } static int iwn_alloc_sched(struct iwn_softc *sc) { /* TX scheduler rings must be aligned on a 1KB boundary. */ return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched, sc->schedsz, 1024); } static void iwn_free_sched(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->sched_dma); } static int iwn_alloc_kw(struct iwn_softc *sc) { /* "Keep Warm" page must be aligned on a 4KB boundary. */ return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096); } static void iwn_free_kw(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->kw_dma); } static int iwn_alloc_ict(struct iwn_softc *sc) { /* ICT table must be aligned on a 4KB boundary. */ return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict, IWN_ICT_SIZE, 4096); } static void iwn_free_ict(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->ict_dma); } static int iwn_alloc_fwmem(struct iwn_softc *sc) { /* Must be aligned on a 16-byte boundary. */ return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16); } static void iwn_free_fwmem(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->fw_dma); } static int iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { bus_size_t size; int i, error; ring->cur = 0; /* Allocate RX descriptors (256-byte aligned). */ size = IWN_RX_RING_COUNT * sizeof (uint32_t); error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, size, 256); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate RX ring DMA memory, error %d\n", __func__, error); goto fail; } /* Allocate RX status area (16-byte aligned). */ error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate RX status DMA memory, error %d\n", __func__, error); goto fail; } /* Create RX buffer DMA tag. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create RX buf DMA tag, error %d\n", __func__, error); goto fail; } /* * Allocate and map RX buffers. */ for (i = 0; i < IWN_RX_RING_COUNT; i++) { struct iwn_rx_data *data = &ring->data[i]; bus_addr_t paddr; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create RX buf DMA map, error %d\n", __func__, error); goto fail; } data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE); if (data->m == NULL) { device_printf(sc->sc_dev, "%s: could not allocate RX mbuf\n", __func__); error = ENOBUFS; goto fail; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "%s: can't not map mbuf, error %d\n", __func__, error); goto fail; } /* Set physical address of RX buffer (256-byte aligned). */ ring->desc[i] = htole32(paddr >> 8); } bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); return 0; fail: iwn_free_rx_ring(sc, ring); return error; } static void iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { int ntries; if (iwn_nic_lock(sc) == 0) { IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); for (ntries = 0; ntries < 1000; ntries++) { if (IWN_READ(sc, IWN_FH_RX_STATUS) & IWN_FH_RX_STATUS_IDLE) break; DELAY(10); } iwn_nic_unlock(sc); } ring->cur = 0; sc->last_rx_valid = 0; } static void iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { int i; iwn_dma_contig_free(&ring->desc_dma); iwn_dma_contig_free(&ring->stat_dma); for (i = 0; i < IWN_RX_RING_COUNT; i++) { struct iwn_rx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } if (ring->data_dmat != NULL) { bus_dma_tag_destroy(ring->data_dmat); ring->data_dmat = NULL; } } static int iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) { bus_addr_t paddr; bus_size_t size; int i, error; ring->qid = qid; ring->queued = 0; ring->cur = 0; /* Allocate TX descriptors (256-byte aligned). */ size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, size, 256); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate TX ring DMA memory, error %d\n", __func__, error); goto fail; } size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, size, 4); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate TX cmd DMA memory, error %d\n", __func__, error); goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create TX buf DMA tag, error %d\n", __func__, error); goto fail; } paddr = ring->cmd_dma.paddr; for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; data->cmd_paddr = paddr; data->scratch_paddr = paddr + 12; paddr += sizeof (struct iwn_tx_cmd); error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create TX buf DMA map, error %d\n", __func__, error); goto fail; } } return 0; fail: iwn_free_tx_ring(sc, ring); return error; } static void iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) { int i; for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } } /* Clear TX descriptors. */ memset(ring->desc, 0, ring->desc_dma.size); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); sc->qfullmsk &= ~(1 << ring->qid); ring->queued = 0; ring->cur = 0; } static void iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) { int i; iwn_dma_contig_free(&ring->desc_dma); iwn_dma_contig_free(&ring->cmd_dma); for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } if (ring->data_dmat != NULL) { bus_dma_tag_destroy(ring->data_dmat); ring->data_dmat = NULL; } } static void iwn5000_ict_reset(struct iwn_softc *sc) { /* Disable interrupts. */ IWN_WRITE(sc, IWN_INT_MASK, 0); /* Reset ICT table. */ memset(sc->ict, 0, IWN_ICT_SIZE); sc->ict_cur = 0; /* Set physical address of ICT table (4KB aligned). */ DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__); IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); /* Enable periodic RX interrupt. */ sc->int_mask |= IWN_INT_RX_PERIODIC; /* Switch to ICT interrupt mode in driver. */ sc->sc_flags |= IWN_FLAG_USE_ICT; /* Re-enable interrupts. */ IWN_WRITE(sc, IWN_INT, 0xffffffff); IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); } static int iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) { struct iwn_ops *ops = &sc->ops; uint16_t val; int error; /* Check whether adapter has an EEPROM or an OTPROM. */ if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) sc->sc_flags |= IWN_FLAG_HAS_OTPROM; DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM"); /* Adapter has to be powered on for EEPROM access to work. */ if ((error = iwn_apm_init(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not power ON adapter, error %d\n", __func__, error); return error; } if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__); return EIO; } if ((error = iwn_eeprom_lock(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n", __func__, error); return error; } if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { if ((error = iwn_init_otprom(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not initialize OTPROM, error %d\n", __func__, error); return error; } } iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val)); /* Check if HT support is bonded out. */ if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) sc->sc_flags |= IWN_FLAG_HAS_11N; iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); sc->rfcfg = le16toh(val); DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg); /* Read Tx/Rx chains from ROM unless it's known to be broken. */ if (sc->txchainmask == 0) sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); if (sc->rxchainmask == 0) sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); /* Read MAC address. */ iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6); /* Read adapter-specific information from EEPROM. */ ops->read_eeprom(sc); iwn_apm_stop(sc); /* Power OFF adapter. */ iwn_eeprom_unlock(sc); return 0; } static void iwn4965_read_eeprom(struct iwn_softc *sc) { uint32_t addr; uint16_t val; int i; /* Read regulatory domain (4 ASCII characters). */ iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); /* Read the list of authorized channels (20MHz ones only). */ for (i = 0; i < 7; i++) { addr = iwn4965_regulatory_bands[i]; iwn_read_eeprom_channels(sc, i, addr); } /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); sc->maxpwr2GHz = val & 0xff; sc->maxpwr5GHz = val >> 8; /* Check that EEPROM values are within valid range. */ if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) sc->maxpwr5GHz = 38; if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) sc->maxpwr2GHz = 38; DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz); /* Read samples for each TX power group. */ iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, sizeof sc->bands); /* Read voltage at which samples were taken. */ iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); sc->eeprom_voltage = (int16_t)le16toh(val); DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n", sc->eeprom_voltage); #ifdef IWN_DEBUG /* Print samples. */ if (sc->sc_debug & IWN_DEBUG_ANY) { for (i = 0; i < IWN_NBANDS; i++) iwn4965_print_power_group(sc, i); } #endif } #ifdef IWN_DEBUG static void iwn4965_print_power_group(struct iwn_softc *sc, int i) { struct iwn4965_eeprom_band *band = &sc->bands[i]; struct iwn4965_eeprom_chan_samples *chans = band->chans; int j, c; printf("===band %d===\n", i); printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); printf("chan1 num=%d\n", chans[0].num); for (c = 0; c < 2; c++) { for (j = 0; j < IWN_NSAMPLES; j++) { printf("chain %d, sample %d: temp=%d gain=%d " "power=%d pa_det=%d\n", c, j, chans[0].samples[c][j].temp, chans[0].samples[c][j].gain, chans[0].samples[c][j].power, chans[0].samples[c][j].pa_det); } } printf("chan2 num=%d\n", chans[1].num); for (c = 0; c < 2; c++) { for (j = 0; j < IWN_NSAMPLES; j++) { printf("chain %d, sample %d: temp=%d gain=%d " "power=%d pa_det=%d\n", c, j, chans[1].samples[c][j].temp, chans[1].samples[c][j].gain, chans[1].samples[c][j].power, chans[1].samples[c][j].pa_det); } } } #endif static void iwn5000_read_eeprom(struct iwn_softc *sc) { struct iwn5000_eeprom_calib_hdr hdr; int32_t volt; uint32_t base, addr; uint16_t val; int i; /* Read regulatory domain (4 ASCII characters). */ iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); base = le16toh(val); iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, sc->eeprom_domain, 4); /* Read the list of authorized channels (20MHz ones only). */ for (i = 0; i < 7; i++) { if (sc->hw_type >= IWN_HW_REV_TYPE_6000) addr = base + iwn6000_regulatory_bands[i]; else addr = base + iwn5000_regulatory_bands[i]; iwn_read_eeprom_channels(sc, i, addr); } /* Read enhanced TX power information for 6000 Series. */ if (sc->hw_type >= IWN_HW_REV_TYPE_6000) iwn_read_eeprom_enhinfo(sc); iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); base = le16toh(val); iwn_read_prom_data(sc, base, &hdr, sizeof hdr); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calib version=%u pa type=%u voltage=%u\n", __func__, hdr.version, hdr.pa_type, le16toh(hdr.volt)); sc->calib_ver = hdr.version; if (sc->hw_type == IWN_HW_REV_TYPE_5150) { /* Compute temperature offset. */ iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); sc->eeprom_temp = le16toh(val); iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); volt = le16toh(val); sc->temp_off = sc->eeprom_temp - (volt / -5); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n", sc->eeprom_temp, volt, sc->temp_off); } else { /* Read crystal calibration. */ iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, &sc->eeprom_crystal, sizeof (uint32_t)); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n", le32toh(sc->eeprom_crystal)); } } /* * Translate EEPROM flags to net80211. */ static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel) { uint32_t nflags; nflags = 0; if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0) nflags |= IEEE80211_CHAN_PASSIVE; if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0) nflags |= IEEE80211_CHAN_NOADHOC; if (channel->flags & IWN_EEPROM_CHAN_RADAR) { nflags |= IEEE80211_CHAN_DFS; /* XXX apparently IBSS may still be marked */ nflags |= IEEE80211_CHAN_NOADHOC; } return nflags; } static void iwn_read_eeprom_band(struct iwn_softc *sc, int n) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; const struct iwn_chan_band *band = &iwn_bands[n]; struct ieee80211_channel *c; uint8_t chan; int i, nflags; for (i = 0; i < band->nchan; i++) { if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { DPRINTF(sc, IWN_DEBUG_RESET, "skip chan %d flags 0x%x maxpwr %d\n", band->chan[i], channels[i].flags, channels[i].maxpwr); continue; } chan = band->chan[i]; nflags = iwn_eeprom_channel_flags(&channels[i]); c = &ic->ic_channels[ic->ic_nchans++]; c->ic_ieee = chan; c->ic_maxregpower = channels[i].maxpwr; c->ic_maxpower = 2*c->ic_maxregpower; if (n == 0) { /* 2GHz band */ c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G); /* G =>'s B is supported */ c->ic_flags = IEEE80211_CHAN_B | nflags; c = &ic->ic_channels[ic->ic_nchans++]; c[0] = c[-1]; c->ic_flags = IEEE80211_CHAN_G | nflags; } else { /* 5GHz band */ c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A); c->ic_flags = IEEE80211_CHAN_A | nflags; } /* Save maximum allowed TX power for this channel. */ sc->maxpwr[chan] = channels[i].maxpwr; DPRINTF(sc, IWN_DEBUG_RESET, "add chan %d flags 0x%x maxpwr %d\n", chan, channels[i].flags, channels[i].maxpwr); if (sc->sc_flags & IWN_FLAG_HAS_11N) { /* add HT20, HT40 added separately */ c = &ic->ic_channels[ic->ic_nchans++]; c[0] = c[-1]; c->ic_flags |= IEEE80211_CHAN_HT20; } } } static void iwn_read_eeprom_ht40(struct iwn_softc *sc, int n) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; const struct iwn_chan_band *band = &iwn_bands[n]; struct ieee80211_channel *c, *cent, *extc; uint8_t chan; int i, nflags; if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) return; for (i = 0; i < band->nchan; i++) { if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { DPRINTF(sc, IWN_DEBUG_RESET, "skip chan %d flags 0x%x maxpwr %d\n", band->chan[i], channels[i].flags, channels[i].maxpwr); continue; } chan = band->chan[i]; nflags = iwn_eeprom_channel_flags(&channels[i]); /* * Each entry defines an HT40 channel pair; find the * center channel, then the extension channel above. */ cent = ieee80211_find_channel_byieee(ic, chan, (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A)); if (cent == NULL) { /* XXX shouldn't happen */ device_printf(sc->sc_dev, "%s: no entry for channel %d\n", __func__, chan); continue; } extc = ieee80211_find_channel(ic, cent->ic_freq+20, (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A)); if (extc == NULL) { DPRINTF(sc, IWN_DEBUG_RESET, "%s: skip chan %d, extension channel not found\n", __func__, chan); continue; } DPRINTF(sc, IWN_DEBUG_RESET, "add ht40 chan %d flags 0x%x maxpwr %d\n", chan, channels[i].flags, channels[i].maxpwr); c = &ic->ic_channels[ic->ic_nchans++]; c[0] = cent[0]; c->ic_extieee = extc->ic_ieee; c->ic_flags &= ~IEEE80211_CHAN_HT; c->ic_flags |= IEEE80211_CHAN_HT40U | nflags; c = &ic->ic_channels[ic->ic_nchans++]; c[0] = extc[0]; c->ic_extieee = cent->ic_ieee; c->ic_flags &= ~IEEE80211_CHAN_HT; c->ic_flags |= IEEE80211_CHAN_HT40D | nflags; } } static void iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n], iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan)); if (n < 5) iwn_read_eeprom_band(sc, n); else iwn_read_eeprom_ht40(sc, n); ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); } static struct iwn_eeprom_chan * iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c) { int band, chan, i, j; if (IEEE80211_IS_CHAN_HT40(c)) { band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5; if (IEEE80211_IS_CHAN_HT40D(c)) chan = c->ic_extieee; else chan = c->ic_ieee; for (i = 0; i < iwn_bands[band].nchan; i++) { if (iwn_bands[band].chan[i] == chan) return &sc->eeprom_channels[band][i]; } } else { for (j = 0; j < 5; j++) { for (i = 0; i < iwn_bands[j].nchan; i++) { if (iwn_bands[j].chan[i] == c->ic_ieee) return &sc->eeprom_channels[j][i]; } } } return NULL; } /* * Enforce flags read from EEPROM. */ static int iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, int nchan, struct ieee80211_channel chans[]) { struct iwn_softc *sc = ic->ic_ifp->if_softc; int i; for (i = 0; i < nchan; i++) { struct ieee80211_channel *c = &chans[i]; struct iwn_eeprom_chan *channel; channel = iwn_find_eeprom_channel(sc, c); if (channel == NULL) { if_printf(ic->ic_ifp, "%s: invalid channel %u freq %u/0x%x\n", __func__, c->ic_ieee, c->ic_freq, c->ic_flags); return EINVAL; } c->ic_flags |= iwn_eeprom_channel_flags(channel); } return 0; } #define nitems(_a) (sizeof((_a)) / sizeof((_a)[0])) static void iwn_read_eeprom_enhinfo(struct iwn_softc *sc) { struct iwn_eeprom_enhinfo enhinfo[35]; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211_channel *c; uint16_t val, base; int8_t maxpwr; uint8_t flags; int i, j; iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); base = le16toh(val); iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, enhinfo, sizeof enhinfo); for (i = 0; i < nitems(enhinfo); i++) { flags = enhinfo[i].flags; if (!