/*- * Copyright (c) 2007 Sepherosa Ziehau. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Sepherosa Ziehau * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.10 2008/05/18 07:47:14 sephe Exp $ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "miibus_if.h" MODULE_DEPEND(et, pci, 1, 1, 1); MODULE_DEPEND(et, ether, 1, 1, 1); MODULE_DEPEND(et, miibus, 1, 1, 1); /* Tunables. */ static int msi_disable = 0; TUNABLE_INT("hw.et.msi_disable", &msi_disable); #define ET_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) static int et_probe(device_t); static int et_attach(device_t); static int et_detach(device_t); static int et_shutdown(device_t); static int et_miibus_readreg(device_t, int, int); static int et_miibus_writereg(device_t, int, int, int); static void et_miibus_statchg(device_t); static void et_init_locked(struct et_softc *); static void et_init(void *); static int et_ioctl(struct ifnet *, u_long, caddr_t); static void et_start_locked(struct ifnet *); static void et_start(struct ifnet *); static void et_watchdog(struct et_softc *); static int et_ifmedia_upd_locked(struct ifnet *); static int et_ifmedia_upd(struct ifnet *); static void et_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void et_add_sysctls(struct et_softc *); static int et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS); static int et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS); static void et_intr(void *); static void et_enable_intrs(struct et_softc *, uint32_t); static void et_disable_intrs(struct et_softc *); static void et_rxeof(struct et_softc *); static void et_txeof(struct et_softc *); static int et_dma_alloc(device_t); static void et_dma_free(device_t); static int et_dma_mem_create(device_t, bus_size_t, bus_dma_tag_t *, void **, bus_addr_t *, bus_dmamap_t *); static void et_dma_mem_destroy(bus_dma_tag_t, void *, bus_dmamap_t); static int et_dma_mbuf_create(device_t); static void et_dma_mbuf_destroy(device_t, int, const int[]); static void et_dma_ring_addr(void *, bus_dma_segment_t *, int, int); static void et_dma_buf_addr(void *, bus_dma_segment_t *, int, bus_size_t, int); static int et_init_tx_ring(struct et_softc *); static int et_init_rx_ring(struct et_softc *); static void et_free_tx_ring(struct et_softc *); static void et_free_rx_ring(struct et_softc *); static int et_encap(struct et_softc *, struct mbuf **); static int et_newbuf(struct et_rxbuf_data *, int, int, int); static int et_newbuf_cluster(struct et_rxbuf_data *, int, int); static int et_newbuf_hdr(struct et_rxbuf_data *, int, int); static void et_stop(struct et_softc *); static int et_chip_init(struct et_softc *); static void et_chip_attach(struct et_softc *); static void et_init_mac(struct et_softc *); static void et_init_rxmac(struct et_softc *); static void et_init_txmac(struct et_softc *); static int et_init_rxdma(struct et_softc *); static int et_init_txdma(struct et_softc *); static int et_start_rxdma(struct et_softc *); static int et_start_txdma(struct et_softc *); static int et_stop_rxdma(struct et_softc *); static int et_stop_txdma(struct et_softc *); static int et_enable_txrx(struct et_softc *, int); static void et_reset(struct et_softc *); static int et_bus_config(struct et_softc *); static void et_get_eaddr(device_t, uint8_t[]); static void et_setmulti(struct et_softc *); static void et_tick(void *); static void et_setmedia(struct et_softc *); static void et_setup_rxdesc(struct et_rxbuf_data *, int, bus_addr_t); static const struct et_dev { uint16_t vid; uint16_t did; const char *desc; } et_devices[] = { { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310, "Agere ET1310 Gigabit Ethernet" }, { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FAST, "Agere ET1310 Fast Ethernet" }, { 0, 0, NULL } }; static device_method_t et_methods[] = { DEVMETHOD(device_probe, et_probe), DEVMETHOD(device_attach, et_attach), DEVMETHOD(device_detach, et_detach), DEVMETHOD(device_shutdown, et_shutdown), DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), DEVMETHOD(miibus_readreg, et_miibus_readreg), DEVMETHOD(miibus_writereg, et_miibus_writereg), DEVMETHOD(miibus_statchg, et_miibus_statchg), { 0, 0 } }; static driver_t et_driver = { "et", et_methods, sizeof(struct et_softc) }; static devclass_t et_devclass; DRIVER_MODULE(et, pci, et_driver, et_devclass, 0, 0); DRIVER_MODULE(miibus, et, miibus_driver, miibus_devclass, 0, 0); static int et_rx_intr_npkts = 32; static int et_rx_intr_delay = 20; /* x10 usec */ static int et_tx_intr_nsegs = 126; static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */ TUNABLE_INT("hw.et.timer", &et_timer); TUNABLE_INT("hw.et.rx_intr_npkts", &et_rx_intr_npkts); TUNABLE_INT("hw.et.rx_intr_delay", &et_rx_intr_delay); TUNABLE_INT("hw.et.tx_intr_nsegs", &et_tx_intr_nsegs); struct et_bsize { int bufsize; et_newbuf_t newbuf; }; static const struct et_bsize et_bufsize_std[ET_RX_NRING] = { { .bufsize = ET_RXDMA_CTRL_RING0_128, .newbuf = et_newbuf_hdr }, { .bufsize = ET_RXDMA_CTRL_RING1_2048, .newbuf = et_newbuf_cluster }, }; static int et_probe(device_t dev) { const struct et_dev *d; uint16_t did, vid; vid = pci_get_vendor(dev); did = pci_get_device(dev); for (d = et_devices; d->desc != NULL; ++d) { if (vid == d->vid && did == d->did) { device_set_desc(dev, d->desc); return (0); } } return (ENXIO); } static int et_attach(device_t dev) { struct et_softc *sc; struct ifnet *ifp; uint8_t eaddr[ETHER_ADDR_LEN]; int cap, error, msic; sc = device_get_softc(dev); sc->dev = dev; mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); ifp = sc->ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); error = ENOSPC; goto fail; } /* * Initialize tunables */ sc->sc_rx_intr_npkts = et_rx_intr_npkts; sc->sc_rx_intr_delay = et_rx_intr_delay; sc->sc_tx_intr_nsegs = et_tx_intr_nsegs; sc->sc_timer = et_timer; /* Enable bus mastering */ pci_enable_busmaster(dev); /* * Allocate IO memory */ sc->sc_mem_rid = ET_PCIR_BAR; sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_mem_rid, RF_ACTIVE); if (sc->sc_mem_res == NULL) { device_printf(dev, "can't allocate IO memory\n"); return (ENXIO); } msic = 0; if (pci_find_extcap(dev, PCIY_EXPRESS, &cap) == 0) { sc->sc_expcap = cap; sc->sc_flags |= ET_FLAG_PCIE; msic = pci_msi_count(dev); if (bootverbose) device_printf(dev, "MSI count: %d\n", msic); } if (msic > 0 && msi_disable == 0) { msic = 1; if (pci_alloc_msi(dev, &msic) == 0) { if (msic == 1) { device_printf(dev, "Using %d MSI message\n", msic); sc->sc_flags |= ET_FLAG_MSI; } else pci_release_msi(dev); } } /* * Allocate IRQ */ if ((sc->sc_flags & ET_FLAG_MSI) == 0) { sc->sc_irq_rid = 0; sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irq_rid, RF_SHAREABLE | RF_ACTIVE); } else { sc->sc_irq_rid = 1; sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irq_rid, RF_ACTIVE); } if (sc->sc_irq_res == NULL) { device_printf(dev, "can't allocate irq\n"); error = ENXIO; goto fail; } error = et_bus_config(sc); if (error) goto fail; et_get_eaddr(dev, eaddr); CSR_WRITE_4(sc, ET_PM, ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE); et_reset(sc); et_disable_intrs(sc); error = et_dma_alloc(dev); if (error) goto fail; ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = et_init; ifp->if_ioctl = et_ioctl; ifp->if_start = et_start; ifp->if_mtu = ETHERMTU; ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU; ifp->if_capenable = ifp->if_capabilities; IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC); IFQ_SET_READY(&ifp->if_snd); et_chip_attach(sc); error = mii_attach(dev, &sc->sc_miibus, ifp, et_ifmedia_upd, et_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (error) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } ether_ifattach(ifp, eaddr); callout_init_mtx(&sc->sc_tick, &sc->sc_mtx, 0); error = bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_NET | INTR_MPSAFE, NULL, et_intr, sc, &sc->sc_irq_handle); if (error) { ether_ifdetach(ifp); device_printf(dev, "can't setup intr\n"); goto fail; } et_add_sysctls(sc); return (0); fail: et_detach(dev); return (error); } static int et_detach(device_t dev) { struct et_softc *sc = device_get_softc(dev); if (device_is_attached(dev)) { struct ifnet *ifp = sc->ifp; ET_LOCK(sc); et_stop(sc); bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle); ET_UNLOCK(sc); ether_ifdetach(ifp); } if (sc->sc_miibus != NULL) device_delete_child(dev, sc->sc_miibus); bus_generic_detach(dev); if (sc->sc_irq_res != NULL) { bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid, sc->sc_irq_res); } if ((sc->sc_flags & ET_FLAG_MSI) != 0) pci_release_msi(dev); if (sc->sc_mem_res != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid, sc->sc_mem_res); } if (sc->ifp != NULL) if_free(sc->ifp); et_dma_free(dev); mtx_destroy(&sc->sc_mtx); return (0); } static int et_shutdown(device_t dev) { struct et_softc *sc = device_get_softc(dev); ET_LOCK(sc); et_stop(sc); ET_UNLOCK(sc); return (0); } static int et_miibus_readreg(device_t dev, int phy, int reg) { struct et_softc *sc = device_get_softc(dev); uint32_t val; int i, ret; /* Stop any pending operations */ CSR_WRITE_4(sc, ET_MII_CMD, 0); val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK; val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK; CSR_WRITE_4(sc, ET_MII_ADDR, val); /* Start reading */ CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ); #define NRETRY 50 for (i = 0; i < NRETRY; ++i) { val = CSR_READ_4(sc, ET_MII_IND); if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0) break; DELAY(50); } if (i == NRETRY) { if_printf(sc->ifp, "read phy %d, reg %d timed out\n", phy, reg); ret = 0; goto back; } #undef NRETRY val = CSR_READ_4(sc, ET_MII_STAT); ret = val & ET_MII_STAT_VALUE_MASK; back: /* Make sure that the current operation is stopped */ CSR_WRITE_4(sc, ET_MII_CMD, 0); return (ret); } static int et_miibus_writereg(device_t dev, int phy, int reg, int val0) { struct et_softc *sc = device_get_softc(dev); uint32_t val; int i; /* Stop any pending operations */ CSR_WRITE_4(sc, ET_MII_CMD, 0); val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK; val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK; CSR_WRITE_4(sc, ET_MII_ADDR, val); /* Start writing */ CSR_WRITE_4(sc, ET_MII_CTRL, (val0 << ET_MII_CTRL_VALUE_SHIFT) & ET_MII_CTRL_VALUE_MASK); #define NRETRY 100 for (i = 0; i < NRETRY; ++i) { val = CSR_READ_4(sc, ET_MII_IND); if ((val & ET_MII_IND_BUSY) == 0) break; DELAY(50); } if (i == NRETRY) { if_printf(sc->ifp, "write phy %d, reg %d timed out\n", phy, reg); et_miibus_readreg(dev, phy, reg); } #undef NRETRY /* Make sure that the current operation is stopped */ CSR_WRITE_4(sc, ET_MII_CMD, 0); return (0); } static void et_miibus_statchg(device_t dev) { et_setmedia(device_get_softc(dev)); } static int et_ifmedia_upd_locked(struct ifnet *ifp) { struct et_softc *sc = ifp->if_softc; struct mii_data *mii = device_get_softc(sc->sc_miibus); if (mii->mii_instance != 0) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } mii_mediachg(mii); return (0); } static int et_ifmedia_upd(struct ifnet *ifp) { struct et_softc *sc = ifp->if_softc; int res; ET_LOCK(sc); res = et_ifmedia_upd_locked(ifp); ET_UNLOCK(sc); return (res); } static void et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct et_softc *sc = ifp->if_softc; struct mii_data *mii = device_get_softc(sc->sc_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } static void et_stop(struct et_softc *sc) { struct ifnet *ifp = sc->ifp; ET_LOCK_ASSERT(sc); callout_stop(&sc->sc_tick); et_stop_rxdma(sc); et_stop_txdma(sc); et_disable_intrs(sc); et_free_tx_ring(sc); et_free_rx_ring(sc); et_reset(sc); sc->sc_tx = 0; sc->sc_tx_intr = 0; sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED; sc->watchdog_timer = 0; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); } static int et_bus_config(struct et_softc *sc) { uint32_t val, max_plsz; uint16_t ack_latency, replay_timer; /* * Test whether EEPROM is valid * NOTE: Read twice to get the correct value */ pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1); val = pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1); if (val & ET_PCIM_EEPROM_STATUS_ERROR) { device_printf(sc->dev, "EEPROM status error 0x%02x\n", val); return (ENXIO); } /* TODO: LED */ if ((sc->sc_flags & ET_FLAG_PCIE) == 0) return (0); /* * Configure ACK latency and replay timer according to * max playload size */ val = pci_read_config(sc->dev, sc->sc_expcap + PCIR_EXPRESS_DEVICE_CAP, 4); max_plsz = val & PCIM_EXP_CAP_MAX_PAYLOAD; switch (max_plsz) { case ET_PCIV_DEVICE_CAPS_PLSZ_128: ack_latency = ET_PCIV_ACK_LATENCY_128; replay_timer = ET_PCIV_REPLAY_TIMER_128; break; case ET_PCIV_DEVICE_CAPS_PLSZ_256: ack_latency = ET_PCIV_ACK_LATENCY_256; replay_timer = ET_PCIV_REPLAY_TIMER_256; break; default: ack_latency = pci_read_config(sc->dev, ET_PCIR_ACK_LATENCY, 2); replay_timer = pci_read_config(sc->dev, ET_PCIR_REPLAY_TIMER, 2); device_printf(sc->dev, "ack latency %u, replay timer %u\n", ack_latency, replay_timer); break; } if (ack_latency != 0) { pci_write_config(sc->dev, ET_PCIR_ACK_LATENCY, ack_latency, 2); pci_write_config(sc->dev, ET_PCIR_REPLAY_TIMER, replay_timer, 2); } /* * Set L0s and L1 latency timer to 2us */ val = pci_read_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, 4); val &= ~(PCIM_LINK_CAP_L0S_EXIT | PCIM_LINK_CAP_L1_EXIT); /* L0s