/* $FreeBSD$ */ /* * Platform (FreeBSD) dependent common attachment code for Qlogic adapters. * *--------------------------------------- * Copyright (c) 1997, 1998, 1999 by Matthew Jacob * NASA/Ames Research Center * All rights reserved. *--------------------------------------- * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include static void isp_cam_async(void *, u_int32_t, struct cam_path *, void *); static void isp_poll(struct cam_sim *); static void isp_action(struct cam_sim *, union ccb *); static void isp_relsim(void *); /* #define ISP_LUN0_ONLY 1 */ #ifdef ISP_LUN0_ONLY #undef _ISP_FC_LUN #undef _ISP_SCSI_LUN #define _ISP_FC_LUN(isp) 1 #define _ISP_SCSI_LUN(isp) 1 #endif void isp_attach(struct ispsoftc *isp) { int primary, secondary; struct ccb_setasync csa; struct cam_devq *devq; struct cam_sim *sim; struct cam_path *path; /* * Establish (in case of 12X0) which bus is the primary. */ primary = 0; secondary = 1; /* * Create the device queue for our SIM(s). */ devq = cam_simq_alloc(MAXISPREQUEST); if (devq == NULL) { return; } /* * Construct our SIM entry. */ sim = cam_sim_alloc(isp_action, isp_poll, "isp", isp, isp->isp_unit, 1, MAXISPREQUEST, devq); if (sim == NULL) { cam_simq_free(devq); return; } if (xpt_bus_register(sim, primary) != CAM_SUCCESS) { cam_sim_free(sim, TRUE); return; } if (xpt_create_path(&path, NULL, cam_sim_path(sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { xpt_bus_deregister(cam_sim_path(sim)); cam_sim_free(sim, TRUE); return; } xpt_setup_ccb(&csa.ccb_h, path, 5); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = AC_LOST_DEVICE; csa.callback = isp_cam_async; csa.callback_arg = sim; xpt_action((union ccb *)&csa); isp->isp_sim = sim; isp->isp_path = path; /* * If we have a second channel, construct SIM entry for that. */ if (IS_12X0(isp)) { sim = cam_sim_alloc(isp_action, isp_poll, "isp", isp, isp->isp_unit, 1, MAXISPREQUEST, devq); if (sim == NULL) { xpt_bus_deregister(cam_sim_path(isp->isp_sim)); xpt_free_path(isp->isp_path); cam_simq_free(devq); return; } if (xpt_bus_register(sim, secondary) != CAM_SUCCESS) { xpt_bus_deregister(cam_sim_path(isp->isp_sim)); xpt_free_path(isp->isp_path); cam_sim_free(sim, TRUE); return; } if (xpt_create_path(&path, NULL, cam_sim_path(sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { xpt_bus_deregister(cam_sim_path(isp->isp_sim)); xpt_free_path(isp->isp_path); xpt_bus_deregister(cam_sim_path(sim)); cam_sim_free(sim, TRUE); return; } xpt_setup_ccb(&csa.ccb_h, path, 5); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = AC_LOST_DEVICE; csa.callback = isp_cam_async; csa.callback_arg = sim; xpt_action((union ccb *)&csa); isp->isp_sim2 = sim; isp->isp_path2 = path; } if (isp->isp_state == ISP_INITSTATE) { isp->isp_state = ISP_RUNSTATE; } } static void isp_cam_async(void *cbarg, u_int32_t code, struct cam_path *path, void *arg) { struct cam_sim *sim; struct ispsoftc *isp; sim = (struct cam_sim *)cbarg; isp = (struct ispsoftc *) cam_sim_softc(sim); switch (code) { case AC_LOST_DEVICE: if (isp->isp_type & ISP_HA_SCSI) { u_int16_t oflags, nflags; sdparam *sdp = isp->isp_param; int s, tgt = xpt_path_target_id(path); s = splcam(); sdp += cam_sim_bus(sim); isp->isp_update |= (1 << cam_sim_bus(sim)); nflags = DPARM_SAFE_DFLT; if (ISP_FW_REVX(isp->isp_fwrev) >= ISP_FW_REV(7, 55, 0)) { nflags |= DPARM_NARROW | DPARM_ASYNC; } oflags = sdp->isp_devparam[tgt].dev_flags; sdp->isp_devparam[tgt].dev_flags = nflags; sdp->isp_devparam[tgt].dev_update = 1; (void) isp_control(isp, ISPCTL_UPDATE_PARAMS, NULL); sdp->isp_devparam[tgt].dev_flags = oflags; (void) splx(s); } break; default: printf("%s: isp_attach Async Code 0x%x\n", isp->isp_name, code); break; } } static void isp_poll(struct cam_sim *sim) { isp_intr((struct ispsoftc *) cam_sim_softc(sim)); } static void isp_relsim(void *arg) { struct ispsoftc *isp = arg; int s = splcam(); if (isp->isp_osinfo.simqfrozen & SIMQFRZ_TIMED) { int wasfrozen = isp->isp_osinfo.simqfrozen & SIMQFRZ_TIMED; isp->isp_osinfo.simqfrozen &= ~SIMQFRZ_TIMED; if (wasfrozen && isp->isp_osinfo.simqfrozen == 0) { xpt_release_simq(isp->isp_sim, 1); IDPRINTF(3, ("%s: timed relsimq\n", isp->isp_name)); } } splx(s); } static void isp_action(struct cam_sim *sim, union ccb *ccb) { int s, tgt, error; struct ispsoftc *isp; struct ccb_trans_settings *cts; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("isp_action\n")); isp = (struct ispsoftc *)cam_sim_softc(sim); ccb->ccb_h.sim_priv.entries[0].field = 0; ccb->ccb_h.sim_priv.entries[1].ptr = isp; if (isp->isp_state != ISP_RUNSTATE && ccb->ccb_h.func_code == XPT_SCSI_IO) { s = splcam(); DISABLE_INTS(isp); isp_init(isp); if (isp->isp_state != ISP_INITSTATE) { (void) splx(s); /* * Lie. Say it was a selection timeout. */ ccb->ccb_h.status = CAM_SEL_TIMEOUT; ccb->ccb_h.status |= CAM_DEV_QFRZN; xpt_freeze_devq(ccb->ccb_h.path, 1); xpt_done(ccb); return; } isp->isp_state = ISP_RUNSTATE; ENABLE_INTS(isp); (void) splx(s); } IDPRINTF(4, ("%s: isp_action code %x\n", isp->isp_name, ccb->ccb_h.func_code)); switch (ccb->ccb_h.func_code) { case XPT_SCSI_IO: /* Execute the requested I/O operation */ /* * Do a couple of preliminary checks... */ if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) { if ((ccb->ccb_h.flags & CAM_CDB_PHYS) != 0) { ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } } #ifdef DIAGNOSTIC if (ccb->ccb_h.target_id > (ISP_MAX_TARGETS(isp) - 1)) { ccb->ccb_h.status = CAM_PATH_INVALID; } else if (ccb->ccb_h.target_lun > (ISP_MAX_LUNS(isp) - 1)) { ccb->ccb_h.status = CAM_PATH_INVALID; } if (ccb->ccb_h.status == CAM_PATH_INVALID) { printf("%s: invalid tgt/lun (%d.%d) in XPT_SCSI_IO\n", isp->isp_name, ccb->ccb_h.target_id, ccb->ccb_h.target_lun); xpt_done(ccb); break; } #endif ((struct ccb_scsiio *) ccb)->scsi_status = SCSI_STATUS_OK; s = splcam(); DISABLE_INTS(isp); error = ispscsicmd((ISP_SCSI_XFER_T *) ccb); ENABLE_INTS(isp); splx(s); switch (error) { case CMD_QUEUED: ccb->ccb_h.status |= CAM_SIM_QUEUED; break; case CMD_RQLATER: if (isp->isp_osinfo.simqfrozen == 0) { IDPRINTF(3, ("%s: RQLATER freeze simq\n", isp->isp_name)); isp->isp_osinfo.simqfrozen |= SIMQFRZ_TIMED; timeout(isp_relsim, isp, 500); xpt_freeze_simq(sim, 1); } ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_REQUEUE_REQ; xpt_done(ccb); break; case CMD_EAGAIN: if (isp->isp_osinfo.simqfrozen == 0) { xpt_freeze_simq(sim, 1); IDPRINTF(3, ("%s: EAGAIN freeze simq\n", isp->isp_name)); } isp->isp_osinfo.simqfrozen |= SIMQFRZ_RESOURCE; ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_REQUEUE_REQ; xpt_done(ccb); break; case CMD_COMPLETE: isp_done((struct ccb_scsiio *) ccb); break; default: printf("%s: What's this? 0x%x at %d in file %s\n", isp->isp_name, error, __LINE__, __FILE__); ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_REQ_CMP_ERR; xpt_done(ccb); } break; case XPT_EN_LUN: /* Enable LUN as a target */ case XPT_TARGET_IO: /* Execute target I/O request */ case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */ case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/ ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; case XPT_RESET_DEV: /* BDR the specified SCSI device */ tgt = ccb->ccb_h.target_id; /* XXX: Which Bus? */ s = splcam(); error = isp_control(isp, ISPCTL_RESET_DEV, &tgt); (void) splx(s); if (error) { ccb->ccb_h.status = CAM_REQ_CMP_ERR; } else { ccb->ccb_h.status = CAM_REQ_CMP; } xpt_done(ccb); break; case XPT_ABORT: /* Abort the specified CCB */ s = splcam(); error = isp_control(isp, ISPCTL_ABORT_CMD, ccb); (void) splx(s); if (error) { ccb->ccb_h.status = CAM_REQ_CMP_ERR; } else { ccb->ccb_h.status = CAM_REQ_CMP; } xpt_done(ccb); break; case XPT_SET_TRAN_SETTINGS: /* Nexus Settings */ cts = &ccb->cts; tgt = cts->ccb_h.target_id; s = splcam(); if (isp->isp_type & ISP_HA_FC) { ; /* nothing to change */ } else { sdparam *sdp = isp->isp_param; u_int16_t *dptr; int bus = cam_sim_bus(xpt_path_sim(cts->ccb_h.path)); sdp += bus; #if 0 if (cts->flags & CCB_TRANS_CURRENT_SETTINGS) dptr = &sdp->isp_devparam[tgt].cur_dflags; else dptr = &sdp->isp_devparam[tgt].dev_flags; #else /* * We always update (internally) from dev_flags * so any request to change settings just gets * vectored to that location. */ dptr = &sdp->isp_devparam[tgt].dev_flags; #endif /* * Note that these operations affect the * the goal flags (dev_flags)- not * the current state flags. Then we mark * things so that the next operation to * this HBA will cause the update to occur. */ if (cts->valid & CCB_TRANS_DISC_VALID) { if ((cts->flags & CCB_TRANS_DISC_ENB) != 0) { *dptr |= DPARM_DISC; } else { *dptr &= ~DPARM_DISC; } } if (cts->valid & CCB_TRANS_TQ_VALID) { if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) { *dptr |= DPARM_TQING; } else { *dptr &= ~DPARM_TQING; } } if (cts->valid & CCB_TRANS_BUS_WIDTH_VALID) { switch (cts->bus_width) { case MSG_EXT_WDTR_BUS_16_BIT: *dptr |= DPARM_WIDE; break; default: *dptr &= ~DPARM_WIDE; } } /* * Any SYNC RATE of nonzero and SYNC_OFFSET * of nonzero will cause us to go to the * selected (from NVRAM) maximum value for * this device. At a later point, we'll * allow finer control. */ if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) && (cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) && (cts->sync_offset > 0)) { *dptr |= DPARM_SYNC; } else { *dptr &= ~DPARM_SYNC; } if (bootverbose || isp->isp_dblev >= 3) printf("%s: %d.%d set %s period 0x%x offset " "0x%x flags 0x%x\n", isp->isp_name, bus, tgt, (cts->flags & CCB_TRANS_CURRENT_SETTINGS)? "current" : "user", sdp->isp_devparam[tgt].sync_period, sdp->isp_devparam[tgt].sync_offset, sdp->isp_devparam[tgt].dev_flags); s = splcam(); sdp->isp_devparam[tgt].dev_update = 1; isp->isp_update |= (1 << bus); (void) isp_control(isp, ISPCTL_UPDATE_PARAMS, NULL); (void) splx(s); } (void) splx(s); ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; case XPT_GET_TRAN_SETTINGS: cts = &ccb->cts; tgt = cts->ccb_h.target_id; if (isp->isp_type & ISP_HA_FC) { /* * a lot of normal SCSI things don't make sense. */ cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB; cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID; /* * How do you measure the width of a high * speed serial bus? Well, in bytes. * * Offset and period make no sense, though, so we set * (above) a 'base' transfer speed to be gigabit. */ cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; } else { sdparam *sdp = isp->isp_param; u_int16_t dval, pval, oval; int bus = cam_sim_bus(xpt_path_sim(cts->ccb_h.path)); sdp += bus; if (cts->flags & CCB_TRANS_CURRENT_SETTINGS) { s = splcam(); /* * First do a refresh to see if things * have changed recently! */ sdp->isp_devparam[tgt].dev_refresh = 1; isp->isp_update |= (1 << bus); (void) isp_control(isp, ISPCTL_UPDATE_PARAMS, NULL); (void) splx(s); dval = sdp->isp_devparam[tgt].cur_dflags; oval = sdp->isp_devparam[tgt].cur_offset; pval = sdp->isp_devparam[tgt].cur_period; } else { dval = sdp->isp_devparam[tgt].dev_flags; oval = sdp->isp_devparam[tgt].sync_offset; pval = sdp->isp_devparam[tgt].sync_period; } s = splcam(); cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB); if (dval & DPARM_DISC) { cts->flags |= CCB_TRANS_DISC_ENB; } if (dval & DPARM_TQING) { cts->flags |= CCB_TRANS_TAG_ENB; } if (dval & DPARM_WIDE) { cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; } else { cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; } cts->valid = CCB_TRANS_BUS_WIDTH_VALID | CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID; if ((dval & DPARM_SYNC) && oval != 0) { cts->sync_period = pval; cts->sync_offset = oval; cts->valid |= CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID; } splx(s); if (bootverbose || isp->isp_dblev >= 3) printf("%s: %d.%d get %s period 0x%x offset " "0x%x flags 0x%x\n", isp->isp_name, bus, tgt, (cts->flags & CCB_TRANS_CURRENT_SETTINGS)? "current" : "user", pval, oval, dval); } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; case XPT_CALC_GEOMETRY: { struct ccb_calc_geometry *ccg; u_int32_t secs_per_cylinder; u_int32_t size_mb; ccg = &ccb->ccg; if (ccg->block_size == 0) { printf("%s: %d.%d XPT_CALC_GEOMETRY block size 0?\n", isp->isp_name, ccg->ccb_h.target_id, ccg->ccb_h.target_lun); ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } size_mb = ccg->volume_size /((1024L * 1024L) / ccg->block_size); if (size_mb > 1024) { ccg->heads = 255; ccg->secs_per_track = 63; } else { ccg->heads = 64; ccg->secs_per_track = 32; } secs_per_cylinder = ccg->heads * ccg->secs_per_track; ccg->cylinders = ccg->volume_size / secs_per_cylinder; ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } case XPT_RESET_BUS: /* Reset the specified bus */ tgt = cam_sim_bus(sim); s = splcam(); error = isp_control(isp, ISPCTL_RESET_BUS, &tgt); (void) splx(s); if (error) ccb->ccb_h.status = CAM_REQ_CMP_ERR; else { if (cam_sim_bus(sim) && isp->isp_path2 != NULL) xpt_async(AC_BUS_RESET, isp->isp_path2, NULL); else if (isp->isp_path != NULL) xpt_async(AC_BUS_RESET, isp->isp_path, NULL); ccb->ccb_h.status = CAM_REQ_CMP; } xpt_done(ccb); break; case XPT_TERM_IO: /* Terminate the I/O process */ /* Does this need to be implemented? */ ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; cpi->target_sprt = 0; cpi->hba_eng_cnt = 0; cpi->max_target = ISP_MAX_TARGETS(isp) - 1; cpi->max_lun = ISP_MAX_LUNS(isp) - 1; cpi->bus_id = cam_sim_bus(sim); if (IS_FC(isp)) { cpi->hba_misc = PIM_NOBUSRESET; /* * Because our loop ID can shift from time to time, * make our initiator ID out of range of our bus. */ cpi->initiator_id = cpi->max_target + 1; /* * Set base transfer capabilities for Fibre Channel. * Technically not correct because we don't know * what media we're running on top of- but we'll * look good if we always say 100MB/s. */ cpi->base_transfer_speed = 100000; cpi->hba_inquiry = PI_TAG_ABLE; } else { sdparam *sdp = isp->isp_param; sdp += cam_sim_bus(xpt_path_sim(cpi->ccb_h.path)); cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16; cpi->hba_misc = 0; cpi->initiator_id = sdp->isp_initiator_id; cpi->base_transfer_speed = 3300; } strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "Qlogic", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } default: ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } } #define ISPDDB (CAM_DEBUG_INFO|CAM_DEBUG_TRACE|CAM_DEBUG_CDB) void isp_done(struct ccb_scsiio *sccb) { struct ispsoftc *isp = XS_ISP(sccb); if (XS_NOERR(sccb)) XS_SETERR(sccb, CAM_REQ_CMP); sccb->ccb_h.status &= ~CAM_STATUS_MASK; sccb->ccb_h.status |= sccb->ccb_h.spriv_field0; if ((sccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP && (sccb->scsi_status != SCSI_STATUS_OK)) { sccb->ccb_h.status &= ~CAM_STATUS_MASK; sccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR; } sccb->ccb_h.status &= ~CAM_SIM_QUEUED; if ((sccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if ((sccb->ccb_h.status & CAM_DEV_QFRZN) == 0) { sccb->ccb_h.status |= CAM_DEV_QFRZN; xpt_freeze_devq(sccb->ccb_h.path, 1); if (sccb->scsi_status != SCSI_STATUS_OK) IDPRINTF(3, ("%s: fdevq %d.%d %x %x\n", isp->isp_name, sccb->ccb_h.target_id, sccb->ccb_h.target_lun, sccb->ccb_h.status, sccb->scsi_status)); } } /* * If we were frozen waiting resources, clear that we were frozen * waiting for resources. If we are no longer frozen, and the devq * isn't frozen, mark the completing CCB to have the XPT layer * release the simq. */ if (isp->isp_osinfo.simqfrozen & SIMQFRZ_RESOURCE) { isp->isp_osinfo.simqfrozen &= ~SIMQFRZ_RESOURCE; if (isp->isp_osinfo.simqfrozen == 0) { if ((sccb->ccb_h.status & CAM_DEV_QFRZN) == 0) { IDPRINTF(3, ("%s: isp_done -> relsimq\n", isp->isp_name)); sccb->ccb_h.status |= CAM_RELEASE_SIMQ; } else { IDPRINTF(3, ("%s: isp_done -> devq frozen\n", isp->isp_name)); } } else { IDPRINTF(3, ("%s: isp_done -> simqfrozen = %x\n", isp->isp_name, isp->isp_osinfo.simqfrozen)); } } if (CAM_DEBUGGED(sccb->ccb_h.path, ISPDDB) && (sccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { xpt_print_path(sccb->ccb_h.path); printf("cam completion status 0x%x\n", sccb->ccb_h.status); } xpt_done((union ccb *) sccb); } int isp_async(struct ispsoftc *isp, ispasync_t cmd, void *arg) { int bus, rv = 0; switch (cmd) { case ISPASYNC_NEW_TGT_PARAMS: { int flags, tgt; sdparam *sdp = isp->isp_param; struct ccb_trans_settings neg; struct cam_path *tmppath; tgt = *((int *)arg); bus = (tgt >> 16) & 0xffff; tgt &= 0xffff; sdp += bus; if (xpt_create_path(&tmppath, NULL, cam_sim_path(bus? isp->isp_sim2 : isp->isp_sim), tgt, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { xpt_print_path(isp->isp_path); printf("isp_async cannot make temp path for " "target %d bus %d\n", tgt, bus); rv = -1; break; } flags = sdp->isp_devparam[tgt].cur_dflags; neg.valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID; if (flags & DPARM_DISC) { neg.flags |= CCB_TRANS_DISC_ENB; } if (flags & DPARM_TQING) { neg.flags |= CCB_TRANS_TAG_ENB; } neg.valid |= CCB_TRANS_BUS_WIDTH_VALID; neg.bus_width = (flags & DPARM_WIDE)? MSG_EXT_WDTR_BUS_8_BIT : MSG_EXT_WDTR_BUS_16_BIT; neg.sync_period = sdp->isp_devparam[tgt].cur_period; neg.sync_offset = sdp->isp_devparam[tgt].cur_offset; if (flags & DPARM_SYNC) { neg.valid |= CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID; } IDPRINTF(3, ("%s: NEW_TGT_PARAMS bus %d tgt %d period " "0x%x offset 0x%x flags 