%{ /* * Parser for the Aic7xxx SCSI Host adapter sequencer assembler. * * Copyright (c) 1997 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id$ */ #include #include #include #include #include #include #include "aic7xxx_asm.h" #include "symbol.h" #include "sequencer.h" int yylineno; char *yyfilename; static symbol_t *cur_symbol; static symtype cur_symtype; static symbol_t *accumulator; static symbol_ref_t allones; static symbol_ref_t allzeros; static symbol_ref_t none; static symbol_ref_t sindex; static int instruction_ptr; static int sram_or_scb_offset; static patch_t *cur_patch; static void process_bitmask __P((int mask_type, symbol_t *sym, int mask)); static void initialize_symbol __P((symbol_t *symbol)); static void process_register __P((symbol_t **p_symbol)); static void format_1_instr __P((int opcode, symbol_ref_t *dest, expression_t *immed, symbol_ref_t *src, int ret)); static void format_2_instr __P((int opcode, symbol_ref_t *dest, expression_t *places, symbol_ref_t *src, int ret)); static void format_3_instr __P((int opcode, symbol_ref_t *src, expression_t *immed, symbol_ref_t *address)); static void test_readable_symbol __P((symbol_t *symbol)); static void test_writable_symbol __P((symbol_t *symbol)); static void type_check __P((symbol_t *symbol, expression_t *expression, int and_op)); static void make_expression __P((expression_t *immed, int value)); static void add_conditional __P((symbol_t *symbol)); #define YYDEBUG 1 #define SRAM_SYMNAME "SRAM_BASE" #define SCB_SYMNAME "SCB_BASE" %} %union { int value; char *str; symbol_t *sym; symbol_ref_t sym_ref; expression_t expression; } %token T_REGISTER %token T_CONST %token T_SCB %token T_SRAM %token T_ALIAS %token T_SIZE %token T_ADDRESS %token T_ACCESS_MODE %token T_MODE %token T_BIT %token T_MASK %token T_NUMBER %token T_PATH %token T_EOF T_INCLUDE %token T_SHR T_SHL T_ROR T_ROL %token T_MVI T_MOV T_CLR %token T_JMP T_JC T_JNC T_JE T_JNE T_JNZ T_JZ T_CALL %token T_ADD T_ADC %token T_INC T_DEC %token T_STC T_CLC %token T_CMP T_XOR %token T_TEST T_AND %token T_OR %token T_RET %token T_NOP %token T_ACCUM T_ALLONES T_ALLZEROS T_NONE T_SINDEX %token T_A %token T_SYMBOL %token T_NL %token T_IF T_ELSE T_ENDIF %type reg_symbol address destination source opt_source %type expression immediate immediate_or_a %type ret f1_opcode f2_opcode jmp_jc_jnc_call jz_jnz je_jne %left '|' %left '&' %left '+' '-' %right '~' %nonassoc UMINUS %% program: include | program include | register | program register | constant | program constant | scratch_ram | program scratch_ram | scb | program scb | label | program label | conditional | program conditional | code | program code ; include: T_INCLUDE '<' T_PATH '>' { include_file($3, BRACKETED_INCLUDE); } | T_INCLUDE '"' T_PATH '"' { include_file($3, QUOTED_INCLUDE); } ; register: T_REGISTER { cur_symtype = REGISTER; } reg_definition ; reg_definition: T_SYMBOL '{' { if ($1->type != UNINITIALIZED) { stop("Register multiply defined", EX_DATAERR); /* NOTREACHED */ } cur_symbol = $1; cur_symbol->type = cur_symtype; initialize_symbol(cur_symbol); } reg_attribute_list '}' { /* * Default to allowing everything in for registers * with no bit or mask definitions. */ if (cur_symbol->info.rinfo->valid_bitmask == 0) cur_symbol->info.rinfo->valid_bitmask = 0xFF; if (cur_symbol->info.rinfo->size == 0) cur_symbol->info.rinfo->size = 1; /* * This might be useful for registers too. */ if (cur_symbol->type != REGISTER) { if (cur_symbol->info.rinfo->address == 0) cur_symbol->info.rinfo->address = sram_or_scb_offset; sram_or_scb_offset += cur_symbol->info.rinfo->size; } cur_symbol = NULL; } ; reg_attribute_list: reg_attribute | reg_attribute_list reg_attribute ; reg_attribute: reg_address | size | access_mode | bit_defn | mask_defn | alias | accumulator | allones | allzeros | none | sindex ; reg_address: T_ADDRESS T_NUMBER { cur_symbol->info.rinfo->address = $2; } ; size: T_SIZE T_NUMBER { cur_symbol->info.rinfo->size = $2; } ; access_mode: T_ACCESS_MODE T_MODE { cur_symbol->info.rinfo->mode = $2; } ; bit_defn: T_BIT T_SYMBOL T_NUMBER { process_bitmask(BIT, $2, $3); } ; mask_defn: T_MASK T_SYMBOL expression { process_bitmask(MASK, $2, $3.value); } ; alias: T_ALIAS T_SYMBOL { if ($2->type != UNINITIALIZED) { stop("Re-definition of register alias", EX_DATAERR); /* NOTREACHED */ } $2->type = ALIAS; initialize_symbol($2); $2->info.ainfo->parent = cur_symbol; } ; accumulator: T_ACCUM { if (accumulator != NULL) { stop("Only one accumulator definition allowed", EX_DATAERR); /* NOTREACHED */ } accumulator = cur_symbol; } ; allones: T_ALLONES { if (allones.symbol != NULL) { stop("Only one definition of allones allowed", EX_DATAERR); /* NOTREACHED */ } allones.symbol = cur_symbol; } ; allzeros: T_ALLZEROS { if (allzeros.symbol != NULL) { stop("Only one definition of allzeros allowed", EX_DATAERR); /* NOTREACHED */ } allzeros.symbol = cur_symbol; } ; none: T_NONE { if (none.symbol != NULL) { stop("Only one definition of none allowed", EX_DATAERR); /* NOTREACHED */ } none.symbol = cur_symbol; } ; sindex: T_SINDEX { if (sindex.symbol != NULL) { stop("Only one definition of sindex allowed", EX_DATAERR); /* NOTREACHED */ } sindex.symbol = cur_symbol; } ; expression: expression '|' expression { $$.value = $1.value | $3.value; symlist_merge(&$$.referenced_syms, &$1.referenced_syms, &$3.referenced_syms); } | expression '&' expression { $$.value = $1.value & $3.value; symlist_merge(&$$.referenced_syms, &$1.referenced_syms, &$3.referenced_syms); } | expression '+' expression { $$.value = $1.value + $3.value; symlist_merge(&$$.referenced_syms, &$1.referenced_syms, &$3.referenced_syms); } | expression '-' expression { $$.value = $1.value - $3.value; symlist_merge(&($$.referenced_syms), &($1.referenced_syms), &($3.referenced_syms)); } | '(' expression ')' { $$ = $2; } | '~' expression { $$ = $2; $$.value = (~$$.value) & 0xFF; } | '-' expression %prec UMINUS { $$ = $2; $$.value = -$$.value; } | T_NUMBER { $$.value = $1; SLIST_INIT(&$$.referenced_syms); } | T_SYMBOL { symbol_t *symbol; symbol = $1; switch (symbol->type) { case ALIAS: symbol = $1->info.ainfo->parent; case REGISTER: case SCBLOC: case SRAMLOC: $$.value = symbol->info.rinfo->address; break; case