exit latency : 2us */ val |= 0x00005000; /* L1 exit latency : 2us */ val |= 0x00028000; pci_write_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, val, 4); /* * Set max read request size to 2048 bytes */ val = pci_read_config(sc->dev, sc->sc_expcap + PCIR_EXPRESS_DEVICE_CTL, 2); val &= ~PCIM_EXP_CTL_MAX_READ_REQUEST; val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K; pci_write_config(sc->dev, sc->sc_expcap + PCIR_EXPRESS_DEVICE_CTL, val, 2); return (0); } static void et_get_eaddr(device_t dev, uint8_t eaddr[]) { uint32_t val; int i; val = pci_read_config(dev, ET_PCIR_MAC_ADDR0, 4); for (i = 0; i < 4; ++i) eaddr[i] = (val >> (8 * i)) & 0xff; val = pci_read_config(dev, ET_PCIR_MAC_ADDR1, 2); for (; i < ETHER_ADDR_LEN; ++i) eaddr[i] = (val >> (8 * (i - 4))) & 0xff; } static void et_reset(struct et_softc *sc) { CSR_WRITE_4(sc, ET_MAC_CFG1, ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC | ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC | ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST); CSR_WRITE_4(sc, ET_SWRST, ET_SWRST_TXDMA | ET_SWRST_RXDMA | ET_SWRST_TXMAC | ET_SWRST_RXMAC | ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC); CSR_WRITE_4(sc, ET_MAC_CFG1, ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC | ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC); CSR_WRITE_4(sc, ET_MAC_CFG1, 0); } static void et_disable_intrs(struct et_softc *sc) { CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff); } static void et_enable_intrs(struct et_softc *sc, uint32_t intrs) { CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs); } static int et_dma_alloc(device_t dev) { struct et_softc *sc = device_get_softc(dev); struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring; struct et_txstatus_data *txsd = &sc->sc_tx_status; struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring; struct et_rxstatus_data *rxsd = &sc->sc_rx_status; int i, error; /* * Create top level DMA tag */ error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MAXBSIZE, BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->sc_dtag); if (error) { device_printf(dev, "can't create DMA tag\n"); return (error); } /* * Create TX ring DMA stuffs */ error = et_dma_mem_create(dev, ET_TX_RING_SIZE, &tx_ring->tr_dtag, (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap); if (error) { device_printf(dev, "can't create TX ring DMA stuffs\n"); return (error); } /* * Create TX status DMA stuffs */ error = et_dma_mem_create(dev, sizeof(uint32_t), &txsd->txsd_dtag, (void **)&txsd->txsd_status, &txsd->txsd_paddr, &txsd->txsd_dmap); if (error) { device_printf(dev, "can't create TX status DMA stuffs\n"); return (error); } /* * Create DMA stuffs for RX rings */ for (i = 0; i < ET_RX_NRING; ++i) { static const uint32_t rx_ring_posreg[ET_RX_NRING] = { ET_RX_RING0_POS, ET_RX_RING1_POS }; struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i]; error = et_dma_mem_create(dev, ET_RX_RING_SIZE, &rx_ring->rr_dtag, (void **)&rx_ring->rr_desc, &rx_ring->rr_paddr, &rx_ring->rr_dmap); if (error) { device_printf(dev, "can't create DMA stuffs for " "the %d RX ring\n", i); return (error); } rx_ring->rr_posreg = rx_ring_posreg[i]; } /* * Create RX stat ring DMA stuffs */ error = et_dma_mem_create(dev, ET_RXSTAT_RING_SIZE, &rxst_ring->rsr_dtag, (void **)&rxst_ring->rsr_stat, &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap); if (error) { device_printf(dev, "can't create RX stat ring DMA stuffs\n"); return (error); } /* * Create RX status DMA stuffs */ error = et_dma_mem_create(dev, sizeof(struct et_rxstatus), &rxsd->rxsd_dtag, (void **)&rxsd->rxsd_status, &rxsd->rxsd_paddr, &rxsd->rxsd_dmap); if (error) { device_printf(dev, "can't create RX status DMA stuffs\n"); return (error); } /* * Create mbuf DMA stuffs */ error = et_dma_mbuf_create(dev); if (error) return (error); return (0); } static void et_dma_free(device_t dev) { struct et_softc *sc = device_get_softc(dev); struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring; struct et_txstatus_data *txsd = &sc->sc_tx_status; struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring; struct et_rxstatus_data *rxsd = &sc->sc_rx_status; int i, rx_done[ET_RX_NRING]; /* * Destroy TX ring DMA stuffs */ et_dma_mem_destroy(tx_ring->tr_dtag, tx_ring->tr_desc, tx_ring->tr_dmap); /* * Destroy TX status DMA stuffs */ et_dma_mem_destroy(txsd->txsd_dtag, txsd->txsd_status, txsd->txsd_dmap); /* * Destroy DMA stuffs for RX rings */ for (i = 0; i < ET_RX_NRING; ++i) { struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i]; et_dma_mem_destroy(rx_ring->rr_dtag, rx_ring->rr_desc, rx_ring->rr_dmap); } /* * Destroy RX stat ring DMA stuffs */ et_dma_mem_destroy(rxst_ring->rsr_dtag, rxst_ring->rsr_stat, rxst_ring->rsr_dmap); /* * Destroy RX status DMA stuffs */ et_dma_mem_destroy(rxsd->rxsd_dtag, rxsd->rxsd_status, rxsd->rxsd_dmap); /* * Destroy mbuf DMA stuffs */ for (i = 0; i < ET_RX_NRING; ++i) rx_done[i] = ET_RX_NDESC; et_dma_mbuf_destroy(dev, ET_TX_NDESC, rx_done); /* * Destroy top level DMA tag */ if (sc->sc_dtag != NULL) bus_dma_tag_destroy(sc->sc_dtag); } static int et_dma_mbuf_create(device_t dev) { struct et_softc *sc = device_get_softc(dev); struct et_txbuf_data *tbd = &sc->sc_tx_data; int i, error, rx_done[ET_RX_NRING]; /* * Create mbuf DMA tag */ error = bus_dma_tag_create(sc->sc_dtag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, ET_JUMBO_FRAMELEN, ET_NSEG_MAX, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_mbuf_dtag); if (error) { device_printf(dev, "can't create mbuf DMA tag\n"); return (error); } /* * Create spare DMA map for RX mbufs */ error = bus_dmamap_create(sc->sc_mbuf_dtag, 0, &sc->sc_mbuf_tmp_dmap); if (error) { device_printf(dev, "can't create spare mbuf DMA map\n"); bus_dma_tag_destroy(sc->sc_mbuf_dtag); sc->sc_mbuf_dtag = NULL; return (error); } /* * Create DMA maps for RX mbufs */ bzero(rx_done, sizeof(rx_done)); for (i = 0; i < ET_RX_NRING; ++i) { struct et_rxbuf_data *rbd = &sc->sc_rx_data[i]; int j; for (j = 0; j < ET_RX_NDESC; ++j) { error = bus_dmamap_create(sc->sc_mbuf_dtag, 0, &rbd->rbd_buf[j].rb_dmap); if (error) { device_printf(dev, "can't create %d RX mbuf " "for %d RX ring\n", j, i); rx_done[i] = j; et_dma_mbuf_destroy(dev, 0, rx_done); return (error); } } rx_done[i] = ET_RX_NDESC; rbd->rbd_softc = sc; rbd->rbd_ring = &sc->sc_rx_ring[i]; } /* * Create DMA maps for TX mbufs */ for (i = 0; i < ET_TX_NDESC; ++i) { error = bus_dmamap_create(sc->sc_mbuf_dtag, 0, &tbd->tbd_buf[i].tb_dmap); if (error) { device_printf(dev, "can't create %d TX mbuf " "DMA map\n", i); et_dma_mbuf_destroy(dev, i, rx_done); return (error); } } return (0); } static void et_dma_mbuf_destroy(device_t dev, int tx_done, const int rx_done[]) { struct et_softc *sc = device_get_softc(dev); struct et_txbuf_data *tbd = &sc->sc_tx_data; int i; if (sc->sc_mbuf_dtag == NULL) return; /* * Destroy DMA maps for RX mbufs */ for (i = 0; i < ET_RX_NRING; ++i) { struct et_rxbuf_data *rbd = &sc->sc_rx_data[i]; int j; for (j = 0; j < rx_done[i]; ++j) { struct et_rxbuf *rb = &rbd->rbd_buf[j]; KASSERT(rb->rb_mbuf == NULL, ("RX mbuf in %d RX ring is not freed yet\n", i)); bus_dmamap_destroy(sc->sc_mbuf_dtag, rb->rb_dmap); } } /* * Destroy DMA maps for TX mbufs */ for (i = 0; i < tx_done; ++i) { struct et_txbuf *tb = &tbd->tbd_buf[i]; KASSERT(tb->tb_mbuf == NULL, ("TX mbuf is not freed yet\n")); bus_dmamap_destroy(sc->sc_mbuf_dtag, tb->tb_dmap); } /* * Destroy spare mbuf DMA map */ bus_dmamap_destroy(sc->sc_mbuf_dtag, sc->sc_mbuf_tmp_dmap); /* * Destroy mbuf DMA tag */ bus_dma_tag_destroy(sc->sc_mbuf_dtag); sc->sc_mbuf_dtag = NULL; } static int et_dma_mem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag, void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap) { struct et_softc *sc = device_get_softc(dev); int error; error = bus_dma_tag_create(sc->sc_dtag, ET_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, dtag); if (error) { device_printf(dev, "can't create DMA tag\n"); return (error); } error = bus_dmamem_alloc(*dtag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO, dmap); if (error) { device_printf(dev, "can't allocate DMA mem\n"); bus_dma_tag_destroy(*dtag); *dtag = NULL; return (error); } error = bus_dmamap_load(*dtag, *dmap, *addr, size, et_dma_ring_addr, paddr, BUS_DMA_WAITOK); if (error) { device_printf(dev, "can't load DMA mem\n"); bus_dmamem_free(*dtag, *addr, *dmap); bus_dma_tag_destroy(*dtag); *dtag = NULL; return (error); } return (0); } static void et_dma_mem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap) { if (dtag != NULL) { bus_dmamap_unload(dtag, dmap); bus_dmamem_free(dtag, addr, dmap); bus_dma_tag_destroy(dtag); } } static void et_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error) { KASSERT(nseg == 1, ("too many segments\n")); *((bus_addr_t *)arg) = seg->ds_addr; } static void et_chip_attach(struct et_softc *sc) { uint32_t val; /* * Perform minimal initialization */ /* Disable loopback */ CSR_WRITE_4(sc, ET_LOOPBACK, 0); /* Reset MAC */ CSR_WRITE_4(sc, ET_MAC_CFG1, ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC | ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC | ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST); /* * Setup half duplex mode */ val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) | (15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) | (55 << ET_MAC_HDX_COLLWIN_SHIFT) | ET_MAC_HDX_EXC_DEFER; CSR_WRITE_4(sc, ET_MAC_HDX, val); /* Clear MAC control */ CSR_WRITE_4(sc, ET_MAC_CTRL, 0); /* Reset MII */ CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST); /* Bring MAC out of reset state */ CSR_WRITE_4(sc, ET_MAC_CFG1, 0); /* Enable memory controllers */ CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE); } static void et_intr(void *xsc) { struct et_softc *sc = xsc; struct ifnet *ifp; uint32_t intrs; ET_LOCK(sc); ifp = sc->ifp; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { ET_UNLOCK(sc); return; } et_disable_intrs(sc); intrs = CSR_READ_4(sc, ET_INTR_STATUS); intrs &= ET_INTRS; if (intrs == 0) /* Not interested */ goto back; if (intrs & ET_INTR_RXEOF) et_rxeof(sc); if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER)) et_txeof(sc); if (intrs & ET_INTR_TIMER) CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer); back: et_enable_intrs(sc, ET_INTRS); ET_UNLOCK(sc); } static void et_init_locked(struct et_softc *sc) { struct ifnet *ifp = sc->ifp; const struct et_bsize *arr; int error, i; ET_LOCK_ASSERT(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; et_stop(sc); arr = et_bufsize_std; for (i = 0; i < ET_RX_NRING; ++i) { sc->sc_rx_data[i].rbd_bufsize = arr[i].bufsize; sc->sc_rx_data[i].rbd_newbuf = arr[i].newbuf; } error = et_init_tx_ring(sc); if (error) goto back; error = et_init_rx_ring(sc); if (error) goto back; error = et_chip_init(sc); if (error) goto back; error = et_enable_txrx(sc, 1); if (error) goto back; et_enable_intrs(sc, ET_INTRS); callout_reset(&sc->sc_tick, hz, et_tick, sc); CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; back: if (error) et_stop(sc); } static void et_init(void *xsc) { struct et_softc *sc = xsc; ET_LOCK(sc); et_init_locked(sc); ET_UNLOCK(sc); } static int et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct et_softc *sc = ifp->if_softc; struct mii_data *mii = device_get_softc(sc->sc_miibus); struct ifreq *ifr = (struct ifreq *)data; int error = 0, mask, max_framelen; /* XXX LOCKSUSED */ switch (cmd) { case SIOCSIFFLAGS: ET_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if ((ifp->if_flags ^ sc->sc_if_flags) & (IFF_ALLMULTI | IFF_PROMISC | IFF_BROADCAST)) et_setmulti(sc); } else { et_init_locked(sc); } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) et_stop(sc); } sc->sc_if_flags = ifp->if_flags; ET_UNLOCK(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ET_LOCK(sc); et_setmulti(sc); ET_UNLOCK(sc); error = 0; } break; case SIOCSIFMTU: #if 0 if (sc->sc_flags & ET_FLAG_JUMBO) max_framelen = ET_JUMBO_FRAMELEN; else #endif max_framelen = MCLBYTES - 1; if (ET_FRAMELEN(ifr->ifr_mtu) > max_framelen) { error = EOPNOTSUPP; break; } if (ifp->if_mtu != ifr->ifr_mtu) { ifp->if_mtu = ifr->ifr_mtu; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; et_init(sc); } break; case SIOCSIFCAP: ET_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if ((mask & IFCAP_TXCSUM) != 0 && (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { ifp->if_capenable ^= IFCAP_TXCSUM; if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) ifp->if_hwassist |= ET_CSUM_FEATURES; else ifp->if_hwassist &= ~ET_CSUM_FEATURES; } ET_UNLOCK(sc); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static void et_start_locked(struct ifnet *ifp) { struct et_softc *sc = ifp->if_softc; struct et_txbuf_data *tbd; int trans; ET_LOCK_ASSERT(sc); tbd = &sc->sc_tx_data; if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0) return; if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return; trans = 0; for (;;) { struct mbuf *m; if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; if (et_encap(sc, &m)) { ifp->if_oerrors++; ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } trans = 1; BPF_MTAP(ifp, m); } if (trans) sc->watchdog_timer = 5; } static void et_start(struct ifnet *ifp) { struct et_softc *sc = ifp->if_softc; ET_LOCK(sc); et_start_locked(ifp); ET_UNLOCK(sc); } static void et_watchdog(struct et_softc *sc) { ET_LOCK_ASSERT(sc); if (sc->watchdog_timer == 0 || --sc->watchdog_timer) return; if_printf(sc->ifp, "watchdog timed out\n"); sc->ifp->if_oerrors++; sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; et_init_locked(sc); et_start_locked(sc->ifp); } static int et_stop_rxdma(struct et_softc *sc) { CSR_WRITE_4(sc, ET_RXDMA_CTRL, ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE); DELAY(5); if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) { if_printf(sc->ifp, "can't stop RX DMA engine\n"); return (ETIMEDOUT); } return (0); } static int et_stop_txdma(struct et_softc *sc) { CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT); return (0); } static void et_free_tx_ring(struct et_softc *sc) { struct et_txbuf_data *tbd = &sc->sc_tx_data; struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring; int i; for (i = 0; i < ET_TX_NDESC; ++i) { struct et_txbuf *tb = &tbd->tbd_buf[i]; if (tb->tb_mbuf != NULL) { bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap); m_freem(tb->tb_mbuf); tb->tb_mbuf = NULL; } } bzero(tx_ring->tr_desc, ET_TX_RING_SIZE); bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap, BUS_DMASYNC_PREWRITE); } static void et_free_rx_ring(struct et_softc *sc) { int n; for (n = 0; n < ET_RX_NRING; ++n) { struct et_rxbuf_data *rbd = &sc->sc_rx_data[n]; struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n]; int i; for (i = 0; i < ET_RX_NDESC; ++i) { struct et_rxbuf *rb = &rbd->rbd_buf[i]; if (rb->rb_mbuf != NULL) { bus_dmamap_unload(sc->sc_mbuf_dtag, rb->rb_dmap); m_freem(rb->rb_mbuf); rb->rb_mbuf = NULL; } } bzero(rx_ring->rr_desc, ET_RX_RING_SIZE); bus_dmamap_sync(rx_ring->rr_dtag, rx_ring->rr_dmap, BUS_DMASYNC_PREWRITE); } } static void et_setmulti(struct et_softc *sc) { struct ifnet *ifp; uint32_t hash[4] = { 0, 0, 0, 0 }; uint32_t rxmac_ctrl, pktfilt; struct ifmultiaddr *ifma; int i, count; ET_LOCK_ASSERT(sc); ifp = sc->ifp; pktfilt = CSR_READ_4(sc, ET_PKTFILT); rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL); pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST); if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) { rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT; goto back; } count = 0; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { uint32_t *hp, h; if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN); h = (h & 0x3f800000) >> 23; hp = &hash[0]; if (h >= 32 && h < 64) { h -= 32; hp = &hash[1]; } else if (h >= 64 && h < 96) { h -= 64; hp = &hash[2]; } else if (h >= 96) { h -= 96; hp = &hash[3]; } *hp |= (1 << h); ++count; } if_maddr_runlock(ifp); for (i = 0; i < 4; ++i) CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]); if (count > 0) pktfilt |= ET_PKTFILT_MCAST; rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT; back: CSR_WRITE_4(sc, ET_PKTFILT, pktfilt); CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl); } static int et_chip_init(struct et_softc *sc) { struct ifnet *ifp = sc->ifp; uint32_t rxq_end; int error, frame_len, rxmem_size; /* * Split 16Kbytes internal memory between TX and RX * according to frame length. */ frame_len = ET_FRAMELEN(ifp->if_mtu); if (frame_len < 2048) { rxmem_size = ET_MEM_RXSIZE_DEFAULT; } else if (frame_len <= ET_RXMAC_CUT_THRU_FRMLEN) { rxmem_size = ET_MEM_SIZE / 2; } else { rxmem_size = ET_MEM_SIZE - roundup(frame_len + ET_MEM_TXSIZE_EX, ET_MEM_UNIT); } rxq_end = ET_QUEUE_ADDR(rxmem_size); CSR_WRITE_4(sc, ET_RXQUEUE_START, ET_QUEUE_ADDR_START); CSR_WRITE_4(sc, ET_RXQUEUE_END, rxq_end); CSR_WRITE_4(sc, ET_TXQUEUE_START, rxq_end + 1); CSR_WRITE_4(sc, ET_TXQUEUE_END, ET_QUEUE_ADDR_END); /* No loopback */ CSR_WRITE_4(sc, ET_LOOPBACK, 0); /* Clear MSI configure */ if ((sc->sc_flags & ET_FLAG_MSI) == 0) CSR_WRITE_4(sc, ET_MSI_CFG, 0); /* Disable timer */ CSR_WRITE_4(sc, ET_TIMER, 0); /* Initialize MAC */ et_init_mac(sc); /* Enable memory controllers */ CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE); /* Initialize RX MAC */ et_init_rxmac(sc); /* Initialize TX MAC */ et_init_txmac(sc); /* Initialize RX DMA engine */ error = et_init_rxdma(sc); if (error) return (error); /* Initialize TX DMA engine */ error = et_init_txdma(sc); if (error) return (error); return (0); } static int et_init_tx_ring(struct et_softc *sc) { struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring; struct et_txstatus_data *txsd = &sc->sc_tx_status; struct et_txbuf_data *tbd = &sc->sc_tx_data; bzero(tx_ring->tr_desc, ET_TX_RING_SIZE); bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap, BUS_DMASYNC_PREWRITE); tbd->tbd_start_index = 0; tbd->tbd_start_wrap = 0; tbd->tbd_used = 0; bzero(txsd->txsd_status, sizeof(uint32_t)); bus_dmamap_sync(txsd->txsd_dtag, txsd->txsd_dmap, BUS_DMASYNC_PREWRITE); return (0); } static int et_init_rx_ring(struct et_softc *sc) { struct et_rxstatus_data *rxsd = &sc->sc_rx_status; struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring; int n; for (n = 0; n < ET_RX_NRING; ++n) { struct et_rxbuf_data *rbd = &sc->sc_rx_data[n]; int i, error; for (i = 0; i < ET_RX_NDESC; ++i) { error = rbd->rbd_newbuf(rbd, i, 1); if (error) { if_printf(sc->ifp, "%d ring %d buf, " "newbuf failed: %d\n", n, i, error); return (error); } } } bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus)); bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap, BUS_DMASYNC_PREWRITE); bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE); bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap, BUS_DMASYNC_PREWRITE); return (0); } static void et_dma_buf_addr(void *xctx, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsz __unused, int error) { struct et_dmamap_ctx *ctx = xctx; int i; if (error) return; if (nsegs > ctx->nsegs) { ctx->nsegs = 0; return; } ctx->nsegs = nsegs; for (i = 0; i < nsegs; ++i) ctx->segs[i] = segs[i]; } static int et_init_rxdma(struct et_softc *sc) { struct et_rxstatus_data *rxsd = &sc->sc_rx_status; struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring; struct et_rxdesc_ring *rx_ring; int error; error = et_stop_rxdma(sc); if (error) { if_printf(sc->ifp, "can't init RX DMA engine\n"); return (error); } /* * Install RX status */ CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr)); CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr)); /* * Install RX stat ring */ CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr)); CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr)); CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1); CSR_WRITE_4(sc, ET_RXSTAT_POS, 0); CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1); /* Match