(flags & IWN_ENHINFO_VALID)) continue; /* Skip invalid entries. */ maxpwr = 0; if (sc->txchainmask & IWN_ANT_A) maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); if (sc->txchainmask & IWN_ANT_B) maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); if (sc->txchainmask & IWN_ANT_C) maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); if (sc->ntxchains == 2) maxpwr = MAX(maxpwr, enhinfo[i].mimo2); else if (sc->ntxchains == 3) maxpwr = MAX(maxpwr, enhinfo[i].mimo3); for (j = 0; j < ic->ic_nchans; j++) { c = &ic->ic_channels[j]; if ((flags & IWN_ENHINFO_5GHZ)) { if (!IEEE80211_IS_CHAN_A(c)) continue; } else if ((flags & IWN_ENHINFO_OFDM)) { if (!IEEE80211_IS_CHAN_G(c)) continue; } else if (!IEEE80211_IS_CHAN_B(c)) continue; if ((flags & IWN_ENHINFO_HT40)) { if (!IEEE80211_IS_CHAN_HT40(c)) continue; } else { if (IEEE80211_IS_CHAN_HT40(c)) continue; } if (enhinfo[i].chan != 0 && enhinfo[i].chan != c->ic_ieee) continue; DPRINTF(sc, IWN_DEBUG_RESET, "channel %d(%x), maxpwr %d\n", c->ic_ieee, c->ic_flags, maxpwr / 2); c->ic_maxregpower = maxpwr / 2; c->ic_maxpower = maxpwr; } } } static struct ieee80211_node * iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO); } static __inline int rate2plcp(int rate) { switch (rate & 0xff) { case 12: return 0xd; case 18: return 0xf; case 24: return 0x5; case 36: return 0x7; case 48: return 0x9; case 72: return 0xb; case 96: return 0x1; case 108: return 0x3; case 2: return 10; case 4: return 20; case 11: return 55; case 22: return 110; } return 0; } static void iwn_newassoc(struct ieee80211_node *ni, int isnew) { #define RV(v) ((v) & IEEE80211_RATE_VAL) struct ieee80211com *ic = ni->ni_ic; struct iwn_softc *sc = ic->ic_ifp->if_softc; struct iwn_node *wn = (void *)ni; uint8_t txant1, txant2; int i, plcp, rate, ridx; /* Use the first valid TX antenna. */ txant1 = IWN_LSB(sc->txchainmask); txant2 = IWN_LSB(sc->txchainmask & ~txant1); if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { ridx = ni->ni_rates.rs_nrates - 1; for (i = ni->ni_htrates.rs_nrates - 1; i >= 0; i--) { plcp = RV(ni->ni_htrates.rs_rates[i]) | IWN_RFLAG_MCS; if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { plcp |= IWN_RFLAG_HT40; if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) plcp |= IWN_RFLAG_SGI; } else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) plcp |= IWN_RFLAG_SGI; if (i > 7) plcp |= IWN_RFLAG_ANT(txant1 | txant2); else plcp |= IWN_RFLAG_ANT(txant1); if (ridx >= 0) { rate = RV(ni->ni_rates.rs_rates[ridx]); wn->ridx[rate] = plcp; } wn->ridx[IEEE80211_RATE_MCS | i] = plcp; ridx--; } } else { for (i = 0; i < ni->ni_rates.rs_nrates; i++) { rate = RV(ni->ni_rates.rs_rates[i]); plcp = rate2plcp(rate); ridx = ic->ic_rt->rateCodeToIndex[rate]; if (ridx < IWN_RIDX_OFDM6 && IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) plcp |= IWN_RFLAG_CCK; plcp |= IWN_RFLAG_ANT(txant1); wn->ridx[rate] = htole32(plcp); } } #undef RV } static int iwn_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); /* NB: only the fixed rate can change and that doesn't need a reset */ return (error == ENETRESET ? 0 : error); } static int iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct iwn_vap *ivp = IWN_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct iwn_softc *sc = ic->ic_ifp->if_softc; int error = 0; DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); IWN_LOCK(sc); callout_stop(&sc->calib_to); switch (nstate) { case IEEE80211_S_ASSOC: if (vap->iv_state != IEEE80211_S_RUN) break; /* FALLTHROUGH */ case IEEE80211_S_AUTH: if (vap->iv_state == IEEE80211_S_AUTH) break; /* * !AUTH -> AUTH transition requires state reset to handle * reassociations correctly. */ sc->rxon.associd = 0; sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); sc->calib.state = IWN_CALIB_STATE_INIT; if ((error = iwn_auth(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: could not move to auth state\n", __func__); } break; case IEEE80211_S_RUN: /* * RUN -> RUN transition; Just restart the timers. */ if (vap->iv_state == IEEE80211_S_RUN) { sc->calib_cnt = 0; break; } /* * !RUN -> RUN requires setting the association id * which is done with a firmware cmd. We also defer * starting the timers until that work is done. */ if ((error = iwn_run(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: could not move to run state\n", __func__); } break; case IEEE80211_S_INIT: sc->calib.state = IWN_CALIB_STATE_INIT; break; default: break; } IWN_UNLOCK(sc); IEEE80211_LOCK(ic); if (error != 0) return error; return ivp->iv_newstate(vap, nstate, arg); } static void iwn_calib_timeout(void *arg) { struct iwn_softc *sc = arg; IWN_LOCK_ASSERT(sc); /* Force automatic TX power calibration every 60 secs. */ if (++sc->calib_cnt >= 120) { uint32_t flags = 0; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n", "sending request for statistics"); (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); sc->calib_cnt = 0; } callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, sc); } /* * Process an RX_PHY firmware notification. This is usually immediately * followed by an MPDU_RX_DONE notification. */ static void iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__); bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); /* Save RX statistics, they will be used on MPDU_RX_DONE. */ memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); sc->last_rx_valid = 1; } /* * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. */ static void iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct iwn_ops *ops = &sc->ops; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct iwn_rx_ring *ring = &sc->rxq; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m, *m1; struct iwn_rx_stat *stat; caddr_t head; bus_addr_t paddr; uint32_t flags; int error, len, rssi, nf; if (desc->type == IWN_MPDU_RX_DONE) { /* Check for prior RX_PHY notification. */ if (!sc->last_rx_valid) { DPRINTF(sc, IWN_DEBUG_ANY, "%s: missing RX_PHY\n", __func__); return; } stat = &sc->last_rx_stat; } else stat = (struct iwn_rx_stat *)(desc + 1); bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { device_printf(sc->sc_dev, "%s: invalid RX statistic header, len %d\n", __func__, stat->cfg_phy_len); return; } if (desc->type == IWN_MPDU_RX_DONE) { struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); head = (caddr_t)(mpdu + 1); len = le16toh(mpdu->len); } else { head = (caddr_t)(stat + 1) + stat->cfg_phy_len; len = le16toh(stat->len); } flags = le32toh(*(uint32_t *)(head + len)); /* Discard frames with a bad FCS early. */ if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n", __func__, flags); ifp->if_ierrors++; return; } /* Discard frames that are too short. */ if (len < sizeof (*wh)) { DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n", __func__, len); ifp->if_ierrors++; return; } m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE); if (m1 == NULL) { DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n", __func__); ifp->if_ierrors++; return; } bus_dmamap_unload(ring->data_dmat, data->map); error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "%s: bus_dmamap_load failed, error %d\n", __func__, error); m_freem(m1); /* Try to reload the old mbuf. */ error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { panic("%s: could not load old RX mbuf", __func__); } /* Physical address may have changed. */ ring->desc[ring->cur] = htole32(paddr >> 8); bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); ifp->if_ierrors++; return; } m = data->m; data->m = m1; /* Update RX descriptor. */ ring->desc[ring->cur] = htole32(paddr >> 8); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); /* Finalize mbuf. */ m->m_pkthdr.rcvif = ifp; m->m_data = head; m->m_pkthdr.len = m->m_len = len; /* Grab a reference to the source node. */ wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN && (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95; rssi = ops->get_rssi(sc, stat); if (ieee80211_radiotap_active(ic)) { struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; tap->wr_dbm_antsignal = (int8_t)rssi; tap->wr_dbm_antnoise = (int8_t)nf; tap->wr_tsft = stat->tstamp; switch (stat->rate) { /* CCK rates. */ case 10: tap->wr_rate = 2; break; case 20: tap->wr_rate = 4; break; case 55: tap->wr_rate = 11; break; case 110: tap->wr_rate = 22; break; /* OFDM rates. */ case 0xd: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0x5: tap->wr_rate = 24; break; case 0x7: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xb: tap->wr_rate = 72; break; case 0x1: tap->wr_rate = 96; break; case 0x3: tap->wr_rate = 108; break; /* Unknown rate: should not happen. */ default: tap->wr_rate = 0; } } IWN_UNLOCK(sc); /* Send the frame to the 802.11 layer. */ if (ni != NULL) { if (ni->ni_flags & IEEE80211_NODE_HT) m->m_flags |= M_AMPDU; (void)ieee80211_input(ni, m, rssi - nf, nf); /* Node is no longer needed. */ ieee80211_free_node(ni); } else (void)ieee80211_input_all(ic, m, rssi - nf, nf); IWN_LOCK(sc); } /* Process an incoming Compressed BlockAck. */ static void iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct ifnet *ifp = sc->sc_ifp; struct iwn_node *wn; struct ieee80211_node *ni; struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); struct iwn_tx_ring *txq; struct ieee80211_tx_ampdu *tap; uint64_t bitmap; uint8_t tid; int ackfailcnt = 0, i, shift; bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); txq = &sc->txq[le16toh(ba->qid)]; tap = sc->qid2tap[le16toh(ba->qid)]; tid = WME_AC_TO_TID(tap->txa_ac); ni = tap->txa_ni; wn = (void *)ni; if (wn->agg[tid].bitmap == 0) return; shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff); if (shift < 0) shift += 0x100; if (wn->agg[tid].nframes > (64 - shift)) return; bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap; for (i = 0; bitmap; i++) { if ((bitmap & 1) == 0) { ifp->if_oerrors++; ieee80211_ratectl_tx_complete(ni->ni_vap, ni, IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); } else { ifp->if_opackets++; ieee80211_ratectl_tx_complete(ni->ni_vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); } bitmap >>= 1; } } /* * Process a CALIBRATION_RESULT notification sent by the initialization * firmware on response to a CMD_CALIB_CONFIG command (5000 only). */ static void iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); int len, idx = -1; /* Runtime firmware should not send such a notification. */ if (sc->sc_flags & IWN_FLAG_CALIB_DONE) return; len = (le32toh(desc->len) & 0x3fff) - 4; bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); switch (calib->code) { case IWN5000_PHY_CALIB_DC: if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0 && (sc->hw_type == IWN_HW_REV_TYPE_5150 || sc->hw_type >= IWN_HW_REV_TYPE_6000) && sc->hw_type != IWN_HW_REV_TYPE_6050) idx = 0; break; case IWN5000_PHY_CALIB_LO: idx = 1; break; case IWN5000_PHY_CALIB_TX_IQ: idx = 2; break; case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: if (sc->hw_type < IWN_HW_REV_TYPE_6000 && sc->hw_type != IWN_HW_REV_TYPE_5150) idx = 3; break; case IWN5000_PHY_CALIB_BASE_BAND: idx = 4; break; } if (idx == -1) /* Ignore other results. */ return; /* Save calibration result. */ if (sc->calibcmd[idx].buf != NULL) free(sc->calibcmd[idx].buf, M_DEVBUF); sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); if (sc->calibcmd[idx].buf == NULL) { DPRINTF(sc, IWN_DEBUG_CALIBRATE, "not enough memory for calibration result %d\n", calib->code); return; } DPRINTF(sc, IWN_DEBUG_CALIBRATE, "saving calibration result code=%d len=%d\n", calib->code, len); sc->calibcmd[idx].len = len; memcpy(sc->calibcmd[idx].buf, calib, len); } /* * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. * The latter is sent by the firmware after each received beacon. */ static void iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct iwn_ops *ops = &sc->ops; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwn_calib_state *calib = &sc->calib; struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); int temp; /* Ignore statistics received during a scan. */ if (vap->iv_state != IEEE80211_S_RUN || (ic->ic_flags & IEEE80211_F_SCAN)) return; bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n", __func__, desc->type); sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ /* Test if temperature has changed. */ if (stats->general.temp != sc->rawtemp) { /* Convert "raw" temperature to degC. */ sc->rawtemp = stats->general.temp; temp = ops->get_temperature(sc); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n", __func__, temp); /* Update TX power if need be (4965AGN only). */ if (sc->hw_type == IWN_HW_REV_TYPE_4965) iwn4965_power_calibration(sc, temp); } if (desc->type != IWN_BEACON_STATISTICS) return; /* Reply to a statistics request. */ sc->noise = iwn_get_noise(&stats->rx.general); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise); /* Test that RSSI and noise are present in stats report. */ if (le32toh(stats->rx.general.flags) != 1) { DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", "received statistics without RSSI"); return; } if (calib->state == IWN_CALIB_STATE_ASSOC) iwn_collect_noise(sc, &stats->rx.general); else if (calib->state == IWN_CALIB_STATE_RUN) iwn_tune_sensitivity(sc, &stats->rx); } /* * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN * and 5000 adapters have different incompatible TX status formats. */ static void iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); struct iwn_tx_ring *ring; int qid; qid = desc->qid & 0xf; ring = &sc->txq[qid]; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt, stat->btkillcnt, stat->rate, le16toh(stat->duration), le32toh(stat->status)); bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); if (qid >= sc->firstaggqueue) { iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, &stat->status); } else { iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff); } } static void iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); struct iwn_tx_ring *ring; int qid; qid = desc->qid & 0xf; ring = &sc->txq[qid]; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt, stat->btkillcnt, stat->rate, le16toh(stat->duration), le32toh(stat->status)); #ifdef notyet /* Reset TX scheduler slot. */ iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); #endif bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); if (qid >= sc->firstaggqueue) { iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, &stat->status); } else { iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff); } } /* * Adapter-independent backend for TX_DONE firmware notifications. */ static void iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, uint8_t status) { struct ifnet *ifp = sc->sc_ifp; struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; struct iwn_tx_data *data = &ring->data[desc->idx]; struct mbuf *m; struct ieee80211_node *ni; struct ieee80211vap *vap; KASSERT(data->ni != NULL, ("no node")); /* Unmap and free mbuf. */ bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m = data->m, data->m = NULL; ni = data->ni, data->ni = NULL; vap = ni->ni_vap; if (m->m_flags & M_TXCB) { /* * Channels marked for "radar" require traffic to be received * to unlock before we can transmit. Until traffic is seen * any attempt to transmit is returned immediately with status * set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily * happen on first authenticate after scanning. To workaround * this we ignore a failure of this sort in AUTH state so the * 802.11 layer will fall back to using a timeout to wait for * the AUTH reply. This allows the firmware time to see * traffic so a subsequent retry of AUTH succeeds. It's * unclear why the firmware does not maintain state for * channels recently visited as this would allow immediate * use of the channel after a scan (where we see traffic). */ if (status == IWN_TX_FAIL_TX_LOCKED && ni->ni_vap->iv_state == IEEE80211_S_AUTH) ieee80211_process_callback(ni, m, 0); else ieee80211_process_callback(ni, m, (status & IWN_TX_FAIL) != 0); } /* * Update rate control statistics for the node. */ if (status & IWN_TX_FAIL) { ifp->if_oerrors++; ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); } else { ifp->if_opackets++; ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); } m_freem(m); ieee80211_free_node(ni); sc->sc_tx_timer = 0; if (--ring->queued < IWN_TX_RING_LOMARK) { sc->qfullmsk &= ~(1 << ring->qid); if (sc->qfullmsk == 0 && (ifp->if_drv_flags & IFF_DRV_OACTIVE)) { ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; iwn_start_locked(ifp); } } } /* * Process a "command done" firmware notification. This is where we wakeup * processes waiting for a synchronous command completion. */ static void iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct iwn_tx_ring *ring = &sc->txq[4]; struct iwn_tx_data *data; if ((desc->qid & 0xf) != 4) return; /* Not a command ack. */ data = &ring->data[desc->idx]; /* If the command was mapped in an mbuf, free it. */ if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } wakeup(&ring->desc[desc->idx]); } static void iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes, void *stat) { struct ifnet *ifp = sc->sc_ifp; struct iwn_tx_ring *ring = &sc->txq[qid]; struct iwn_tx_data *data; struct mbuf *m; struct iwn_node *wn; struct ieee80211_node *ni; struct ieee80211vap *vap; struct ieee80211_tx_ampdu *tap; uint64_t bitmap; uint32_t *status = stat; uint16_t *aggstatus = stat; uint8_t tid; int bit, i, lastidx, seqno, shift, start; #ifdef NOT_YET if (nframes == 1) { if ((*status & 0xff) != 1 && (*status & 0xff) != 2) printf("ieee80211_send_bar()\n"); } #endif bitmap = 0; start = idx; for (i = 0; i < nframes; i++) { if (le16toh(aggstatus[i * 2]) & 0xc) continue; idx = le16toh(aggstatus[2*i + 1]) & 0xff; bit = idx - start; shift = 0; if (bit >= 64) { shift = 0x100 - idx + start; bit = 0; start = idx; } else if (bit <= -64) bit = 0x100 - start + idx; else if (bit < 0) { shift = start - idx; start = idx; bit = 0; } bitmap = bitmap << shift; bitmap |= 1ULL << bit; } tap = sc->qid2tap[qid]; tid = WME_AC_TO_TID(tap->txa_ac); wn = (void *)tap->txa_ni; wn->agg[tid].bitmap = bitmap; wn->agg[tid].startidx = start; wn->agg[tid].nframes = nframes; seqno = le32toh(*(status + nframes)) & 0xfff; for (lastidx = (seqno & 0xff); ring->read != lastidx;) { data = &ring->data[ring->read]; KASSERT(data->ni != NULL, ("no node")); /* Unmap and free mbuf. */ bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m = data->m, data->m = NULL; ni = data->ni, data->ni = NULL; vap = ni->ni_vap; if (m->m_flags & M_TXCB) ieee80211_process_callback(ni, m, 1); m_freem(m); ieee80211_free_node(ni); ring->queued--; ring->read = (ring->read + 1) % IWN_TX_RING_COUNT; } sc->sc_tx_timer = 0; if (ring->queued < IWN_TX_RING_LOMARK) { sc->qfullmsk &= ~(1 << ring->qid); if (sc->qfullmsk == 0 && (ifp->if_drv_flags & IFF_DRV_OACTIVE)) { ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; iwn_start_locked(ifp); } } } /* * Process an INT_FH_RX or INT_SW_RX interrupt. */ static void iwn_notif_intr(struct iwn_softc *sc) { struct iwn_ops *ops = &sc->ops; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint16_t hw; bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, BUS_DMASYNC_POSTREAD); hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; while (sc->rxq.cur != hw) { struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; struct iwn_rx_desc *desc; bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); desc = mtod(data->m, struct iwn_rx_desc *); DPRINTF(sc, IWN_DEBUG_RECV, "%s: qid %x idx %d flags %x type %d(%s) len %d\n", __func__, desc->qid & 0xf, desc->idx, desc->flags, desc->type, iwn_intr_str(desc->type), le16toh(desc->len)); if (!