0x%x\n", isp->isp_name, bus, tgt, neg.sync_period, neg.sync_offset, flags)); xpt_setup_ccb(&neg.ccb_h, tmppath, 1); xpt_async(AC_TRANSFER_NEG, tmppath, &neg); xpt_free_path(tmppath); break; } case ISPASYNC_BUS_RESET: bus = *((int *)arg); printf("%s: SCSI bus reset on bus %d detected\n", isp->isp_name, bus); if (bus > 0 && isp->isp_path2) { xpt_async(AC_BUS_RESET, isp->isp_path2, NULL); } else if (isp->isp_path) { xpt_async(AC_BUS_RESET, isp->isp_path, NULL); } break; case ISPASYNC_LOOP_DOWN: if (isp->isp_path) { if (isp->isp_osinfo.simqfrozen == 0) { IDPRINTF(3, ("%s: loop down freeze simq\n", isp->isp_name)); xpt_freeze_simq(isp->isp_sim, 1); } isp->isp_osinfo.simqfrozen |= SIMQFRZ_LOOPDOWN; } printf("%s: Loop DOWN\n", isp->isp_name); #if defined(DDB) if (isp->isp_dblev > DFLT_DBLEVEL) { Debugger("Loop Down"); } #endif break; case ISPASYNC_LOOP_UP: if (isp->isp_path) { int wasfrozen = isp->isp_osinfo.simqfrozen & SIMQFRZ_LOOPDOWN; isp->isp_osinfo.simqfrozen &= ~SIMQFRZ_LOOPDOWN; if (wasfrozen && isp->isp_osinfo.simqfrozen == 0) { xpt_release_simq(isp->isp_sim, 1); IDPRINTF(3, ("%s: loop up release simq\n", isp->isp_name)); } } printf("%s: Loop UP\n", isp->isp_name); break; case ISPASYNC_PDB_CHANGED: { const char *fmt = "%s: Target %d (Loop 0x%x) Port ID 0x%x " "role %s %s\n Port WWN 0x%08x%08x\n Node WWN 0x%08x%08x\n"; const static char *roles[4] = { "(none)", "Target", "Initiator", "Target/Initiator" }; char *ptr; fcparam *fcp = isp->isp_param; int tgt = *((int *) arg); struct lportdb *lp = &fcp->portdb[tgt]; if (lp->valid) { ptr = "arrived"; } else { ptr = "disappeared"; } printf(fmt, isp->isp_name, tgt, lp->loopid, lp->portid, roles[lp->roles & 0x3], ptr, (u_int32_t) (lp->port_wwn >> 32), (u_int32_t) (lp->port_wwn & 0xffffffffLL), (u_int32_t) (lp->node_wwn >> 32), (u_int32_t) (lp->node_wwn & 0xffffffffLL)); break; } case ISPASYNC_CHANGE_NOTIFY: printf("%s: Name Server Database Changed\n", isp->isp_name); break; #ifdef ISP2100_FABRIC case ISPASYNC_FABRIC_DEV: { int target; struct lportdb *lp; sns_scrsp_t *resp = (sns_scrsp_t *) arg; u_int32_t portid; u_int64_t wwn; fcparam *fcp = isp->isp_param; rv = -1; portid = (((u_int32_t) resp->snscb_port_id[0]) << 16) | (((u_int32_t) resp->snscb_port_id[1]) << 8) | (((u_int32_t) resp->snscb_port_id[2])); wwn = (((u_int64_t)resp->snscb_portname[0]) << 56) | (((u_int64_t)resp->snscb_portname[1]) << 48) | (((u_int64_t)resp->snscb_portname[2]) << 40) | (((u_int64_t)resp->snscb_portname[3]) << 32) | (((u_int64_t)resp->snscb_portname[4]) << 24) | (((u_int64_t)resp->snscb_portname[5]) << 16) | (((u_int64_t)resp->snscb_portname[6]) << 8) | (((u_int64_t)resp->snscb_portname[7])); printf("%s: type 0x%x@portid 0x%x 0x%08x%08x\n", isp->isp_name, resp->snscb_port_type, portid, ((u_int32_t) (wwn >> 32)), ((u_int32_t) wwn)); if (resp->snscb_port_type != 2) { rv = 0; break; } for (target = FC_SNS_ID+1; target < MAX_FC_TARG; target++) { lp = &fcp->portdb[target]; if (lp->port_wwn == wwn) break; } if (target < MAX_FC_TARG) { rv = 0; break; } for (target = FC_SNS_ID+1; target < MAX_FC_TARG; target++) { lp = &fcp->portdb[target]; if (lp->port_wwn == 0) break; } if (target == MAX_FC_TARG) { printf("%s: no more space for fabric devices\n", isp->isp_name); break; } lp->port_wwn = lp->node_wwn = wwn; lp->portid = portid; rv = 0; break; } #endif default: rv = -1; break; } return (rv); } /* * Locks are held before coming here. */ void isp_uninit(struct ispsoftc *isp) { ISP_WRITE(isp, HCCR, HCCR_CMD_RESET); DISABLE_INTS(isp); }