ET_RXSTAT_POS */ rxst_ring->rsr_index = 0; rxst_ring->rsr_wrap = 0; /* * Install the 2nd RX descriptor ring */ rx_ring = &sc->sc_rx_ring[1]; CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr)); CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr)); CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1); CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP); CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1); /* Match ET_RX_RING1_POS */ rx_ring->rr_index = 0; rx_ring->rr_wrap = 1; /* * Install the 1st RX descriptor ring */ rx_ring = &sc->sc_rx_ring[0]; CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr)); CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr)); CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1); CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP); CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1); /* Match ET_RX_RING0_POS */ rx_ring->rr_index = 0; rx_ring->rr_wrap = 1; /* * RX intr moderation */ CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts); CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay); return (0); } static int et_init_txdma(struct et_softc *sc) { struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring; struct et_txstatus_data *txsd = &sc->sc_tx_status; int error; error = et_stop_txdma(sc); if (error) { if_printf(sc->ifp, "can't init TX DMA engine\n"); return (error); } /* * Install TX descriptor ring */ CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr)); CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr)); CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1); /* * Install TX status */ CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr)); CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr)); CSR_WRITE_4(sc, ET_TX_READY_POS, 0); /* Match ET_TX_READY_POS */ tx_ring->tr_ready_index = 0; tx_ring->tr_ready_wrap = 0; return (0); } static void et_init_mac(struct et_softc *sc) { struct ifnet *ifp = sc->ifp; const uint8_t *eaddr = IF_LLADDR(ifp); uint32_t val; /* Reset MAC */ CSR_WRITE_4(sc, ET_MAC_CFG1, ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC | ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC | ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST); /* * Setup inter packet gap */ val = (56 << ET_IPG_NONB2B_1_SHIFT) | (88 << ET_IPG_NONB2B_2_SHIFT) | (80 << ET_IPG_MINIFG_SHIFT) | (96 << ET_IPG_B2B_SHIFT); CSR_WRITE_4(sc, ET_IPG, val); /* * Setup half duplex mode */ val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) | (15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) | (55 << ET_MAC_HDX_COLLWIN_SHIFT) | ET_MAC_HDX_EXC_DEFER; CSR_WRITE_4(sc, ET_MAC_HDX, val); /* Clear MAC control */ CSR_WRITE_4(sc, ET_MAC_CTRL, 0); /* Reset MII */ CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST); /* * Set MAC address */ val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24); CSR_WRITE_4(sc, ET_MAC_ADDR1, val); val = (eaddr[0] << 16) | (eaddr[1] << 24); CSR_WRITE_4(sc, ET_MAC_ADDR2, val); /* Set max frame length */ CSR_WRITE_4(sc, ET_MAX_FRMLEN, ET_FRAMELEN(ifp->if_mtu)); /* Bring MAC out of reset state */ CSR_WRITE_4(sc, ET_MAC_CFG1, 0); } static void et_init_rxmac(struct et_softc *sc) { struct ifnet *ifp = sc->ifp; const uint8_t *eaddr = IF_LLADDR(ifp); uint32_t val; int i; /* Disable RX MAC and WOL */ CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE); /* * Clear all WOL related registers */ for (i = 0; i < 3; ++i) CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0); for (i = 0; i < 20; ++i) CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0); /* * Set WOL source address. XXX is this necessary? */ val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5]; CSR_WRITE_4(sc, ET_WOL_SA_LO, val); val = (eaddr[0] << 8) | eaddr[1]; CSR_WRITE_4(sc, ET_WOL_SA_HI, val); /* Clear packet filters */ CSR_WRITE_4(sc, ET_PKTFILT, 0); /* No ucast filtering */ CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0); CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0); CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0); if (ET_FRAMELEN(ifp->if_mtu) > ET_RXMAC_CUT_THRU_FRMLEN) { /* * In order to transmit jumbo packets greater than * ET_RXMAC_CUT_THRU_FRMLEN bytes, the FIFO between * RX MAC and RX DMA needs to be reduced in size to * (ET_MEM_SIZE - ET_MEM_TXSIZE_EX - framelen). In * order to implement this, we must use "cut through" * mode in the RX MAC, which chops packets down into * segments. In this case we selected 256 bytes, * since this is the size of the PCI-Express TLP's * that the ET1310 uses. */ val = (ET_RXMAC_SEGSZ(256) & ET_RXMAC_MC_SEGSZ_MAX_MASK) | ET_RXMAC_MC_SEGSZ_ENABLE; } else { val = 0; } CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val); CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0); /* Initialize RX MAC management register */ CSR_WRITE_4(sc, ET_RXMAC_MGT, 0); CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0); CSR_WRITE_4(sc, ET_RXMAC_MGT, ET_RXMAC_MGT_PASS_ECRC | ET_RXMAC_MGT_PASS_ELEN | ET_RXMAC_MGT_PASS_ETRUNC | ET_RXMAC_MGT_CHECK_PKT); /* * Configure runt filtering (may not work on certain chip generation) */ val = (ETHER_MIN_LEN << ET_PKTFILT_MINLEN_SHIFT) & ET_PKTFILT_MINLEN_MASK; val |= ET_PKTFILT_FRAG; CSR_WRITE_4(sc, ET_PKTFILT, val); /* Enable RX MAC but leave WOL disabled */ CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE); /* * Setup multicast hash and allmulti/promisc mode */ et_setmulti(sc); } static void et_init_txmac(struct et_softc *sc) { /* Disable TX MAC and FC(?) */ CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE); /* No flow control yet */ CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0); /* Enable TX MAC but leave FC(?) diabled */ CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE); } static int et_start_rxdma(struct et_softc *sc) { uint32_t val = 0; val |= (sc->sc_rx_data[0].rbd_bufsize & ET_RXDMA_CTRL_RING0_SIZE_MASK) | ET_RXDMA_CTRL_RING0_ENABLE; val |= (sc->sc_rx_data[1].rbd_bufsize & ET_RXDMA_CTRL_RING1_SIZE_MASK) | ET_RXDMA_CTRL_RING1_ENABLE; CSR_WRITE_4(sc, ET_RXDMA_CTRL, val); DELAY(5); if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) { if_printf(sc->ifp, "can't start RX DMA engine\n"); return (ETIMEDOUT); } return (0); } static int et_start_txdma(struct et_softc *sc) { CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT); return (0); } static int et_enable_txrx(struct et_softc *sc, int media_upd) { struct ifnet *ifp = sc->ifp; uint32_t val; int i, error; val = CSR_READ_4(sc, ET_MAC_CFG1); val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN; val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW | ET_MAC_CFG1_LOOPBACK); CSR_WRITE_4(sc, ET_MAC_CFG1, val); if (media_upd) et_ifmedia_upd_locked(ifp); else et_setmedia(sc); #define NRETRY 50 for (i = 0; i < NRETRY; ++i) { val = CSR_READ_4(sc, ET_MAC_CFG1); if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) == (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) break; DELAY(100); } if (i == NRETRY) { if_printf(ifp, "can't enable RX/TX\n"); return (0); } sc->sc_flags |= ET_FLAG_TXRX_ENABLED; #undef NRETRY /* * Start TX/RX DMA engine */ error = et_start_rxdma(sc); if (error) return (error); error = et_start_txdma(sc); if (error) return (error); return (0); } static void et_rxeof(struct et_softc *sc) { struct ifnet *ifp; struct et_rxstatus_data *rxsd; struct et_rxstat_ring *rxst_ring; uint32_t rxs_stat_ring, rxst_info2; int rxst_wrap, rxst_index; ET_LOCK_ASSERT(sc); ifp = sc->ifp; rxsd = &sc->sc_rx_status; rxst_ring = &sc->sc_rxstat_ring; if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0) return; bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap, BUS_DMASYNC_POSTREAD); rxs_stat_ring = le32toh(rxsd->rxsd_status->rxs_stat_ring); rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0; rxst_index = (rxs_stat_ring & ET_RXS_STATRING_INDEX_MASK) >> ET_RXS_STATRING_INDEX_SHIFT; while (rxst_index != rxst_ring->rsr_index || rxst_wrap != rxst_ring->rsr_wrap) { struct et_rxbuf_data *rbd; struct et_rxdesc_ring *rx_ring; struct et_rxstat *st; struct mbuf *m; int buflen, buf_idx, ring_idx; uint32_t rxstat_pos, rxring_pos; MPASS(rxst_ring->rsr_index < ET_RX_NSTAT); st = &rxst_ring->rsr_stat[rxst_ring->rsr_index]; rxst_info2 = le32toh(st->rxst_info2); buflen = (rxst_info2 & ET_RXST_INFO2_LEN_MASK) >> ET_RXST_INFO2_LEN_SHIFT; buf_idx = (rxst_info2 & ET_RXST_INFO2_BUFIDX_MASK) >> ET_RXST_INFO2_BUFIDX_SHIFT; ring_idx = (rxst_info2 & ET_RXST_INFO2_RINGIDX_MASK) >> ET_RXST_INFO2_RINGIDX_SHIFT; if (++rxst_ring->rsr_index == ET_RX_NSTAT) { rxst_ring->rsr_index = 0; rxst_ring->rsr_wrap ^= 1; } rxstat_pos = rxst_ring->rsr_index & ET_RXSTAT_POS_INDEX_MASK; if (rxst_ring->rsr_wrap) rxstat_pos |= ET_RXSTAT_POS_WRAP; CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos); if (ring_idx >= ET_RX_NRING) { ifp->if_ierrors++; if_printf(ifp, "invalid ring index %d\n", ring_idx); continue; } if (buf_idx >= ET_RX_NDESC) { ifp->if_ierrors++; if_printf(ifp, "invalid buf index %d\n", buf_idx); continue; } rbd = &sc->sc_rx_data[ring_idx]; m = rbd->rbd_buf[buf_idx].rb_mbuf; if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) { if (buflen < ETHER_CRC_LEN) { m_freem(m); m = NULL; ifp->if_ierrors++; } else { m->m_pkthdr.len = m->m_len = buflen - ETHER_CRC_LEN; m->m_pkthdr.rcvif = ifp; ifp->if_ipackets++; ET_UNLOCK(sc); ifp->if_input(ifp, m); ET_LOCK(sc); } } else { ifp->if_ierrors++; } m = NULL; /* Catch invalid reference */ rx_ring = &sc->sc_rx_ring[ring_idx]; if (buf_idx != rx_ring->rr_index) { if_printf(ifp, "WARNING!! ring %d, " "buf_idx %d, rr_idx %d\n", ring_idx, buf_idx, rx_ring->rr_index); } MPASS(rx_ring->rr_index < ET_RX_NDESC); if (++rx_ring->rr_index == ET_RX_NDESC) { rx_ring->rr_index = 0; rx_ring->rr_wrap ^= 1; } rxring_pos = rx_ring->rr_index & ET_RX_RING_POS_INDEX_MASK; if (rx_ring->rr_wrap) rxring_pos |= ET_RX_RING_POS_WRAP; CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos); } } static int et_encap(struct et_softc *sc, struct mbuf **m0) { struct mbuf *m = *m0; bus_dma_segment_t segs[ET_NSEG_MAX]; struct et_dmamap_ctx ctx; struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring; struct et_txbuf_data *tbd = &sc->sc_tx_data; struct et_txdesc *td; bus_dmamap_t map; int error, maxsegs, first_idx, last_idx, i; uint32_t csum_flags, tx_ready_pos, last_td_ctrl2; maxsegs = ET_TX_NDESC - tbd->tbd_used; if (maxsegs > ET_NSEG_MAX) maxsegs = ET_NSEG_MAX; KASSERT(maxsegs >= ET_NSEG_SPARE, ("not enough spare TX desc (%d)\n", maxsegs)); MPASS(tx_ring->tr_ready_index < ET_TX_NDESC); first_idx = tx_ring->tr_ready_index; map = tbd->tbd_buf[first_idx].tb_dmap; ctx.nsegs = maxsegs; ctx.segs = segs; error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, map, m, et_dma_buf_addr, &ctx, BUS_DMA_NOWAIT); if (!error && ctx.nsegs == 0) { bus_dmamap_unload(sc->sc_mbuf_dtag, map); error = EFBIG; } if (error && error != EFBIG) { if_printf(sc->ifp, "can't load TX mbuf, error %d\n", error); goto back; } if (error) { /* error == EFBIG */ struct mbuf *m_new; m_new = m_defrag(m, M_DONTWAIT); if (m_new == NULL) { if_printf(sc->ifp, "can't defrag TX mbuf\n"); error = ENOBUFS; goto back; } else { *m0 = m = m_new; } ctx.nsegs = maxsegs; ctx.segs = segs; error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, map, m, et_dma_buf_addr, &ctx, BUS_DMA_NOWAIT); if (error || ctx.nsegs == 0) { if (ctx.nsegs == 0) { bus_dmamap_unload(sc->sc_mbuf_dtag, map); error = EFBIG; } if_printf(sc->ifp, "can't load defraged TX mbuf\n"); goto back; } } bus_dmamap_sync(sc->sc_mbuf_dtag, map, BUS_DMASYNC_PREWRITE); last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG; sc->sc_tx += ctx.nsegs; if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) { sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs; last_td_ctrl2 |= ET_TDCTRL2_INTR; } csum_flags = 0; if ((m->m_pkthdr.csum_flags & ET_CSUM_FEATURES) != 0) { if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) csum_flags |= ET_TDCTRL2_CSUM_IP; if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) csum_flags |= ET_TDCTRL2_CSUM_UDP; else if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) csum_flags |= ET_TDCTRL2_CSUM_TCP; } last_idx = -1; for (i = 0; i < ctx.nsegs; ++i) { int idx; idx = (first_idx + i) % ET_TX_NDESC; td = &tx_ring->tr_desc[idx]; td->td_addr_hi = htole32(ET_ADDR_HI(segs[i].ds_addr)); td->td_addr_lo = htole32(ET_ADDR_LO(segs[i].ds_addr)); td->td_ctrl1 = htole32(segs[i].ds_len & ET_TDCTRL1_LEN_MASK); if (i == ctx.nsegs - 1) { /* Last frag */ td->td_ctrl2 = htole32(last_td_ctrl2 | csum_flags); last_idx = idx; } else td->td_ctrl2 = htole32(csum_flags); MPASS(tx_ring->tr_ready_index < ET_TX_NDESC); if (++tx_ring->tr_ready_index == ET_TX_NDESC) { tx_ring->tr_ready_index = 0; tx_ring->tr_ready_wrap ^= 1; } } td = &tx_ring->tr_desc[first_idx]; td->td_ctrl2 |= htole32(ET_TDCTRL2_FIRST_FRAG); /* First frag */ MPASS(last_idx >= 0); tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap; tbd->tbd_buf[last_idx].tb_dmap = map; tbd->tbd_buf[last_idx].tb_mbuf = m; tbd->tbd_used += ctx.nsegs; MPASS(tbd->tbd_used <= ET_TX_NDESC); bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap, BUS_DMASYNC_PREWRITE); tx_ready_pos = tx_ring->tr_ready_index & ET_TX_READY_POS_INDEX_MASK; if (tx_ring->tr_ready_wrap) tx_ready_pos |= ET_TX_READY_POS_WRAP; CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos); error = 0; back: if (error) { m_freem(m); *m0 = NULL; } return (error); } static void et_txeof(struct et_softc *sc) { struct ifnet *ifp; struct et_txdesc_ring *tx_ring; struct et_txbuf_data *tbd; uint32_t tx_done; int end, wrap; ET_LOCK_ASSERT(sc); ifp = sc->ifp; tx_ring = &sc->sc_tx_ring; tbd = &sc->sc_tx_data; if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0) return; if (tbd->tbd_used == 0) return; tx_done = CSR_READ_4(sc, ET_TX_DONE_POS); end = tx_done & ET_TX_DONE_POS_INDEX_MASK; wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0; while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) { struct et_txbuf *tb; MPASS(tbd->tbd_start_index < ET_TX_NDESC); tb = &tbd->tbd_buf[tbd->tbd_start_index]; bzero(&tx_ring->tr_desc[tbd->tbd_start_index], sizeof(struct et_txdesc)); bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap, BUS_DMASYNC_PREWRITE); if (tb->tb_mbuf != NULL) { bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap); m_freem(tb->tb_mbuf); tb->tb_mbuf = NULL; ifp->if_opackets++; } if (++tbd->tbd_start_index == ET_TX_NDESC) { tbd->tbd_start_index = 0; tbd->tbd_start_wrap ^= 1; } MPASS(tbd->tbd_used > 0); tbd->tbd_used--; } if (tbd->tbd_used == 0) sc->watchdog_timer = 0; if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC) ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; et_start_locked(ifp); } static void et_tick(void *xsc) { struct et_softc *sc = xsc; struct ifnet *ifp; struct mii_data *mii; ET_LOCK_ASSERT(sc); ifp = sc->ifp; mii = device_get_softc(sc->sc_miibus); mii_tick(mii); if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0 && (mii->mii_media_status & IFM_ACTIVE) && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { if_printf(ifp, "Link up, enable TX/RX\n"); if (et_enable_txrx(sc, 0) == 0) et_start_locked(ifp); } et_watchdog(sc); callout_reset(&sc->sc_tick, hz, et_tick, sc); } static int et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init) { return (et_newbuf(rbd, buf_idx, init, MCLBYTES)); } static int et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init) { return (et_newbuf(rbd, buf_idx, init, MHLEN)); } static int et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0) { struct et_softc *sc = rbd->rbd_softc; struct et_rxbuf *rb; struct mbuf *m; struct et_dmamap_ctx ctx; bus_dma_segment_t seg; bus_dmamap_t dmap; int error, len; MPASS(buf_idx < ET_RX_NDESC); rb = &rbd->rbd_buf[buf_idx]; m = m_getl(len0, /* init ? M_WAIT :*/ M_DONTWAIT, MT_DATA, M_PKTHDR, &len); if (m == NULL) { error = ENOBUFS; if (init) { if_printf(sc->ifp, "m_getl failed, size %d\n", len0); return (error); } else { goto back; } } m->m_len = m->m_pkthdr.len = len; /* * Try load RX mbuf into temporary DMA tag */ ctx.nsegs = 1; ctx.segs = &seg; error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, sc->sc_mbuf_tmp_dmap, m, et_dma_buf_addr, &ctx, init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT); if (error || ctx.nsegs == 0) { if (!error) { bus_dmamap_unload(sc->sc_mbuf_dtag, sc->sc_mbuf_tmp_dmap); error = EFBIG; if_printf(sc->ifp, "too many segments?!\n"); } m_freem(m); m = NULL; if (init) { if_printf(sc->ifp, "can't load RX mbuf\n"); return (error); } else { goto back; } } if (!init) { bus_dmamap_sync(sc->sc_mbuf_dtag, rb->rb_dmap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_mbuf_dtag, rb->rb_dmap); } rb->rb_mbuf = m; rb->rb_paddr = seg.ds_addr; /* * Swap RX buf's DMA map with the loaded temporary one */ dmap = rb->rb_dmap; rb->rb_dmap = sc->sc_mbuf_tmp_dmap; sc->sc_mbuf_tmp_dmap = dmap; error = 0; back: et_setup_rxdesc(rbd, buf_idx, rb->rb_paddr); return (error); } /* * Create sysctl tree */ static void et_add_sysctls(struct et_softc * sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *children; ctx = device_get_sysctl_ctx(sc->dev); children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_npkts", CTLTYPE_INT | CTLFLAG_RW, sc, 0, et_sysctl_rx_intr_npkts, "I", "RX IM, # packets per RX interrupt"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_delay", CTLTYPE_INT | CTLFLAG_RW, sc, 0, et_sysctl_rx_intr_delay, "I", "RX IM, RX interrupt delay (x10 usec)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_intr_nsegs", CTLFLAG_RW, &sc->sc_tx_intr_nsegs, 0, "TX IM, # segments per TX interrupt"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "timer", CTLFLAG_RW, &sc->sc_timer, 0, "TX timer"); } static int et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS) { struct et_softc *sc = arg1; struct ifnet *ifp = sc->ifp; int error = 0, v; v = sc->sc_rx_intr_npkts; error = sysctl_handle_int(oidp, &v, 0, req); if (error || req->newptr == NULL) goto back; if (v <= 0) { error = EINVAL; goto back; } if (sc->sc_rx_intr_npkts != v) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, v); sc->sc_rx_intr_npkts = v; } back: return (error); } static int et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS) { struct et_softc *sc = arg1; struct ifnet *ifp = sc->ifp; int error = 0, v; v = sc->sc_rx_intr_delay; error = sysctl_handle_int(oidp, &v, 0, req); if (error || req->newptr == NULL) goto back; if (v <= 0) { error = EINVAL; goto back; } if (sc->sc_rx_intr_delay != v) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) CSR_WRITE_4(sc, ET_RX_INTR_DELAY, v); sc->sc_rx_intr_delay = v; } back: return (error); } static void et_setmedia(struct et_softc *sc) { struct mii_data *mii = device_get_softc(sc->sc_miibus); uint32_t cfg2, ctrl; cfg2 = CSR_READ_4(sc, ET_MAC_CFG2); cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII | ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM); cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC | ((7 << ET_MAC_CFG2_PREAMBLE_LEN_SHIFT) & ET_MAC_CFG2_PREAMBLE_LEN_MASK); ctrl = CSR_READ_4(sc, ET_MAC_CTRL); ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) { cfg2 |= ET_MAC_CFG2_MODE_GMII; } else { cfg2 |= ET_MAC_CFG2_MODE_MII; ctrl |= ET_MAC_CTRL_MODE_MII; } if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) cfg2 |= ET_MAC_CFG2_FDX; else ctrl |= ET_MAC_CTRL_GHDX; CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl); CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2); } static void et_setup_rxdesc(struct et_rxbuf_data *rbd, int buf_idx, bus_addr_t paddr) { struct et_rxdesc_ring *rx_ring = rbd->rbd_ring; struct et_rxdesc *desc; MPASS(buf_idx < ET_RX_NDESC); desc = &rx_ring->rr_desc[buf_idx]; desc->rd_addr_hi = htole32(ET_ADDR_HI(paddr)); desc->rd_addr_lo = htole32(ET_ADDR_LO(paddr)); desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK); bus_dmamap_sync(rx_ring->rr_dtag, rx_ring->rr_dmap, BUS_DMASYNC_PREWRITE); }