(desc->qid & 0x80)) /* Reply to a command. */ iwn_cmd_done(sc, desc); switch (desc->type) { case IWN_RX_PHY: iwn_rx_phy(sc, desc, data); break; case IWN_RX_DONE: /* 4965AGN only. */ case IWN_MPDU_RX_DONE: /* An 802.11 frame has been received. */ iwn_rx_done(sc, desc, data); break; case IWN_RX_COMPRESSED_BA: /* A Compressed BlockAck has been received. */ iwn_rx_compressed_ba(sc, desc, data); break; case IWN_TX_DONE: /* An 802.11 frame has been transmitted. */ ops->tx_done(sc, desc, data); break; case IWN_RX_STATISTICS: case IWN_BEACON_STATISTICS: iwn_rx_statistics(sc, desc, data); break; case IWN_BEACON_MISSED: { struct iwn_beacon_missed *miss = (struct iwn_beacon_missed *)(desc + 1); int misses; bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); misses = le32toh(miss->consecutive); DPRINTF(sc, IWN_DEBUG_STATE, "%s: beacons missed %d/%d\n", __func__, misses, le32toh(miss->total)); /* * If more than 5 consecutive beacons are missed, * reinitialize the sensitivity state machine. */ if (vap->iv_state == IEEE80211_S_RUN && (ic->ic_flags & IEEE80211_F_SCAN) == 0) { if (misses > 5) (void)iwn_init_sensitivity(sc); if (misses >= vap->iv_bmissthreshold) { IWN_UNLOCK(sc); ieee80211_beacon_miss(ic); IWN_LOCK(sc); } } break; } case IWN_UC_READY: { struct iwn_ucode_info *uc = (struct iwn_ucode_info *)(desc + 1); /* The microcontroller is ready. */ bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); DPRINTF(sc, IWN_DEBUG_RESET, "microcode alive notification version=%d.%d " "subtype=%x alive=%x\n", uc->major, uc->minor, uc->subtype, le32toh(uc->valid)); if (le32toh(uc->valid) != 1) { device_printf(sc->sc_dev, "microcontroller initialization failed"); break; } if (uc->subtype == IWN_UCODE_INIT) { /* Save microcontroller report. */ memcpy(&sc->ucode_info, uc, sizeof (*uc)); } /* Save the address of the error log in SRAM. */ sc->errptr = le32toh(uc->errptr); break; } case IWN_STATE_CHANGED: { uint32_t *status = (uint32_t *)(desc + 1); /* * State change allows hardware switch change to be * noted. However, we handle this in iwn_intr as we * get both the enable/disble intr. */ bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n", le32toh(*status)); break; } case IWN_START_SCAN: { struct iwn_start_scan *scan = (struct iwn_start_scan *)(desc + 1); bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); DPRINTF(sc, IWN_DEBUG_ANY, "%s: scanning channel %d status %x\n", __func__, scan->chan, le32toh(scan->status)); break; } case IWN_STOP_SCAN: { struct iwn_stop_scan *scan = (struct iwn_stop_scan *)(desc + 1); bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); DPRINTF(sc, IWN_DEBUG_STATE, "scan finished nchan=%d status=%d chan=%d\n", scan->nchan, scan->status, scan->chan); IWN_UNLOCK(sc); ieee80211_scan_next(vap); IWN_LOCK(sc); break; } case IWN5000_CALIBRATION_RESULT: iwn5000_rx_calib_results(sc, desc, data); break; case IWN5000_CALIBRATION_DONE: sc->sc_flags |= IWN_FLAG_CALIB_DONE; wakeup(sc); break; } sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; } /* Tell the firmware what we have processed. */ hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); } /* * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up * from power-down sleep mode. */ static void iwn_wakeup_intr(struct iwn_softc *sc) { int qid; DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n", __func__); /* Wakeup RX and TX rings. */ IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); for (qid = 0; qid < sc->ntxqs; qid++) { struct iwn_tx_ring *ring = &sc->txq[qid]; IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); } } static void iwn_rftoggle_intr(struct iwn_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL); IWN_LOCK_ASSERT(sc); device_printf(sc->sc_dev, "RF switch: radio %s\n", (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); if (tmp & IWN_GP_CNTRL_RFKILL) ieee80211_runtask(ic, &sc->sc_radioon_task); else ieee80211_runtask(ic, &sc->sc_radiooff_task); } /* * Dump the error log of the firmware when a firmware panic occurs. Although * we can't debug the firmware because it is neither open source nor free, it * can help us to identify certain classes of problems. */ static void iwn_fatal_intr(struct iwn_softc *sc) { struct iwn_fw_dump dump; int i; IWN_LOCK_ASSERT(sc); /* Force a complete recalibration on next init. */ sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; /* Check that the error log address is valid. */ if (sc->errptr < IWN_FW_DATA_BASE || sc->errptr + sizeof (dump) > IWN_FW_DATA_BASE + sc->fw_data_maxsz) { printf("%s: bad firmware error log address 0x%08x\n", __func__, sc->errptr); return; } if (iwn_nic_lock(sc) != 0) { printf("%s: could not read firmware error log\n", __func__); return; } /* Read firmware error log from SRAM. */ iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, sizeof (dump) / sizeof (uint32_t)); iwn_nic_unlock(sc); if (dump.valid == 0) { printf("%s: firmware error log is empty\n", __func__); return; } printf("firmware error log:\n"); printf(" error type = \"%s\" (0x%08X)\n", (dump.id < nitems(iwn_fw_errmsg)) ? iwn_fw_errmsg[dump.id] : "UNKNOWN", dump.id); printf(" program counter = 0x%08X\n", dump.pc); printf(" source line = 0x%08X\n", dump.src_line); printf(" error data = 0x%08X%08X\n", dump.error_data[0], dump.error_data[1]); printf(" branch link = 0x%08X%08X\n", dump.branch_link[0], dump.branch_link[1]); printf(" interrupt link = 0x%08X%08X\n", dump.interrupt_link[0], dump.interrupt_link[1]); printf(" time = %u\n", dump.time[0]); /* Dump driver status (TX and RX rings) while we're here. */ printf("driver status:\n"); for (i = 0; i < sc->ntxqs; i++) { struct iwn_tx_ring *ring = &sc->txq[i]; printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", i, ring->qid, ring->cur, ring->queued); } printf(" rx ring: cur=%d\n", sc->rxq.cur); } static void iwn_intr(void *arg) { struct iwn_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; uint32_t r1, r2, tmp; IWN_LOCK(sc); /* Disable interrupts. */ IWN_WRITE(sc, IWN_INT_MASK, 0); /* Read interrupts from ICT (fast) or from registers (slow). */ if (sc->sc_flags & IWN_FLAG_USE_ICT) { tmp = 0; while (sc->ict[sc->ict_cur] != 0) { tmp |= sc->ict[sc->ict_cur]; sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; } tmp = le32toh(tmp); if (tmp == 0xffffffff) /* Shouldn't happen. */ tmp = 0; else if (tmp & 0xc0000) /* Workaround a HW bug. */ tmp |= 0x8000; r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); r2 = 0; /* Unused. */ } else { r1 = IWN_READ(sc, IWN_INT); if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) return; /* Hardware gone! */ r2 = IWN_READ(sc, IWN_FH_INT); } DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2); if (r1 == 0 && r2 == 0) goto done; /* Interrupt not for us. */ /* Acknowledge interrupts. */ IWN_WRITE(sc, IWN_INT, r1); if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) IWN_WRITE(sc, IWN_FH_INT, r2); if (r1 & IWN_INT_RF_TOGGLED) { iwn_rftoggle_intr(sc); goto done; } if (r1 & IWN_INT_CT_REACHED) { device_printf(sc->sc_dev, "%s: critical temperature reached!\n", __func__); } if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { device_printf(sc->sc_dev, "%s: fatal firmware error\n", __func__); /* Dump firmware error log and stop. */ iwn_fatal_intr(sc); ifp->if_flags &= ~IFF_UP; iwn_stop_locked(sc); goto done; } if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || (r2 & IWN_FH_INT_RX)) { if (sc->sc_flags & IWN_FLAG_USE_ICT) { if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS); iwn_notif_intr(sc); if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_ENA); } } else iwn_notif_intr(sc); } if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { if (sc->sc_flags & IWN_FLAG_USE_ICT) IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); wakeup(sc); /* FH DMA transfer completed. */ } if (r1 & IWN_INT_ALIVE) wakeup(sc); /* Firmware is alive. */ if (r1 & IWN_INT_WAKEUP) iwn_wakeup_intr(sc); done: /* Re-enable interrupts. */ if (ifp->if_flags & IFF_UP) IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); IWN_UNLOCK(sc); } /* * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and * 5000 adapters use a slightly different format). */ static void iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, uint16_t len) { uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; *w = htole16(len + 8); bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); if (idx < IWN_SCHED_WINSZ) { *(w + IWN_TX_RING_COUNT) = *w; bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); } } static void iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, uint16_t len) { uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; *w = htole16(id << 12 | (len + 8)); bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); if (idx < IWN_SCHED_WINSZ) { *(w + IWN_TX_RING_COUNT) = *w; bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); } } #ifdef notyet static void iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) { uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; *w = (*w & htole16(0xf000)) | htole16(1); bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); if (idx < IWN_SCHED_WINSZ) { *(w + IWN_TX_RING_COUNT) = *w; bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); } } #endif static int iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { struct iwn_ops *ops = &sc->ops; const struct ieee80211_txparam *tp; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct iwn_node *wn = (void *)ni; struct iwn_tx_ring *ring; struct iwn_tx_desc *desc; struct iwn_tx_data *data; struct iwn_tx_cmd *cmd; struct iwn_cmd_data *tx; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; struct mbuf *m1; uint32_t flags; uint16_t qos; u_int hdrlen; bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; uint8_t tid, ridx, txant, type; int ac, i, totlen, error, pad, nsegs = 0, rate; IWN_LOCK_ASSERT(sc); wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_anyhdrsize(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; /* Select EDCA Access Category and TX ring for this frame. */ if (IEEE80211_QOS_HAS_SEQ(wh)) { qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; tid = qos & IEEE80211_QOS_TID; } else { qos = 0; tid = 0; } ac = M_WME_GETAC(m); if (IEEE80211_QOS_HAS_SEQ(wh) && IEEE80211_AMPDU_RUNNING(&ni->ni_tx_ampdu[ac])) { struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac]; ring = &sc->txq[*(int *)tap->txa_private]; *(uint16_t *)wh->i_seq = htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); ni->ni_txseqs[tid]++; } else { ring = &sc->txq[ac]; } desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; /* Choose a TX rate index. */ tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; if (type == IEEE80211_FC0_TYPE_MGT) rate = tp->mgmtrate; else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else { /* XXX pass pktlen */ (void) ieee80211_ratectl_rate(ni, NULL, 0); rate = ni->ni_txrate; } ridx = ic->ic_rt->rateCodeToIndex[rate]; /* Encrypt the frame if need be. */ if (wh->i_fc[1] & IEEE80211_FC1_WEP) { /* Retrieve key for TX. */ k = ieee80211_crypto_encap(ni, m); if (k == NULL) { m_freem(m); return ENOBUFS; } /* 802.11 header may have moved. */ wh = mtod(m, struct ieee80211_frame *); } totlen = m->m_pkthdr.len; if (ieee80211_radiotap_active_vap(vap)) { struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; if (k != NULL) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; ieee80211_radiotap_tx(vap, m); } /* Prepare TX firmware command. */ cmd = &ring->cmd[ring->cur]; cmd->code = IWN_CMD_TX_DATA; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; tx = (struct iwn_cmd_data *)cmd->data; /* NB: No need to clear tx, all fields are reinitialized here. */ tx->scratch = 0; /* clear "scratch" area */ flags = 0; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* Unicast frame, check if an ACK is expected. */ if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != IEEE80211_QOS_ACKPOLICY_NOACK) flags |= IWN_TX_NEED_ACK; } if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* NB: Group frames are sent using CCK in 802.11b/g. */ if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { flags |= IWN_TX_NEED_RTS; } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && ridx >= IWN_RIDX_OFDM6) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) flags |= IWN_TX_NEED_CTS; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) flags |= IWN_TX_NEED_RTS; } if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { if (sc->hw_type != IWN_HW_REV_TYPE_4965) { /* 5000 autoselects RTS/CTS or CTS-to-self. */ flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); flags |= IWN_TX_NEED_PROTECTION; } else flags |= IWN_TX_FULL_TXOP; } } if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) tx->id = sc->broadcast_id; else tx->id = wn->id; if (type == IEEE80211_FC0_TYPE_MGT) { uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* Tell HW to set timestamp in probe responses. */ if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= IWN_TX_INSERT_TSTAMP; if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) tx->timeout = htole16(3); else tx->timeout = htole16(2); } else tx->timeout = htole16(0); if (hdrlen & 3) { /* First segment length must be a multiple of 4. */ flags |= IWN_TX_NEED_PADDING; pad = 4 - (hdrlen & 3); } else pad = 0; tx->len = htole16(totlen); tx->tid = tid; tx->rts_ntries = 60; tx->data_ntries = 15; tx->lifetime = htole32(IWN_LIFETIME_INFINITE); tx->rate = wn->ridx[rate]; if (tx->id == sc->broadcast_id) { /* Group or management frame. */ tx->linkq = 0; /* XXX Alternate between antenna A and B? */ txant = IWN_LSB(sc->txchainmask); tx->rate |= htole32(IWN_RFLAG_ANT(txant)); } else { tx->linkq = ni->ni_rates.rs_nrates - ridx - 1; flags |= IWN_TX_LINKQ; /* enable MRR */ } /* Set physical address of "scratch area". */ tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); tx->hiaddr = IWN_HIADDR(data->scratch_paddr); /* Copy 802.11 header in TX command. */ memcpy((uint8_t *)(tx + 1), wh, hdrlen); /* Trim 802.11 header. */ m_adj(m, hdrlen); tx->security = 0; tx->flags = htole32(flags); error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { if (error != EFBIG) { device_printf(sc->sc_dev, "%s: can't map mbuf (error %d)\n", __func__, error); m_freem(m); return error; } /* Too many DMA segments, linearize mbuf. */ m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER); if (m1 == NULL) { device_printf(sc->sc_dev, "%s: could not defrag mbuf\n", __func__); m_freem(m); return ENOBUFS; } m = m1; error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "%s: can't map mbuf (error %d)\n", __func__, error); m_freem(m); return error; } } data->m = m; data->ni = ni; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs); /* Fill TX descriptor. */ desc->nsegs = 1; if (m->m_len != 0) desc->nsegs += nsegs; /* First DMA segment is used by the TX command. */ desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | (4 + sizeof (*tx) + hdrlen + pad) << 4); /* Other DMA segments are for data payload. */ seg = &segs[0]; for (i = 1; i <= nsegs; i++) { desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | seg->ds_len << 4); seg++; } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); /* Update TX scheduler. */ if (ring->qid >= sc->firstaggqueue) ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); /* Kick TX ring. */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); /* Mark TX ring as full if we reach a certain threshold. */ if (++ring->queued > IWN_TX_RING_HIMARK) sc->qfullmsk |= 1 << ring->qid; return 0; } static int iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct iwn_ops *ops = &sc->ops; struct ifnet *ifp = sc->sc_ifp; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ifp->if_l2com; struct iwn_tx_cmd *cmd; struct iwn_cmd_data *tx; struct ieee80211_frame *wh; struct iwn_tx_ring *ring; struct iwn_tx_desc *desc; struct iwn_tx_data *data; struct mbuf *m1; bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; uint32_t flags; u_int hdrlen; int ac, totlen, error, pad, nsegs = 0, i, rate; uint8_t ridx, type, txant; IWN_LOCK_ASSERT(sc); wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_anyhdrsize(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; ac = params->ibp_pri & 3; ring = &sc->txq[ac]; desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; /* Choose a TX rate index. */ rate = params->ibp_rate0; ridx = ic->ic_rt->rateCodeToIndex[rate]; if (ridx == (uint8_t)-1) { /* XXX fall back to mcast/mgmt rate? */ m_freem(m); return EINVAL; } totlen = m->m_pkthdr.len; /* Prepare TX firmware command. */ cmd = &ring->cmd[ring->cur]; cmd->code = IWN_CMD_TX_DATA; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; tx = (struct iwn_cmd_data *)cmd->data; /* NB: No need to clear tx, all fields are reinitialized here. */ tx->scratch = 0; /* clear "scratch" area */ flags = 0; if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) flags |= IWN_TX_NEED_ACK; if (params->ibp_flags & IEEE80211_BPF_RTS) { if (sc->hw_type != IWN_HW_REV_TYPE_4965) { /* 5000 autoselects RTS/CTS or CTS-to-self. */ flags &= ~IWN_TX_NEED_RTS; flags |= IWN_TX_NEED_PROTECTION; } else flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; } if (params->ibp_flags & IEEE80211_BPF_CTS) { if (sc->hw_type != IWN_HW_REV_TYPE_4965) { /* 5000 autoselects RTS/CTS or CTS-to-self. */ flags &= ~IWN_TX_NEED_CTS; flags |= IWN_TX_NEED_PROTECTION; } else flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; } if (type == IEEE80211_FC0_TYPE_MGT) { uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* Tell HW to set timestamp in probe responses. */ if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= IWN_TX_INSERT_TSTAMP; if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) tx->timeout = htole16(3); else tx->timeout = htole16(2); } else tx->timeout = htole16(0); if (hdrlen & 3) { /* First segment length must be a multiple of 4. */ flags |= IWN_TX_NEED_PADDING; pad = 4 - (hdrlen & 3); } else pad = 0; if (ieee80211_radiotap_active_vap(vap)) { struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; ieee80211_radiotap_tx(vap, m); } tx->len = htole16(totlen); tx->tid = 0; tx->id = sc->broadcast_id; tx->rts_ntries = params->ibp_try1; tx->data_ntries = params->ibp_try0; tx->lifetime = htole32(IWN_LIFETIME_INFINITE); tx->rate = htole32(rate2plcp(rate)); if (ridx < IWN_RIDX_OFDM6 && IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) tx->rate |= htole32(IWN_RFLAG_CCK); /* Group or management frame. */ tx->linkq = 0; txant = IWN_LSB(sc->txchainmask); tx->rate |= htole32(IWN_RFLAG_ANT(txant)); /* Set physical address of "scratch area". */ tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); tx->hiaddr = IWN_HIADDR(data->scratch_paddr); /* Copy 802.11 header in TX command. */ memcpy((uint8_t *)(tx + 1), wh, hdrlen); /* Trim 802.11 header. */ m_adj(m, hdrlen); tx->security = 0; tx->flags = htole32(flags); error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { if (error != EFBIG) { device_printf(sc->sc_dev, "%s: can't map mbuf (error %d)\n", __func__, error); m_freem(m); return error; } /* Too many DMA segments, linearize mbuf. */ m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER); if (m1 == NULL) { device_printf(sc->sc_dev, "%s: could not defrag mbuf\n", __func__); m_freem(m); return ENOBUFS; } m = m1; error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "%s: can't map mbuf (error %d)\n", __func__, error); m_freem(m); return error; } } data->m = m; data->ni = ni; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs); /* Fill TX descriptor. */ desc->nsegs = 1; if (m->m_len != 0) desc->nsegs += nsegs; /* First DMA segment is used by the TX command. */ desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | (4 + sizeof (*tx) + hdrlen + pad) << 4); /* Other DMA segments are for data payload. */ seg = &segs[0]; for (i = 1; i <= nsegs; i++) { desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | seg->ds_len << 4); seg++; } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); /* Update TX scheduler. */ if (ring->qid >= sc->firstaggqueue) ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); /* Kick TX ring. */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); /* Mark TX ring as full if we reach a certain threshold. */ if (++ring->queued > IWN_TX_RING_HIMARK) sc->qfullmsk |= 1 << ring->qid; return 0; } static int iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = ic->ic_ifp; struct iwn_softc *sc = ifp->if_softc; int error = 0; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { ieee80211_free_node(ni); m_freem(m); return ENETDOWN; } IWN_LOCK(sc); if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ error = iwn_tx_data(sc, m, ni); } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ error = iwn_tx_data_raw(sc, m, ni, params); } if (error != 0) { /* NB: m is reclaimed on tx failure */ ieee80211_free_node(ni); ifp->if_oerrors++; } sc->sc_tx_timer = 5; IWN_UNLOCK(sc); return error; } static void iwn_start(struct ifnet *ifp) { struct iwn_softc *sc = ifp->if_softc; IWN_LOCK(sc); iwn_start_locked(ifp); IWN_UNLOCK(sc); } static void iwn_start_locked(struct ifnet *ifp) { struct iwn_softc *sc = ifp->if_softc; struct ieee80211_node *ni; struct mbuf *m; IWN_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || (ifp->if_drv_flags & IFF_DRV_OACTIVE)) return; for (;;) { if (sc->qfullmsk != 0) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; if (iwn_tx_data(sc, m, ni) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; continue; } sc->sc_tx_timer = 5; } } static void iwn_watchdog(void *arg) { struct iwn_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; IWN_LOCK_ASSERT(sc); KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running")); if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { if_printf(ifp, "device timeout\n"); ieee80211_runtask(ic, &sc->sc_reinit_task); return; } } callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); } static int iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct iwn_softc *sc = ifp->if_softc; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ifreq *ifr = (struct ifreq *) data; int error = 0, startall = 0, stop = 0; switch (cmd) { case SIOCGIFADDR: error = ether_ioctl(ifp, cmd, data); break; case SIOCSIFFLAGS: IWN_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { iwn_init_locked(sc); if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL) startall = 1; else stop = 1; } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) iwn_stop_locked(sc); } IWN_UNLOCK(sc); if (startall) ieee80211_start_all(ic); else if (vap != NULL && stop) ieee80211_stop(vap); break; case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); break; default: error = EINVAL; break; } return error; } /* * Send a command to the firmware. */ static int iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) { struct iwn_tx_ring *ring = &sc->txq[4]; struct iwn_tx_desc *desc; struct iwn_tx_data *data; struct iwn_tx_cmd *cmd; struct mbuf *m; bus_addr_t paddr; int totlen, error; if (async == 0) IWN_LOCK_ASSERT(sc); desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; totlen = 4 + size; if (size > sizeof cmd->data) { /* Command is too large to fit in a descriptor. */ if (totlen > MCLBYTES) return EINVAL; m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); if (m == NULL) return ENOMEM; cmd = mtod(m, struct iwn_tx_cmd *); error = bus_dmamap_load(ring->data_dmat, data->map, cmd, totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0) { m_freem(m); return error; } data->m = m; } else { cmd = &ring->cmd[ring->cur]; paddr = data->cmd_paddr; } cmd->code = code; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; memcpy(cmd->data, buf, size); desc->nsegs = 1; desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n", __func__, iwn_intr_str(cmd->code), cmd->code, cmd->flags, cmd->qid, cmd->idx); if (size > sizeof cmd->data) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); } else { bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, BUS_DMASYNC_PREWRITE); } bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); /* Kick command ring. */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz); } static int iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) { struct iwn4965_node_info hnode; caddr_t src, dst; /* * We use the node structure for 5000 Series internally (it is * a superset of the one for 4965AGN). We thus copy the common * fields before sending the command. */ src = (caddr_t)node; dst = (caddr_t)&hnode; memcpy(dst, src, 48); /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ memcpy(dst + 48, src + 72, 20); return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); } static int iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) { /* Direct mapping. */ return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); } static int iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) { #define RV(v) ((v) & IEEE80211_RATE_VAL) struct iwn_node *wn = (void *)ni; struct ieee80211_rateset *rs = &ni->ni_rates; struct iwn_cmd_link_quality linkq; uint8_t txant; int i, rate, txrate; /* Use the first valid TX antenna. */ txant = IWN_LSB(sc->txchainmask); memset(&linkq, 0, sizeof linkq); linkq.id = wn->id; linkq.antmsk_1stream = txant; linkq.antmsk_2stream = IWN_ANT_AB; linkq.ampdu_max = 64; linkq.ampdu_threshold = 3; linkq.ampdu_limit = htole16(4000); /* 4ms */ /* Start at highest available bit-rate. */ if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) txrate = ni->ni_htrates.rs_nrates - 1; else txrate = rs->rs_nrates - 1; for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) rate = IEEE80211_RATE_MCS | txrate; else rate = RV(rs->rs_rates[txrate]); linkq.retry[i] = wn->ridx[rate]; if ((le32toh(wn->ridx[rate]) & IWN_RFLAG_MCS) && RV(le32toh(wn->ridx[rate])) > 7) linkq.mimo = i + 1; /* Next retry at immediate lower bit-rate. */ if (txrate > 0) txrate--; } return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); #undef RV } /* * Broadcast node is used to send group-addressed and management frames. */ static int iwn_add_broadcast_node(struct iwn_softc *sc, int async) { struct iwn_ops *ops = &sc->ops; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct iwn_node_info node; struct iwn_cmd_link_quality linkq; uint8_t txant; int i, error; memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr); node.id = sc->broadcast_id; DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__); if ((error = ops->add_node(sc, &node, async)) != 0) return error; /* Use the first valid TX antenna. */ txant = IWN_LSB(sc->txchainmask); memset(&linkq, 0, sizeof linkq); linkq.id = sc->broadcast_id; linkq.antmsk_1stream = txant; linkq.antmsk_2stream = IWN_ANT_AB; linkq.ampdu_max = 64; linkq.ampdu_threshold = 3; linkq.ampdu_limit = htole16(4000); /* 4ms */ /* Use lowest mandatory bit-rate. */ if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) linkq.retry[0] = htole32(0xd); else linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK); linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant)); /* Use same bit-rate for all TX retries. */ for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { linkq.retry[i] = linkq.retry[0]; } return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); } static int iwn_updateedca(struct ieee80211com *ic) { #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ struct iwn_softc *sc = ic->ic_ifp->if_softc; struct iwn_edca_params cmd; int aci; memset(&cmd, 0, sizeof cmd); cmd.flags = htole32(IWN_EDCA_UPDATE); for (aci = 0; aci < WME_NUM_AC; aci++) { const struct wmeParams *ac = &ic->ic_wme.wme_chanParams.cap_wmeParams[aci]; cmd.ac[aci].aifsn = ac->wmep_aifsn; cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin)); cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax)); cmd.ac[aci].txoplimit = htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); } IEEE80211_UNLOCK(ic); IWN_LOCK(sc); (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); IWN_UNLOCK(sc); IEEE80211_LOCK(ic); return 0; #undef IWN_EXP2 } static void iwn_update_mcast(struct ifnet *ifp) { /* Ignore */ } static void iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) { struct iwn_cmd_led led; /* Clear microcode LED ownership. */ IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); led.which = which; led.unit = htole32(10000); /* on/off in unit of 100ms */ led.off = off; led.on = on; (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); } /* * Set the critical temperature at which the firmware will stop the radio * and notify us. */ static int iwn_set_critical_temp(struct iwn_softc *sc) { struct iwn_critical_temp crit; int32_t temp; IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); if (sc->hw_type == IWN_HW_REV_TYPE_5150) temp = (IWN_CTOK(110) - sc->temp_off) * -5; else if (sc->hw_type == IWN_HW_REV_TYPE_4965) temp = IWN_CTOK(110); else temp = 110; memset(&crit, 0, sizeof crit); crit.tempR = htole32(temp); DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp); return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); } static int iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) { struct iwn_cmd_timing cmd; uint64_t val, mod; memset(&cmd, 0, sizeof cmd); memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); cmd.bintval = htole16(ni->ni_intval); cmd.lintval = htole16(10); /* Compute remaining time until next beacon. */ val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; mod = le64toh(cmd.tstamp) % val; cmd.binitval = htole32((uint32_t)(val - mod)); DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); } static void iwn4965_power_calibration(struct iwn_softc *sc, int temp) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; /* Adjust TX power if need be (delta >= 3 degC). */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n", __func__, sc->temp, temp); if (abs(temp - sc->temp) >= 3) { /* Record temperature of last calibration. */ sc->temp = temp; (void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1); } } /* * Set TX power for current channel (each rate has its own power settings). * This function takes into account the regulatory information from EEPROM, * the current temperature and the current voltage. */ static int iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async) { /* Fixed-point arithmetic division using a n-bit fractional part. */ #define fdivround(a, b, n) \ ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) /* Linear interpolation. */ #define interpolate(x, x1, y1, x2, y2, n) \ ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; struct iwn_ucode_info *uc = &sc->ucode_info; struct iwn4965_cmd_txpower cmd; struct iwn4965_eeprom_chan_samples *chans; const uint8_t *rf_gain, *dsp_gain; int32_t vdiff, tdiff; int i, c, grp, maxpwr; uint8_t chan; /* Retrieve current channel from last RXON. */ chan = sc->rxon.chan; DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n", chan); memset(&cmd, 0, sizeof cmd); cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; cmd.chan = chan; if (IEEE80211_IS_CHAN_5GHZ(ch)) { maxpwr = sc->maxpwr5GHz; rf_gain = iwn4965_rf_gain_5ghz; dsp_gain = iwn4965_dsp_gain_5ghz; } else { maxpwr = sc->maxpwr2GHz; rf_gain = iwn4965_rf_gain_2ghz; dsp_gain = iwn4965_dsp_gain_2ghz; } /* Compute voltage compensation. */ vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; if (vdiff > 0) vdiff *= 2; if (abs(vdiff) > 2) vdiff = 0; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage); /* Get channel attenuation group. */ if (chan <= 20) /* 1-20 */ grp = 4; else if (chan <= 43) /* 34-43 */ grp = 0; else if (chan <= 70) /* 44-70 */ grp = 1; else if (chan <= 124) /* 71-124 */ grp = 2; else /* 125-200 */ grp = 3; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: chan %d, attenuation group=%d\n", __func__, chan, grp); /* Get channel sub-band. */ for (i = 0; i < IWN_NBANDS; i++) if (sc->bands[i].lo != 0 && sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) break; if (i == IWN_NBANDS) /* Can't happen in real-life. */ return EINVAL; chans = sc->bands[i].chans; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: chan %d sub-band=%d\n", __func__, chan, i); for (c = 0; c < 2; c++) { uint8_t power, gain, temp; int maxchpwr, pwr, ridx, idx; power = interpolate(chan, chans[0].num, chans[0].samples[c][1].power, chans[1].num, chans[1].samples[c][1].power, 1); gain = interpolate(chan, chans[0].num, chans[0].samples[c][1].gain, chans[1].num, chans[1].samples[c][1].gain, 1); temp = interpolate(chan, chans[0].num, chans[0].samples[c][1].temp, chans[1].num, chans[1].samples[c][1].temp, 1); DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: Tx chain %d: power=%d gain=%d temp=%d\n", __func__, c, power, gain, temp); /* Compute temperature compensation. */ tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n", __func__, tdiff, sc->temp, temp); for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { /* Convert dBm to half-dBm. */ maxchpwr = sc->maxpwr[chan] * 2; if ((ridx / 8) & 1) maxchpwr -= 6; /* MIMO 2T: -3dB */ pwr = maxpwr; /* Adjust TX power based on rate. */ if ((ridx % 8) == 5) pwr -= 15; /* OFDM48: -7.5dB */ else if ((ridx % 8) == 6) pwr -= 17; /* OFDM54: -8.5dB */ else if ((ridx % 8) == 7) pwr -= 20; /* OFDM60: -10dB */ else pwr -= 10; /* Others: -5dB */ /* Do not exceed channel max TX power. */ if (pwr > maxchpwr) pwr = maxchpwr; idx = gain - (pwr - power) - tdiff - vdiff; if ((ridx / 8) & 1) /* MIMO */ idx += (int32_t)le32toh(uc->atten[grp][c]); if (cmd.band == 0) idx += 9; /* 5GHz */ if (ridx == IWN_RIDX_MAX) idx += 5; /* CCK */ /* Make sure idx stays in a valid range. */ if (idx < 0) idx = 0; else if (idx > IWN4965_MAX_PWR_INDEX) idx = IWN4965_MAX_PWR_INDEX; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: Tx chain %d, rate idx %d: power=%d\n", __func__, c, ridx, idx); cmd.power[ridx].rf_gain[c] = rf_gain[idx]; cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; } } DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: set tx power for chan %d\n", __func__, chan); return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); #undef interpolate #undef fdivround } static int iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async) { struct iwn5000_cmd_txpower cmd; /* * TX power calibration is handled automatically by the firmware * for 5000 Series. */ memset(&cmd, 0, sizeof cmd); cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ cmd.flags = IWN5000_TXPOWER_NO_CLOSED; cmd.srv_limit = IWN5000_TXPOWER_AUTO; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__); return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); } /* * Retrieve the maximum RSSI (in dBm) among receivers. */ static int iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) { struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; uint8_t mask, agc; int rssi; mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; agc = (le16toh(phy->agc) >> 7) & 0x7f; rssi = 0; if (mask & IWN_ANT_A) rssi = MAX(rssi, phy->rssi[0]); if (mask & IWN_ANT_B) rssi = MAX(rssi, phy->rssi[2]); if (mask & IWN_ANT_C) rssi = MAX(rssi, phy->rssi[4]); DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc, mask, phy->rssi[0], phy->rssi[2], phy->rssi[4], rssi - agc - IWN_RSSI_TO_DBM); return rssi - agc - IWN_RSSI_TO_DBM; } static int iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) { struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; uint8_t agc; int rssi; agc = (le32toh(phy->agc) >> 9) & 0x7f; rssi = MAX(le16toh(phy->rssi[0]) & 0xff, le16toh(phy->rssi[1]) & 0xff); rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d rssi %d %d %d result %d\n", __func__, agc, phy->rssi[0], phy->rssi[1], phy->rssi[2], rssi - agc - IWN_RSSI_TO_DBM); return rssi - agc - IWN_RSSI_TO_DBM; } /* * Retrieve the average noise (in dBm) among receivers. */ static int iwn_get_noise(const struct iwn_rx_general_stats *stats) { int i, total, nbant, noise; total = nbant = 0; for (i = 0; i < 3; i++) { if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) continue; total += noise; nbant++; } /* There should be at least one antenna but check anyway. */ return (nbant == 0) ? -127 : (total / nbant) - 107; } /* * Compute temperature (in degC) from last received statistics. */ static int iwn4965_get_temperature(struct iwn_softc *sc) { struct iwn_ucode_info *uc = &sc->ucode_info; int32_t r1, r2, r3, r4, temp; r1 = le32toh(uc->temp[0].chan20MHz); r2 = le32toh(uc->temp[1].chan20MHz); r3 = le32toh(uc->temp[2].chan20MHz); r4 = le32toh(sc->rawtemp); if (r1 == r3) /* Prevents division by 0 (should not happen). */ return 0; /* Sign-extend 23-bit R4 value to 32-bit. */ r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; /* Compute temperature in Kelvin. */ temp = (259 * (r4 - r2)) / (r3 - r1); temp = (temp * 97) / 100 + 8; DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp, IWN_KTOC(temp)); return IWN_KTOC(temp); } static int iwn5000_get_temperature(struct iwn_softc *sc) { int32_t temp; /* * Temperature is not used by the driver for 5000 Series because * TX power calibration is handled by firmware. */ temp = le32toh(sc->rawtemp); if (sc->hw_type == IWN_HW_REV_TYPE_5150) { temp = (temp / -5) + sc->temp_off; temp = IWN_KTOC(temp); } return temp; } /* * Initialize sensitivity calibration state machine. */ static int iwn_init_sensitivity(struct iwn_softc *sc) { struct iwn_ops *ops = &sc->ops; struct iwn_calib_state *calib = &sc->calib; uint32_t flags; int error; /* Reset calibration state machine. */ memset(calib, 0, sizeof (*calib)); calib->state = IWN_CALIB_STATE_INIT; calib->cck_state = IWN_CCK_STATE_HIFA; /* Set initial correlation values. */ calib->ofdm_x1 = sc->limits->min_ofdm_x1; calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; calib->ofdm_x4 = sc->limits->min_ofdm_x4; calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; calib->cck_x4 = 125; calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; calib->energy_cck = sc->limits->energy_cck; /* Write initial sensitivity. */ if ((error = iwn_send_sensitivity(sc)) != 0) return error; /* Write initial gains. */ if ((error = ops->init_gains(sc)) != 0) return error; /* Request statistics at each beacon interval. */ flags = 0; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n", __func__); return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); } /* * Collect noise and RSSI statistics for the first 20 beacons received * after association and use them to determine connected antennas and * to set differential gains. */ static void iwn_collect_noise(struct iwn_softc *sc, const struct iwn_rx_general_stats *stats) { struct iwn_ops *ops = &sc->ops; struct iwn_calib_state *calib = &sc->calib; uint32_t val; int i; /* Accumulate RSSI and noise for all 3 antennas. */ for (i = 0; i < 3; i++) { calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; calib->noise[i] += le32toh(stats->noise[i]) & 0xff; } /* NB: We update differential gains only once after 20 beacons. */ if (++calib->nbeacons < 20) return; /* Determine highest average RSSI. */ val = MAX(calib->rssi[0], calib->rssi[1]); val = MAX(calib->rssi[2], val); /* Determine which antennas are connected. */ sc->chainmask = sc->rxchainmask; for (i = 0; i < 3; i++) if (val - calib->rssi[i] > 15 * 20) sc->chainmask &= ~(1 << i); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n", __func__, sc->rxchainmask, sc->chainmask); /* If none of the TX antennas are connected, keep at least one. */ if ((sc->chainmask & sc->txchainmask) == 0) sc->chainmask |= IWN_LSB(sc->txchainmask); (void)ops->set_gains(sc); calib->state = IWN_CALIB_STATE_RUN; #ifdef notyet /* XXX Disable RX chains with no antennas connected. */ sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); #endif #if 0 /* XXX: not yet */ /* Enable power-saving mode if requested by user. */ if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) (void)iwn_set_pslevel(sc, 0, 3, 1); #endif } static int iwn4965_init_gains(struct iwn_softc *sc) { struct iwn_phy_calib_gain cmd; memset(&cmd, 0, sizeof cmd); cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; /* Differential gains initially set to 0 for all 3 antennas. */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting initial differential gains\n", __func__); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); } static int iwn5000_init_gains(struct iwn_softc *sc) { struct iwn_phy_calib cmd; memset(&cmd, 0, sizeof cmd); cmd.code = sc->reset_noise_gain; cmd.ngroups = 1; cmd.isvalid = 1; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting initial differential gains\n", __func__); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); } static int iwn4965_set_gains(struct iwn_softc *sc) { struct iwn_calib_state *calib = &sc->calib; struct iwn_phy_calib_gain cmd; int i, delta, noise; /* Get minimal noise among connected antennas. */ noise = INT_MAX; /* NB: There's at least one antenna. */ for (i = 0; i < 3; i++) if (sc->chainmask & (1 << i)) noise = MIN(calib->noise[i], noise); memset(&cmd, 0, sizeof cmd); cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; /* Set differential gains for connected antennas. */ for (i = 0; i < 3; i++) { if (sc->chainmask & (1 << i)) { /* Compute attenuation (in unit of 1.5dB). */ delta = (noise - (int32_t)calib->noise[i]) / 30; /* NB: delta <= 0 */ /* Limit to [-4.5dB,0]. */ cmd.gain[i] = MIN(abs(delta), 3); if (delta < 0) cmd.gain[i] |= 1 << 2; /* sign bit */ } } DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); } static int iwn5000_set_gains(struct iwn_softc *sc) { struct iwn_calib_state *calib = &sc->calib; struct iwn_phy_calib_gain cmd; int i, ant, div, delta; /* We collected 20 beacons and !=6050 need a 1.5 factor. */ div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; memset(&cmd, 0, sizeof cmd); cmd.code = sc->noise_gain; cmd.ngroups = 1; cmd.isvalid = 1; /* Get first available RX antenna as referential. */ ant = IWN_LSB(sc->rxchainmask); /* Set differential gains for other antennas. */ for (i = ant + 1; i < 3; i++) { if (sc->chainmask & (1 << i)) { /* The delta is relative to antenna "ant". */ delta = ((int32_t)calib->noise[ant] - (int32_t)calib->noise[i]) / div; /* Limit to [-4.5dB,+4.5dB]. */ cmd.gain[i - 1] = MIN(abs(delta), 3); if (delta < 0) cmd.gain[i - 1] |= 1 << 2; /* sign bit */ } } DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting differential gains Ant B/C: %x/%x (%x)\n", cmd.gain[0], cmd.gain[1], sc->chainmask); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); } /* * Tune RF RX sensitivity based on the number of false alarms detected * during the last beacon period. */ static void iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) { #define inc(val, inc, max) \ if ((val) < (max)) { \ if ((val) < (max) - (inc)) \ (val) += (inc); \ else \ (val) = (max); \ needs_update = 1; \ } #define dec(val, dec, min) \ if ((val) > (min)) { \ if ((val) > (min) + (dec)) \ (val) -= (dec); \ else \ (val) = (min); \ needs_update = 1; \ } const struct iwn_sensitivity_limits *limits = sc->limits; struct iwn_calib_state *calib = &sc->calib; uint32_t val, rxena, fa; uint32_t energy[3], energy_min; uint8_t noise[3], noise_ref; int i, needs_update = 0; /* Check that we've been enabled long enough. */ if ((rxena = le32toh(stats->general.load)) == 0) return; /* Compute number of false alarms since last call for OFDM. */ fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ /* Save counters values for next call. */ calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); calib->fa_ofdm = le32toh(stats->ofdm.fa); if (fa > 50 * rxena) { /* High false alarm count, decrease sensitivity. */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: OFDM high false alarm count: %u\n", __func__, fa); inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); } else if (fa < 5 * rxena) { /* Low false alarm count, increase sensitivity. */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: OFDM low false alarm count: %u\n", __func__, fa); dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); } /* Compute maximum noise among 3 receivers. */ for (i = 0; i < 3; i++) noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; val = MAX(noise[0], noise[1]); val = MAX(noise[2], val); /* Insert it into our samples table. */ calib->noise_samples[calib->cur_noise_sample] = val; calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; /* Compute maximum noise among last 20 samples. */ noise_ref = calib->noise_samples[0]; for (i = 1; i < 20; i++) noise_ref = MAX(noise_ref, calib->noise_samples[i]); /* Compute maximum energy among 3 receivers. */ for (i = 0; i < 3; i++) energy[i] = le32toh(stats->general.energy[i]); val = MIN(energy[0], energy[1]); val = MIN(energy[2], val); /* Insert it into our samples table. */ calib->energy_samples[calib->cur_energy_sample] = val; calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; /* Compute minimum energy among last 10 samples. */ energy_min = calib->energy_samples[0]; for (i = 1; i < 10; i++) energy_min = MAX(energy_min, calib->energy_samples[i]); energy_min += 6; /* Compute number of false alarms since last call for CCK. */ fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; fa += le32toh(stats->cck.fa) - calib->fa_cck; fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ /* Save counters values for next call. */ calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); calib->fa_cck = le32toh(stats->cck.fa); if (fa > 50 * rxena) { /* High false alarm count, decrease sensitivity. */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: CCK high false alarm count: %u\n", __func__, fa); calib->cck_state = IWN_CCK_STATE_HIFA; calib->low_fa = 0; if (calib->cck_x4 > 160) { calib->noise_ref = noise_ref; if (calib->energy_cck > 2) dec(calib->energy_cck, 2, energy_min); } if (calib->cck_x4 < 160) { calib->cck_x4 = 161; needs_update = 1; } else inc(calib->cck_x4, 3, limits->max_cck_x4); inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); } else if (fa < 5 * rxena) { /* Low false alarm count, increase sensitivity. */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: CCK low false alarm count: %u\n", __func__, fa); calib->cck_state = IWN_CCK_STATE_LOFA; calib->low_fa++; if (calib->cck_state != IWN_CCK_STATE_INIT && (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || calib->low_fa > 100)) { inc(calib->energy_cck, 2, limits->min_energy_cck); dec(calib->cck_x4, 3, limits->min_cck_x4); dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); } } else { /* Not worth to increase or decrease sensitivity. */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: CCK normal false alarm count: %u\n", __func__, fa); calib->low_fa = 0; calib->noise_ref = noise_ref; if (calib->cck_state == IWN_CCK_STATE_HIFA) { /* Previous interval had many false alarms. */ dec(calib->energy_cck, 8, energy_min); } calib->cck_state = IWN_CCK_STATE_INIT; } if (needs_update) (void)iwn_send_sensitivity(sc); #undef dec #undef inc } static int iwn_send_sensitivity(struct iwn_softc *sc) { struct iwn_calib_state *calib = &sc->calib; struct iwn_enhanced_sensitivity_cmd cmd; int len; memset(&cmd, 0, sizeof cmd); len = sizeof (struct iwn_sensitivity_cmd); cmd.which = IWN_SENSITIVITY_WORKTBL; /* OFDM modulation. */ cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); cmd.energy_ofdm_th = htole16(62); /* CCK modulation. */ cmd.corr_cck_x4 = htole16(calib->cck_x4); cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); cmd.energy_cck = htole16(calib->energy_cck); /* Barker modulation: use default values. */ cmd.corr_barker = htole16(190); cmd.corr_barker_mrc = htole16(390); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__, calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4, calib->energy_cck); if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) goto send; /* Enhanced sensitivity settings. */ len = sizeof (struct iwn_enhanced_sensitivity_cmd); cmd.ofdm_det_slope_mrc = htole16(668); cmd.ofdm_det_icept_mrc = htole16(4); cmd.ofdm_det_slope = htole16(486); cmd.ofdm_det_icept = htole16(37); cmd.cck_det_slope_mrc = htole16(853); cmd.cck_det_icept_mrc = htole16(4); cmd.cck_det_slope = htole16(476); cmd.cck_det_icept = htole16(99); send: return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); } /* * Set STA mode power saving level (between 0 and 5). * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. */ static int iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) { struct iwn_pmgt_cmd cmd; const struct iwn_pmgt *pmgt; uint32_t max, skip_dtim; uint32_t reg; int i; /* Select which PS parameters to use. */ if (dtim <= 2) pmgt = &iwn_pmgt[0][level]; else if (dtim <= 10) pmgt = &iwn_pmgt[1][level]; else pmgt = &iwn_pmgt[2][level]; memset(&cmd, 0, sizeof cmd); if (level != 0) /* not CAM */ cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); if (level == 5) cmd.flags |= htole16(IWN_PS_FAST_PD); /* Retrieve PCIe Active State Power Management (ASPM). */ reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1); if (!(reg & 0x1)) /* L0s Entry disabled. */ cmd.flags |= htole16(IWN_PS_PCI_PMGT); cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); cmd.txtimeout = htole32(pmgt->txtimeout * 1024); if (dtim == 0) { dtim = 1; skip_dtim = 0; } else skip_dtim = pmgt->skip_dtim; if (skip_dtim != 0) { cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); max = pmgt->intval[4]; if (max == (uint32_t)-1) max = dtim * (skip_dtim + 1); else if (max > dtim) max = (max / dtim) * dtim; } else max = dtim; for (i = 0; i < 5; i++) cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n", level); return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); } static int iwn_send_btcoex(struct iwn_softc *sc) { struct iwn_bluetooth cmd; memset(&cmd, 0, sizeof cmd); cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; cmd.lead_time = IWN_BT_LEAD_TIME_DEF; cmd.max_kill = IWN_BT_MAX_KILL_DEF; DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", __func__); return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0); } static int iwn_send_advanced_btcoex(struct iwn_softc *sc) { static const uint32_t btcoex_3wire[12] = { 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa, 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa, 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000, }; struct iwn6000_btcoex_config btconfig; struct iwn_btcoex_priotable btprio; struct iwn_btcoex_prot btprot; int error, i; memset(&btconfig, 0, sizeof btconfig); btconfig.flags = 145; btconfig.max_kill = 5; btconfig.bt3_t7_timer = 1; btconfig.kill_ack = htole32(0xffff0000); btconfig.kill_cts = htole32(0xffff0000); btconfig.sample_time = 2; btconfig.bt3_t2_timer = 0xc; for (i = 0; i < 12; i++) btconfig.lookup_table[i] = htole32(btcoex_3wire[i]); btconfig.valid = htole16(0xff); btconfig.prio_boost = 0xf0; DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring advanced bluetooth coexistence\n", __func__); error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, sizeof(btconfig), 1); if (error != 0) return error; memset(&btprio, 0, sizeof btprio); btprio.calib_init1 = 0x6; btprio.calib_init2 = 0x7; btprio.calib_periodic_low1 = 0x2; btprio.calib_periodic_low2 = 0x3; btprio.calib_periodic_high1 = 0x4; btprio.calib_periodic_high2 = 0x5; btprio.dtim = 0x6; btprio.scan52 = 0x8; btprio.scan24 = 0xa; error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio), 1); if (error != 0) return error; /* Force BT state machine change. */ memset(&btprot, 0, sizeof btprio); btprot.open = 1; btprot.type = 1; error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); if (error != 0) return error; btprot.open = 0; return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); } static int iwn5000_runtime_calib(struct iwn_softc *sc) { struct iwn5000_calib_config cmd; memset(&cmd, 0, sizeof cmd); cmd.ucode.once.enable = 0xffffffff; cmd.ucode.once.start = IWN5000_CALIB_DC; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: configuring runtime calibration\n", __func__); return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); } static int iwn_config(struct iwn_softc *sc) { struct iwn_ops *ops = &sc->ops; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint32_t txmask; uint16_t rxchain; int error; if (sc->hw_type == IWN_HW_REV_TYPE_6005) { /* Set radio temperature sensor offset. */ error = iwn5000_temp_offset_calib(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not set temperature offset\n", __func__); return error; } } if (sc->hw_type == IWN_HW_REV_TYPE_6050) { /* Configure runtime DC calibration. */ error = iwn5000_runtime_calib(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not configure runtime calibration\n", __func__); return error; } } /* Configure valid TX chains for >=5000 Series. */ if (sc->hw_type != IWN_HW_REV_TYPE_4965) { txmask = htole32(sc->txchainmask); DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring valid TX chains 0x%x\n", __func__, txmask); error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, sizeof txmask, 0); if (error != 0) { device_printf(sc->sc_dev, "%s: could not configure valid TX chains, " "error %d\n", __func__, error); return error; } } /* Configure bluetooth coexistence. */ if (sc->sc_flags & IWN_FLAG_ADV_BTCOEX) error = iwn_send_advanced_btcoex(sc); else error = iwn_send_btcoex(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not configure bluetooth coexistence, error %d\n", __func__, error); return error; } /* Set mode, channel, RX filter and enable RX. */ memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp)); IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp)); sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan); sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); switch (ic->ic_opmode) { case IEEE80211_M_STA: sc->rxon.mode = IWN_MODE_STA; sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); break; case IEEE80211_M_MONITOR: sc->rxon.mode = IWN_MODE_MONITOR; sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_CTL | IWN_FILTER_PROMISC); break; default: /* Should not get there. */ break; } sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ sc->rxon.ht_single_mask = 0xff; sc->rxon.ht_dual_mask = 0xff; sc->rxon.ht_triple_mask = 0xff; rxchain = IWN_RXCHAIN_VALID(sc->rxchainmask) | IWN_RXCHAIN_MIMO_COUNT(2) | IWN_RXCHAIN_IDLE_COUNT(2); sc->rxon.rxchain = htole16(rxchain); DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__); error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0); if (error != 0) { device_printf(sc->sc_dev, "%s: RXON command failed\n", __func__); return error; } if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { device_printf(sc->sc_dev, "%s: could not add broadcast node\n", __func__); return error; } /* Configuration has changed, set TX power accordingly. */ if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) { device_printf(sc->sc_dev, "%s: could not set TX power\n", __func__); return error; } if ((error = iwn_set_critical_temp(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not set critical temperature\n", __func__); return error; } /* Set power saving level to CAM during initialization. */ if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { device_printf(sc->sc_dev, "%s: could not set power saving level\n", __func__); return error; } return 0; } /* * Add an ssid element to a frame. */ static uint8_t * ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) { *frm++ = IEEE80211_ELEMID_SSID; *frm++ = len; memcpy(frm, ssid, len); return frm + len; } static int iwn_scan(struct iwn_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211_scan_state *ss = ic->ic_scan; /*XXX*/ struct ieee80211_node *ni = ss->ss_vap->iv_bss; struct iwn_scan_hdr *hdr; struct iwn_cmd_data *tx; struct iwn_scan_essid *essid; struct iwn_scan_chan *chan; struct ieee80211_frame *wh; struct ieee80211_rateset *rs; struct ieee80211_channel *c; uint8_t *buf, *frm; uint16_t rxchain; uint8_t txant; int buflen, error; buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); if (buf == NULL) { device_printf(sc->sc_dev, "%s: could not allocate buffer for scan command\n", __func__); return ENOMEM; } hdr = (struct iwn_scan_hdr *)buf; /* * Move to the next channel if no frames are received within 10ms * after sending the probe request. */ hdr->quiet_time = htole16(10); /* timeout in milliseconds */ hdr->quiet_threshold = htole16(1); /* min # of packets */ /* Select antennas for scanning. */ rxchain = IWN_RXCHAIN_VALID(sc->rxchainmask) | IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | IWN_RXCHAIN_DRIVER_FORCE; if (IEEE80211_IS_CHAN_A(ic->ic_curchan) && sc->hw_type == IWN_HW_REV_TYPE_4965) { /* Ant A must be avoided in 5GHz because of an HW bug. */ rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B); } else /* Use all available RX antennas. */ rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); hdr->rxchain = htole16(rxchain); hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); tx = (struct iwn_cmd_data *)(hdr + 1); tx->flags = htole32(IWN_TX_AUTO_SEQ); tx->id = sc->broadcast_id; tx->lifetime = htole32(IWN_LIFETIME_INFINITE); if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) { /* Send probe requests at 6Mbps. */ tx->rate = htole32(0xd); rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; } else { hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); if (sc->hw_type == IWN_HW_REV_TYPE_4965 && sc->rxon.associd && sc->rxon.chan > 14) tx->rate = htole32(0xd); else { /* Send probe requests at 1Mbps. */ tx->rate = htole32(10 | IWN_RFLAG_CCK); } rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; } /* Use the first valid TX antenna. */ txant = IWN_LSB(sc->txchainmask); tx->rate |= htole32(IWN_RFLAG_ANT(txant)); essid = (struct iwn_scan_essid *)(tx + 1); if (ss->ss_ssid[0].len != 0) { essid[0].id = IEEE80211_ELEMID_SSID; essid[0].len = ss->ss_ssid[0].len; memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); } /* * Build a probe request frame. Most of the following code is a * copy & paste of what is done in net80211. */ wh = (struct ieee80211_frame *)(essid + 20); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ frm = (uint8_t *)(wh + 1); frm = ieee80211_add_ssid(frm, NULL, 0); frm = ieee80211_add_rates(frm, rs); if (rs->rs_nrates > IEEE80211_RATE_SIZE) frm = ieee80211_add_xrates(frm, rs); if (ic->ic_htcaps & IEEE80211_HTC_HT) frm = ieee80211_add_htcap(frm, ni); /* Set length of probe request. */ tx->len = htole16(frm - (uint8_t *)wh); c = ic->ic_curchan; chan = (struct iwn_scan_chan *)frm; chan->chan = htole16(ieee80211_chan2ieee(ic, c)); chan->flags = 0; if (ss->ss_nssid > 0) chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); chan->dsp_gain = 0x6e; if (IEEE80211_IS_CHAN_5GHZ(c) && !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { chan->rf_gain = 0x3b; chan->active = htole16(24); chan->passive = htole16(110); chan->flags |= htole32(IWN_CHAN_ACTIVE); } else if (IEEE80211_IS_CHAN_5GHZ(c)) { chan->rf_gain = 0x3b; chan->active = htole16(24); if (sc->rxon.associd) chan->passive = htole16(78); else chan->passive = htole16(110); hdr->crc_threshold = 0xffff; } else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { chan->rf_gain = 0x28; chan->active = htole16(36); chan->passive = htole16(120); chan->flags |= htole32(IWN_CHAN_ACTIVE); } else { chan->rf_gain = 0x28; chan->active = htole16(36); if (sc->rxon.associd) chan->passive = htole16(88); else chan->passive = htole16(120); hdr->crc_threshold = 0xffff; } DPRINTF(sc, IWN_DEBUG_STATE, "%s: chan %u flags 0x%x rf_gain 0x%x " "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__, chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain, chan->active, chan->passive); hdr->nchan++; chan++; buflen = (uint8_t *)chan - buf; hdr->len = htole16(buflen); DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n", hdr->nchan); error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); free(buf, M_DEVBUF); return error; } static int iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap) { struct iwn_ops *ops = &sc->ops; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211_node *ni = vap->iv_bss; int error; /* Update adapter configuration. */ IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); if (ic->ic_flags & IEEE80211_F_SHSLOT) sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { sc->rxon.cck_mask = 0; sc->rxon.ofdm_mask = 0x15; } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { sc->rxon.cck_mask = 0x03; sc->rxon.ofdm_mask = 0; } else { /* Assume 802.11b/g. */ sc->rxon.cck_mask = 0x0f; sc->rxon.ofdm_mask = 0x15; } DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask); error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); if (error != 0) { device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n", __func__, error); return error; } /* Configuration has changed, set TX power accordingly. */ if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) { device_printf(sc->sc_dev, "%s: could not set TX power, error %d\n", __func__, error); return error; } /* * Reconfiguring RXON clears the firmware nodes table so we must * add the broadcast node again. */ if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { device_printf(sc->sc_dev, "%s: could not add broadcast node, error %d\n", __func__, error); return error; } return 0; } static int iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap) { struct iwn_ops *ops = &sc->ops; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211_node *ni = vap->iv_bss; struct iwn_node_info node; uint32_t htflags = 0; int error; if (ic->ic_opmode == IEEE80211_M_MONITOR) { /* Link LED blinks while monitoring. */ iwn_set_led(sc, IWN_LED_LINK, 5, 5); return 0; } if ((error = iwn_set_timing(sc, ni)) != 0) { device_printf(sc->sc_dev, "%s: could not set timing, error %d\n", __func__, error); return error; } /* Update adapter configuration. */ IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); if (ic->ic_flags & IEEE80211_F_SHSLOT) sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { sc->rxon.cck_mask = 0; sc->rxon.ofdm_mask = 0x15; } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { sc->rxon.cck_mask = 0x03; sc->rxon.ofdm_mask = 0; } else { /* Assume 802.11b/g. */ sc->rxon.cck_mask = 0x0f; sc->rxon.ofdm_mask = 0x15; } if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode); if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { switch (ic->ic_curhtprotmode) { case IEEE80211_HTINFO_OPMODE_HT20PR: htflags |= IWN_RXON_HT_MODEPURE40; break; default: htflags |= IWN_RXON_HT_MODEMIXED; break; } } if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) htflags |= IWN_RXON_HT_HT40MINUS; } sc->rxon.flags |= htole32(htflags); sc->rxon.filter |= htole32(IWN_FILTER_BSS); DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags); error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); if (error != 0) { device_printf(sc->sc_dev, "%s: could not update configuration, error %d\n", __func__, error); return error; } /* Configuration has changed, set TX power accordingly. */ if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) { device_printf(sc->sc_dev, "%s: could not set TX power, error %d\n", __func__, error); return error; } /* Fake a join to initialize the TX rate. */ ((struct iwn_node *)ni)->id = IWN_ID_BSS; iwn_newassoc(ni, 1); /* Add BSS node. */ memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); node.id = IWN_ID_BSS; if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { case IEEE80211_HTCAP_SMPS_ENA: node.htflags |= htole32(IWN_SMPS_MIMO_DIS); break; case IEEE80211_HTCAP_SMPS_DYNAMIC: node.htflags |= htole32(IWN_SMPS_MIMO_PROT); break; } node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) | IWN_AMDPU_DENSITY(5)); /* 4us */ if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) node.htflags |= htole32(IWN_NODE_HT40); } DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__); error = ops->add_node(sc, &node, 1); if (error != 0) { device_printf(sc->sc_dev, "%s: could not add BSS node, error %d\n", __func__, error); return error; } DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n", __func__, node.id); if ((error = iwn_set_link_quality(sc, ni)) != 0) { device_printf(sc->sc_dev, "%s: could not setup link quality for node %d, error %d\n", __func__, node.id, error); return error; } if ((error = iwn_init_sensitivity(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not set sensitivity, error %d\n", __func__, error); return error; } /* Start periodic calibration timer. */ sc->calib.state = IWN_CALIB_STATE_ASSOC; sc->calib_cnt = 0; callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, sc); /* Link LED always on while associated. */ iwn_set_led(sc, IWN_LED_LINK, 0, 1); return 0; } /* * This function is called by upper layer when an ADDBA request is received * from another STA and before the ADDBA response is sent. */ static int iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, int baparamset, int batimeout, int baseqctl) { #define MS(_v, _f) (((_v) & _f) >> _f##_S) struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; struct iwn_ops *ops = &sc->ops; struct iwn_node *wn = (void *)ni; struct iwn_node_info node; uint16_t ssn; uint8_t tid; int error; tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID); ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START); memset(&node, 0, sizeof node); node.id = wn->id; node.control = IWN_NODE_UPDATE; node.flags = IWN_FLAG_SET_ADDBA; node.addba_tid = tid; node.addba_ssn = htole16(ssn); DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, ssn); error = ops->add_node(sc, &node, 1); if (error != 0) return error; return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl); #undef MS } /* * This function is called by upper layer on teardown of an HT-immediate * Block Ack agreement (eg. uppon receipt of a DELBA frame). */ static void iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) { struct ieee80211com *ic = ni->ni_ic; struct iwn_softc *sc = ic->ic_ifp->if_softc; struct iwn_ops *ops = &sc->ops; struct iwn_node *wn = (void *)ni; struct iwn_node_info node; uint8_t tid; /* XXX: tid as an argument */ for (tid = 0; tid < WME_NUM_TID; tid++) { if (&ni->ni_rx_ampdu[tid] == rap) break; } memset(&node, 0, sizeof node); node.id = wn->id; node.control = IWN_NODE_UPDATE; node.flags = IWN_FLAG_SET_DELBA; node.delba_tid = tid; DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid); (void)ops->add_node(sc, &node, 1); sc->sc_ampdu_rx_stop(ni, rap); } static int iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int dialogtoken, int baparamset, int batimeout) { struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; int qid; for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) { if (sc->qid2tap[qid] == NULL) break; } if (qid == sc->ntxqs) { DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n", __func__); return 0; } tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); if (tap->txa_private == NULL) { device_printf(sc->sc_dev, "%s: failed to alloc TX aggregation structure\n", __func__); return 0; } sc->qid2tap[qid] = tap; *(int *)tap->txa_private = qid; return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, batimeout); } static int iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int code, int baparamset, int batimeout) { struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; int qid = *(int *)tap->txa_private; uint8_t tid = WME_AC_TO_TID(tap->txa_ac); int ret; if (code == IEEE80211_STATUS_SUCCESS) { ni->ni_txseqs[tid] = tap->txa_start & 0xfff; ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid); if (ret != 1) return ret; } else { sc->qid2tap[qid] = NULL; free(tap->txa_private, M_DEVBUF); tap->txa_private = NULL; } return sc->sc_addba_response(ni, tap, code, baparamset, batimeout); } /* * This function is called by upper layer when an ADDBA response is received * from another STA. */ static int iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, uint8_t tid) { struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[TID_TO_WME_AC(tid)]; struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; struct iwn_ops *ops = &sc->ops; struct iwn_node *wn = (void *)ni; struct iwn_node_info node; int error, qid; /* Enable TX for the specified RA/TID. */ wn->disable_tid &= ~(1 << tid); memset(&node, 0, sizeof node); node.id = wn->id; node.control = IWN_NODE_UPDATE; node.flags = IWN_FLAG_SET_DISABLE_TID; node.disable_tid = htole16(wn->disable_tid); error = ops->add_node(sc, &node, 1); if (error != 0) return 0; if ((error = iwn_nic_lock(sc)) != 0) return 0; qid = *(int *)tap->txa_private; ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff); iwn_nic_unlock(sc); iwn_set_link_quality(sc, ni); return 1; } static void iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; struct iwn_ops *ops = &sc->ops; uint8_t tid = WME_AC_TO_TID(tap->txa_ac); int qid; if (tap->txa_private == NULL) return; qid = *(int *)tap->txa_private; if (iwn_nic_lock(sc) != 0) return; ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff); iwn_nic_unlock(sc); sc->qid2tap[qid] = NULL; free(tap->txa_private, M_DEVBUF); tap->txa_private = NULL; sc->sc_addba_stop(ni, tap); } static void iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, int qid, uint8_t tid, uint16_t ssn) { struct iwn_node *wn = (void *)ni; /* Stop TX scheduler while we're changing its configuration. */ iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_CHGACT); /* Assign RA/TID translation to the queue. */ iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), wn->id << 4 | tid); /* Enable chain-building mode for the queue. */ iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); /* Set starting sequence number from the ADDBA request. */ sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); /* Set scheduler window size. */ iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); /* Set scheduler frame limit. */ iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, IWN_SCHED_LIMIT << 16); /* Enable interrupts for the queue. */ iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); /* Mark the queue as active. */ iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | iwn_tid2fifo[tid] << 1); } static void iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) { /* Stop TX scheduler while we're changing its configuration. */ iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_CHGACT); /* Set starting sequence number from the ADDBA request. */ IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); /* Disable interrupts for the queue. */ iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); /* Mark the queue as inactive. */ iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); } static void iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, int qid, uint8_t tid, uint16_t ssn) { struct iwn_node *wn = (void *)ni; /* Stop TX scheduler while we're changing its configuration. */ iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_CHGACT); /* Assign RA/TID translation to the queue. */ iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), wn->id << 4 | tid); /* Enable chain-building mode for the queue. */ iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); /* Enable aggregation for the queue. */ iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); /* Set starting sequence number from the ADDBA request. */ sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); /* Set scheduler window size and frame limit. */ iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); /* Enable interrupts for the queue. */ iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); /* Mark the queue as active. */ iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); } static void iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) { /* Stop TX scheduler while we're changing its configuration. */ iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_CHGACT); /* Disable aggregation for the queue. */ iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); /* Set starting sequence number from the ADDBA request. */ IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); /* Disable interrupts for the queue. */ iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); /* Mark the queue as inactive. */ iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); } /* * Query calibration tables from the initialization firmware. We do this * only once at first boot. Called from a process context. */ static int iwn5000_query_calibration(struct iwn_softc *sc) { struct iwn5000_calib_config cmd; int error; memset(&cmd, 0, sizeof cmd); cmd.ucode.once.enable = 0xffffffff; cmd.ucode.once.start = 0xffffffff; cmd.ucode.once.send = 0xffffffff; cmd.ucode.flags = 0xffffffff; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n", __func__); error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); if (error != 0) return error; /* Wait at most two seconds for calibration to complete. */ if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz); return error; } /* * Send calibration results to the runtime firmware. These results were * obtained on first boot from the initialization firmware. */ static int iwn5000_send_calibration(struct iwn_softc *sc) { int idx, error; for (idx = 0; idx < 5; idx++) { if (sc->calibcmd[idx].buf == NULL) continue; /* No results available. */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "send calibration result idx=%d len=%d\n", idx, sc->calibcmd[idx].len); error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, sc->calibcmd[idx].len, 0); if (error != 0) { device_printf(sc->sc_dev, "%s: could not send calibration result, error %d\n", __func__, error); return error; } } return 0; } static int iwn5000_send_wimax_coex(struct iwn_softc *sc) { struct iwn5000_wimax_coex wimax; #ifdef notyet if (sc->hw_type == IWN_HW_REV_TYPE_6050) { /* Enable WiMAX coexistence for combo adapters. */ wimax.flags = IWN_WIMAX_COEX_ASSOC_WA_UNMASK | IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | IWN_WIMAX_COEX_STA_TABLE_VALID | IWN_WIMAX_COEX_ENABLE; memcpy(wimax.events, iwn6050_wimax_events, sizeof iwn6050_wimax_events); } else #endif { /* Disable WiMAX coexistence. */ wimax.flags = 0; memset(wimax.events, 0, sizeof wimax.events); } DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n", __func__); return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); } static int iwn5000_crystal_calib(struct iwn_softc *sc) { struct iwn5000_phy_calib_crystal cmd; memset(&cmd, 0, sizeof cmd); cmd.code = IWN5000_PHY_CALIB_CRYSTAL; cmd.ngroups = 1; cmd.isvalid = 1; cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n", cmd.cap_pin[0], cmd.cap_pin[1]); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); } static int iwn5000_temp_offset_calib(struct iwn_softc *sc) { struct iwn5000_phy_calib_temp_offset cmd; memset(&cmd, 0, sizeof cmd); cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; cmd.ngroups = 1; cmd.isvalid = 1; if (sc->eeprom_temp != 0) cmd.offset = htole16(sc->eeprom_temp); else cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n", le16toh(cmd.offset)); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); } /* * This function is called after the runtime firmware notifies us of its * readiness (called in a process context). */ static int iwn4965_post_alive(struct iwn_softc *sc) { int error, qid; if ((error = iwn_nic_lock(sc)) != 0) return error; /* Clear TX scheduler state in SRAM. */ sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); /* Set physical address of TX scheduler rings (1KB aligned). */ iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); /* Disable chain mode for all our 16 queues. */ iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); /* Set scheduler window size. */ iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); /* Set scheduler frame limit. */ iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, IWN_SCHED_LIMIT << 16); } /* Enable interrupts for all our 16 queues. */ iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); /* Identify TX FIFO rings (0-7). */ iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ for (qid = 0; qid < 7; qid++) { static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); } iwn_nic_unlock(sc); return 0; } /* * This function is called after the initialization or runtime firmware * notifies us of its readiness (called in a process context). */ static int iwn5000_post_alive(struct iwn_softc *sc) { int error, qid; /* Switch to using ICT interrupt mode. */ iwn5000_ict_reset(sc); if ((error = iwn_nic_lock(sc)) != 0) return error; /* Clear TX scheduler state in SRAM. */ sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); /* Set physical address of TX scheduler rings (1KB aligned). */ iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); /* Enable chain mode for all queues, except command queue. */ iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid), 0); /* Set scheduler window size and frame limit. */ iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); } /* Enable interrupts for all our 20 queues. */ iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); /* Identify TX FIFO rings (0-7). */ iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ for (qid = 0; qid < 7; qid++) { static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); } iwn_nic_unlock(sc); /* Configure WiMAX coexistence for combo adapters. */ error = iwn5000_send_wimax_coex(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not configure WiMAX coexistence, error %d\n", __func__, error); return error; } if (sc->hw_type != IWN_HW_REV_TYPE_5150) { /* Perform crystal calibration. */ error = iwn5000_crystal_calib(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: crystal calibration failed, error %d\n", __func__, error); return error; } } if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { /* Query calibration from the initialization firmware. */ if ((error = iwn5000_query_calibration(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not query calibration, error %d\n", __func__, error); return error; } /* * We have the calibration results now, reboot with the * runtime firmware (call ourselves recursively!) */ iwn_hw_stop(sc); error = iwn_hw_init(sc); } else { /* Send calibration results to runtime firmware. */ error = iwn5000_send_calibration(sc); } return error; } /* * The firmware boot code is small and is intended to be copied directly into * the NIC internal memory (no DMA transfer). */ static int iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) { int error, ntries; size /= sizeof (uint32_t); if ((error = iwn_nic_lock(sc)) != 0) return error; /* Copy microcode image into NIC memory. */ iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, (const uint32_t *)ucode, size); iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); /* Start boot load now. */ iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); /* Wait for transfer to complete. */ for (ntries = 0; ntries < 1000; ntries++) { if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & IWN_BSM_WR_CTRL_START)) break; DELAY(10); } if (ntries == 1000) { device_printf(sc->sc_dev, "%s: could not load boot firmware\n", __func__); iwn_nic_unlock(sc); return ETIMEDOUT; } /* Enable boot after power up. */ iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); iwn_nic_unlock(sc); return 0; } static int iwn4965_load_firmware(struct iwn_softc *sc) { struct iwn_fw_info *fw = &sc->fw; struct iwn_dma_info *dma = &sc->fw_dma; int error; /* Copy initialization sections into pre-allocated DMA-safe memory. */ memcpy(dma->vaddr, fw->init.data, fw->init.datasz); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); /* Tell adapter where to find initialization sections. */ if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); iwn_nic_unlock(sc); /* Load firmware boot code. */ error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load boot firmware\n", __func__); return error; } /* Now press "execute". */ IWN_WRITE(sc, IWN_RESET, 0); /* Wait at most one second for first alive notification. */ if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { device_printf(sc->sc_dev, "%s: timeout waiting for adapter to initialize, error %d\n", __func__, error); return error; } /* Retrieve current temperature for initial TX power calibration. */ sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; sc->temp = iwn4965_get_temperature(sc); /* Copy runtime sections into pre-allocated DMA-safe memory. */ memcpy(dma->vaddr, fw->main.data, fw->main.datasz); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); /* Tell adapter where to find runtime sections. */ if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, IWN_FW_UPDATED | fw->main.textsz); iwn_nic_unlock(sc); return 0; } static int iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, const uint8_t *section, int size) { struct iwn_dma_info *dma = &sc->fw_dma; int error; /* Copy firmware section into pre-allocated DMA-safe memory. */ memcpy(dma->vaddr, section, size); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); if ((error = iwn_nic_lock(sc)) != 0) return error; IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), IWN_FH_TX_CONFIG_DMA_PAUSE); IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), IWN_LOADDR(dma->paddr)); IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), IWN_HIADDR(dma->paddr) << 28 | size); IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), IWN_FH_TXBUF_STATUS_TBNUM(1) | IWN_FH_TXBUF_STATUS_TBIDX(1) | IWN_FH_TXBUF_STATUS_TFBD_VALID); /* Kick Flow Handler to start DMA transfer. */ IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); iwn_nic_unlock(sc); /* Wait at most five seconds for FH DMA transfer to complete. */ return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz); } static int iwn5000_load_firmware(struct iwn_softc *sc) { struct iwn_fw_part *fw; int error; /* Load the initialization firmware on first boot only. */ fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? &sc->fw.main : &sc->fw.init; error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, fw->text, fw->textsz); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load firmware %s section, error %d\n", __func__, ".text", error); return error; } error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, fw->data, fw->datasz); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load firmware %s section, error %d\n", __func__, ".data", error); return error; } /* Now press "execute". */ IWN_WRITE(sc, IWN_RESET, 0); return 0; } /* * Extract text and data sections from a legacy firmware image. */ static int iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) { const uint32_t *ptr; size_t hdrlen = 24; uint32_t rev; ptr = (const uint32_t *)fw->data; rev = le32toh(*ptr++); /* Check firmware API version. */ if (IWN_FW_API(rev) <= 1) { device_printf(sc->sc_dev, "%s: bad firmware, need API version >=2\n", __func__); return EINVAL; } if (IWN_FW_API(rev) >= 3) { /* Skip build number (version 2 header). */ hdrlen += 4; ptr++; } if (fw->size < hdrlen) { device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", __func__, fw->size); return EINVAL; } fw->main.textsz = le32toh(*ptr++); fw->main.datasz = le32toh(*ptr++); fw->init.textsz = le32toh(*ptr++); fw->init.datasz = le32toh(*ptr++); fw->boot.textsz = le32toh(*ptr++); /* Check that all firmware sections fit. */ if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + fw->init.textsz + fw->init.datasz + fw->boot.textsz) { device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", __func__, fw->size); return EINVAL; } /* Get pointers to firmware sections. */ fw->main.text = (const uint8_t *)ptr; fw->main.data = fw->main.text + fw->main.textsz; fw->init.text = fw->main.data + fw->main.datasz; fw->init.data = fw->init.text + fw->init.textsz; fw->boot.text = fw->init.data + fw->init.datasz; return 0; } /* * Extract text and data sections from a TLV firmware image. */ static int iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, uint16_t alt) { const struct iwn_fw_tlv_hdr *hdr; const struct iwn_fw_tlv *tlv; const uint8_t *ptr, *end; uint64_t altmask; uint32_t len, tmp; if (fw->size < sizeof (*hdr)) { device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", __func__, fw->size); return EINVAL; } hdr = (const struct iwn_fw_tlv_hdr *)fw->data; if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n", __func__, le32toh(hdr->signature)); return EINVAL; } DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr, le32toh(hdr->build)); /* * Select the closest supported alternative that is less than * or equal to the specified one. */ altmask = le64toh(hdr->altmask); while (alt > 0 && !(altmask & (1ULL << alt))) alt--; /* Downgrade. */ DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt); ptr = (const uint8_t *)(hdr + 1); end = (const uint8_t *)(fw->data + fw->size); /* Parse type-length-value fields. */ while (ptr + sizeof (*tlv) <= end) { tlv = (const struct iwn_fw_tlv *)ptr; len = le32toh(tlv->len); ptr += sizeof (*tlv); if (ptr + len > end) { device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", __func__, fw->size); return EINVAL; } /* Skip other alternatives. */ if (tlv->alt != 0 && tlv->alt != htole16(alt)) goto next; switch (le16toh(tlv->type)) { case IWN_FW_TLV_MAIN_TEXT: fw->main.text = ptr; fw->main.textsz = len; break; case IWN_FW_TLV_MAIN_DATA: fw->main.data = ptr; fw->main.datasz = len; break; case IWN_FW_TLV_INIT_TEXT: fw->init.text = ptr; fw->init.textsz = len; break; case IWN_FW_TLV_INIT_DATA: fw->init.data = ptr; fw->init.datasz = len; break; case IWN_FW_TLV_BOOT_TEXT: fw->boot.text = ptr; fw->boot.textsz = len; break; case IWN_FW_TLV_ENH_SENS: if (!len) sc->sc_flags |= IWN_FLAG_ENH_SENS; break; case IWN_FW_TLV_PHY_CALIB: tmp = htole32(*ptr); if (tmp < 253) { sc->reset_noise_gain = tmp; sc->noise_gain = tmp + 1; } break; default: DPRINTF(sc, IWN_DEBUG_RESET, "TLV type %d not handled\n", le16toh(tlv->type)); break; } next: /* TLV fields are 32-bit aligned. */ ptr += (len + 3) & ~3; } return 0; } static int iwn_read_firmware(struct iwn_softc *sc) { struct iwn_fw_info *fw = &sc->fw; int error; IWN_UNLOCK(sc); memset(fw, 0, sizeof (*fw)); /* Read firmware image from filesystem. */ sc->fw_fp = firmware_get(sc->fwname); if (sc->fw_fp == NULL) { device_printf(sc->sc_dev, "%s: could not read firmware %s\n", __func__, sc->fwname); IWN_LOCK(sc); return EINVAL; } IWN_LOCK(sc); fw->size = sc->fw_fp->datasize; fw->data = (const uint8_t *)sc->fw_fp->data; if (fw->size < sizeof (uint32_t)) { device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", __func__, fw->size); firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); sc->fw_fp = NULL; return EINVAL; } /* Retrieve text and data sections. */ if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ error = iwn_read_firmware_leg(sc, fw); else error = iwn_read_firmware_tlv(sc, fw, 1); if (error != 0) { device_printf(sc->sc_dev, "%s: could not read firmware sections, error %d\n", __func__, error); firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); sc->fw_fp = NULL; return error; } /* Make sure text and data sections fit in hardware memory. */ if (fw->main.textsz > sc->fw_text_maxsz || fw->main.datasz > sc->fw_data_maxsz || fw->init.textsz > sc->fw_text_maxsz || fw->init.datasz > sc->fw_data_maxsz || fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || (fw->boot.textsz & 3) != 0) { device_printf(sc->sc_dev, "%s: firmware sections too large\n", __func__); firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); sc->fw_fp = NULL; return EINVAL; } /* We can proceed with loading the firmware. */ return 0; } static int iwn_clock_wait(struct iwn_softc *sc) { int ntries; /* Set "initialization complete" bit. */ IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); /* Wait for clock stabilization. */ for (ntries = 0; ntries < 2500; ntries++) { if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) return 0; DELAY(10); } device_printf(sc->sc_dev, "%s: timeout waiting for clock stabilization\n", __func__); return ETIMEDOUT; } static int iwn_apm_init(struct iwn_softc *sc) { uint32_t reg; int error; /* Disable L0s exit timer (NMI bug workaround). */ IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); /* Don't wait for ICH L0s (ICH bug workaround). */ IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); /* Set FH wait threshold to max (HW bug under stress workaround). */ IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); /* Enable HAP INTA to move adapter from L1a to L0s. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); /* Retrieve PCIe Active State Power Management (ASPM). */ reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1); /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ if (reg & 0x02) /* L1 Entry enabled. */ IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); else IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); if (sc->hw_type != IWN_HW_REV_TYPE_4965 && sc->hw_type <= IWN_HW_REV_TYPE_1000) IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); /* Wait for clock stabilization before accessing prph. */ if ((error = iwn_clock_wait(sc)) != 0) return error; if ((error = iwn_nic_lock(sc)) != 0) return error; if (sc->hw_type == IWN_HW_REV_TYPE_4965) { /* Enable DMA and BSM (Bootstrap State Machine). */ iwn_prph_write(sc, IWN_APMG_CLK_EN, IWN_APMG_CLK_CTRL_DMA_CLK_RQT | IWN_APMG_CLK_CTRL_BSM_CLK_RQT); } else { /* Enable DMA. */ iwn_prph_write(sc, IWN_APMG_CLK_EN, IWN_APMG_CLK_CTRL_DMA_CLK_RQT); } DELAY(20); /* Disable L1-Active. */ iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); iwn_nic_unlock(sc); return 0; } static void iwn_apm_stop_master(struct iwn_softc *sc) { int ntries; /* Stop busmaster DMA activity. */ IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); for (ntries = 0; ntries < 100; ntries++) { if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) return; DELAY(10); } device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__); } static void iwn_apm_stop(struct iwn_softc *sc) { iwn_apm_stop_master(sc); /* Reset the entire device. */ IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); DELAY(10); /* Clear "initialization complete" bit. */ IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); } static int iwn4965_nic_config(struct iwn_softc *sc) { if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { /* * I don't believe this to be correct but this is what the * vendor driver is doing. Probably the bits should not be * shifted in IWN_RFCFG_*. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_RFCFG_TYPE(sc->rfcfg) | IWN_RFCFG_STEP(sc->rfcfg) | IWN_RFCFG_DASH(sc->rfcfg)); } IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); return 0; } static int iwn5000_nic_config(struct iwn_softc *sc) { uint32_t tmp; int error; if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_RFCFG_TYPE(sc->rfcfg) | IWN_RFCFG_STEP(sc->rfcfg) | IWN_RFCFG_DASH(sc->rfcfg)); } IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); if (sc->hw_type == IWN_HW_REV_TYPE_1000) { /* * Select first Switching Voltage Regulator (1.32V) to * solve a stability issue related to noisy DC2DC line * in the silicon of 1000 Series. */ tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); } iwn_nic_unlock(sc); if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { /* Use internal power amplifier only. */ IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); } if ((sc->hw_type == IWN_HW_REV_TYPE_6050 || sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) { /* Indicate that ROM calibration version is >=6. */ IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); } if (sc->hw_type == IWN_HW_REV_TYPE_6005) IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2); return 0; } /* * Take NIC ownership over Intel Active Management Technology (AMT). */ static int iwn_hw_prepare(struct iwn_softc *sc) { int ntries; /* Check if hardware is ready. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); for (ntries = 0; ntries < 5; ntries++) { if (IWN_READ(sc, IWN_HW_IF_CONFIG) & IWN_HW_IF_CONFIG_NIC_READY) return 0; DELAY(10); } /* Hardware not ready, force into ready state. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); for (ntries = 0; ntries < 15000; ntries++) { if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & IWN_HW_IF_CONFIG_PREPARE_DONE)) break; DELAY(10); } if (ntries == 15000) return ETIMEDOUT; /* Hardware should be ready now. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); for (ntries = 0; ntries < 5; ntries++) { if (IWN_READ(sc, IWN_HW_IF_CONFIG) & IWN_HW_IF_CONFIG_NIC_READY) return 0; DELAY(10); } return ETIMEDOUT; } static int iwn_hw_init(struct iwn_softc *sc) { struct iwn_ops *ops = &sc->ops; int error, chnl, qid; /* Clear pending interrupts. */ IWN_WRITE(sc, IWN_INT, 0xffffffff); if ((error = iwn_apm_init(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not power ON adapter, error %d\n", __func__, error); return error; } /* Select VMAIN power source. */ if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); iwn_nic_unlock(sc); /* Perform adapter-specific initialization. */ if ((error = ops->nic_config(sc)) != 0) return error; /* Initialize RX ring. */ if ((error = iwn_nic_lock(sc)) != 0) return error; IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); /* Set physical address of RX ring (256-byte aligned). */ IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); /* Set physical address of RX status (16-byte aligned). */ IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); /* Enable RX. */ IWN_WRITE(sc, IWN_FH_RX_CONFIG, IWN_FH_RX_CONFIG_ENA | IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ IWN_FH_RX_CONFIG_IRQ_DST_HOST | IWN_FH_RX_CONFIG_SINGLE_FRAME | IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); iwn_nic_unlock(sc); IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); if ((error = iwn_nic_lock(sc)) != 0) return error; /* Initialize TX scheduler. */ iwn_prph_write(sc, sc->sched_txfact_addr, 0); /* Set physical address of "keep warm" page (16-byte aligned). */ IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); /* Initialize TX rings. */ for (qid = 0; qid < sc->ntxqs; qid++) { struct iwn_tx_ring *txq = &sc->txq[qid]; /* Set physical address of TX ring (256-byte aligned). */ IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), txq->desc_dma.paddr >> 8); } iwn_nic_unlock(sc); /* Enable DMA channels. */ for (chnl = 0; chnl < sc->ndmachnls; chnl++) { IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); } /* Clear "radio off" and "commands blocked" bits. */ IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); /* Clear pending interrupts. */ IWN_WRITE(sc, IWN_INT, 0xffffffff); /* Enable interrupt coalescing. */ IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); /* Enable interrupts. */ IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); /* _Really_ make sure "radio off" bit is cleared! */ IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); /* Enable shadow registers. */ if (sc->hw_type >= IWN_HW_REV_TYPE_6000) IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); if ((error = ops->load_firmware(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not load firmware, error %d\n", __func__, error); return error; } /* Wait at most one second for firmware alive notification. */ if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { device_printf(sc->sc_dev, "%s: timeout waiting for adapter to initialize, error %d\n", __func__, error); return error; } /* Do post-firmware initialization. */ return ops->post_alive(sc); } static void iwn_hw_stop(struct iwn_softc *sc) { int chnl, qid, ntries; IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); /* Disable interrupts. */ IWN_WRITE(sc, IWN_INT_MASK, 0); IWN_WRITE(sc, IWN_INT, 0xffffffff); IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); sc->sc_flags &= ~IWN_FLAG_USE_ICT; /* Make sure we no longer hold the NIC lock. */ iwn_nic_unlock(sc); /* Stop TX scheduler. */ iwn_prph_write(sc, sc->sched_txfact_addr, 0); /* Stop all DMA channels. */ if (iwn_nic_lock(sc) == 0) { for (chnl = 0; chnl < sc->ndmachnls; chnl++) { IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); for (ntries = 0; ntries < 200; ntries++) { if (IWN_READ(sc, IWN_FH_TX_STATUS) & IWN_FH_TX_STATUS_IDLE(chnl)) break; DELAY(10); } } iwn_nic_unlock(sc); } /* Stop RX ring. */ iwn_reset_rx_ring(sc, &sc->rxq); /* Reset all TX rings. */ for (qid = 0; qid < sc->ntxqs; qid++) iwn_reset_tx_ring(sc, &sc->txq[qid]); if (iwn_nic_lock(sc) == 0) { iwn_prph_write(sc, IWN_APMG_CLK_DIS, IWN_APMG_CLK_CTRL_DMA_CLK_RQT); iwn_nic_unlock(sc); } DELAY(5); /* Power OFF adapter. */ iwn_apm_stop(sc); } static void iwn_radio_on(void *arg0, int pending) { struct iwn_softc *sc = arg0; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); if (vap != NULL) { iwn_init(sc); ieee80211_init(vap); } } static void iwn_radio_off(void *arg0, int pending) { struct iwn_softc *sc = arg0; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); iwn_stop(sc); if (vap != NULL) ieee80211_stop(vap); /* Enable interrupts to get RF toggle notification. */ IWN_LOCK(sc); IWN_WRITE(sc, IWN_INT, 0xffffffff); IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); IWN_UNLOCK(sc); } static void iwn_init_locked(struct iwn_softc *sc) { struct ifnet *ifp = sc->sc_ifp; int error; IWN_LOCK_ASSERT(sc); if ((error = iwn_hw_prepare(sc)) != 0) { device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n", __func__, error); goto fail; } /* Initialize interrupt mask to default value. */ sc->int_mask = IWN_INT_MASK_DEF; sc->sc_flags &= ~IWN_FLAG_USE_ICT; /* Check that the radio is not disabled by hardware switch. */ if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { device_printf(sc->sc_dev, "radio is disabled by hardware switch\n"); /* Enable interrupts to get RF toggle notifications. */ IWN_WRITE(sc, IWN_INT, 0xffffffff); IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); return; } /* Read firmware images from the filesystem. */ if ((error = iwn_read_firmware(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not read firmware, error %d\n", __func__, error); goto fail; } /* Initialize hardware and upload firmware. */ error = iwn_hw_init(sc); firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); sc->fw_fp = NULL; if (error != 0) { device_printf(sc->sc_dev, "%s: could not initialize hardware, error %d\n", __func__, error); goto fail; } /* Configure adapter now that it is ready. */ if ((error = iwn_config(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not configure device, error %d\n", __func__, error); goto fail; } ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_drv_flags |= IFF_DRV_RUNNING; callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); return; fail: iwn_stop_locked(sc); } static void iwn_init(void *arg) { struct iwn_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; IWN_LOCK(sc); iwn_init_locked(sc); IWN_UNLOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) ieee80211_start_all(ic); } static void iwn_stop_locked(struct iwn_softc *sc) { struct ifnet *ifp = sc->sc_ifp; IWN_LOCK_ASSERT(sc); sc->sc_tx_timer = 0; callout_stop(&sc->watchdog_to); callout_stop(&sc->calib_to); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); /* Power OFF hardware. */ iwn_hw_stop(sc); } static void iwn_stop(struct iwn_softc *sc) { IWN_LOCK(sc); iwn_stop_locked(sc); IWN_UNLOCK(sc); } /* * Callback from net80211 to start a scan. */ static void iwn_scan_start(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct iwn_softc *sc = ifp->if_softc; IWN_LOCK(sc); /* make the link LED blink while we're scanning */ iwn_set_led(sc, IWN_LED_LINK, 20, 2); IWN_UNLOCK(sc); } /* * Callback from net80211 to terminate a scan. */ static void iwn_scan_end(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct iwn_softc *sc = ifp->if_softc; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); IWN_LOCK(sc); if (vap->iv_state == IEEE80211_S_RUN) { /* Set link LED to ON status if we are associated */ iwn_set_led(sc, IWN_LED_LINK, 0, 1); } IWN_UNLOCK(sc); } /* * Callback from net80211 to force a channel change. */ static void iwn_set_channel(struct ieee80211com *ic) { const struct ieee80211_channel *c = ic->ic_curchan; struct ifnet *ifp = ic->ic_ifp; struct iwn_softc *sc = ifp->if_softc; int error; IWN_LOCK(sc); sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); /* * Only need to set the channel in Monitor mode. AP scanning and auth * are already taken care of by their respective firmware commands. */ if (ic->ic_opmode == IEEE80211_M_MONITOR) { error = iwn_config(sc); if (error != 0) device_printf(sc->sc_dev, "%s: error %d settting channel\n", __func__, error); } IWN_UNLOCK(sc); } /* * Callback from net80211 to start scanning of the current channel. */ static void iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) { struct ieee80211vap *vap = ss->ss_vap; struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc; int error; IWN_LOCK(sc); error = iwn_scan(sc); IWN_UNLOCK(sc); if (error != 0) ieee80211_cancel_scan(vap); } /* * Callback from net80211 to handle the minimum dwell time being met. * The intent is to terminate the scan but we just let the firmware * notify us when it's finished as we have no safe way to abort it. */ static void iwn_scan_mindwell(struct ieee80211_scan_state *ss) { /* NB: don't try to abort scan; wait for firmware to finish */ } static void iwn_hw_reset(void *arg0, int pending) { struct iwn_softc *sc = arg0; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; iwn_stop(sc); iwn_init(sc); ieee80211_notify_radio(ic, 1); }