MASK: case BIT: $$.value = symbol->info.minfo->mask; break; case CONST: $$.value = symbol->info.cinfo->value; break; case UNINITIALIZED: default: { char buf[255]; snprintf(buf, sizeof(buf), "Undefined symbol %s referenced", symbol->name); stop(buf, EX_DATAERR); /* NOTREACHED */ break; } } SLIST_INIT(&$$.referenced_syms); symlist_add(&$$.referenced_syms, symbol, SYMLIST_INSERT_HEAD); } ; constant: T_CONST T_SYMBOL T_NUMBER { if ($2->type != UNINITIALIZED) { stop("Re-definition of constant variable", EX_DATAERR); /* NOTREACHED */ } $2->type = CONST; initialize_symbol($2); $2->info.cinfo->value = $3; $2->info.cinfo->define = $1; } ; scratch_ram: T_SRAM '{' { cur_symbol = symtable_get(SRAM_SYMNAME); cur_symtype = SRAMLOC; if (cur_symbol->type != UNINITIALIZED) { stop("Only one SRAM definition allowed", EX_DATAERR); /* NOTREACHED */ } cur_symbol->type = SRAMLOC; initialize_symbol(cur_symbol); } reg_address { sram_or_scb_offset = cur_symbol->info.rinfo->address; } scb_or_sram_reg_list '}' { cur_symbol = NULL; } ; scb: T_SCB '{' { cur_symbol = symtable_get(SCB_SYMNAME); cur_symtype = SCBLOC; if (cur_symbol->type != UNINITIALIZED) { stop("Only one SRAM definition allowed", EX_SOFTWARE); /* NOTREACHED */ } cur_symbol->type = SCBLOC; initialize_symbol(cur_symbol); } reg_address { sram_or_scb_offset = cur_symbol->info.rinfo->address; } scb_or_sram_reg_list '}' { cur_symbol = NULL; } ; scb_or_sram_reg_list: reg_definition | scb_or_sram_reg_list reg_definition ; reg_symbol: T_SYMBOL { process_register(&$1); $$.symbol = $1; $$.offset = 0; } | T_SYMBOL '[' T_NUMBER ']' { process_register(&$1); if (($3 + 1) > $1->info.rinfo->size) { stop("Accessing offset beyond range of register", EX_DATAERR); /* NOTREACHED */ } $$.symbol = $1; $$.offset = $3; } | T_A { if (accumulator == NULL) { stop("No accumulator has been defined", EX_DATAERR); /* NOTREACHED */ } $$.symbol = accumulator; $$.offset = 0; } ; destination: reg_symbol { test_writable_symbol($1.symbol); $$ = $1; } ; immediate: expression { $$ = $1; } ; immediate_or_a: expression { $$ = $1; } | T_A { SLIST_INIT(&$$.referenced_syms); $$.value = 0; } ; source: reg_symbol { test_readable_symbol($1.symbol); $$ = $1; } ; opt_source: { $$.symbol = NULL; $$.offset = 0; } | ',' source { $$ = $2; } ; ret: { $$ = 0; } | T_RET { $$ = 1; } ; label: T_SYMBOL ':' { if ($1->type != UNINITIALIZED) { stop("Program label multiply defined", EX_DATAERR); /* NOTREACHED */ } $1->type = LABEL; initialize_symbol($1); $1->info.linfo->address = instruction_ptr; } ; address: T_SYMBOL { $$.symbol = $1; $$.offset = 0; } | T_SYMBOL '+' T_NUMBER { $$.symbol = $1; $$.offset = $3; } | T_SYMBOL '-' T_NUMBER { $$.symbol = $1; $$.offset = -$3; } | '.' { $$.symbol = NULL; $$.offset = 0; } | '.' '+' T_NUMBER { $$.symbol = NULL; $$.offset = $3; } | '.' '-' T_NUMBER { $$.symbol = NULL; $$.offset = -$3; } ; conditional: T_IF { if (cur_patch != NULL) { stop("Nested .if directive", EX_DATAERR); /* NOTREACHED */ } cur_patch = patch_alloc(); cur_patch->begin = instruction_ptr; } option_list ; conditional: T_ELSE { patch_t *next_patch; if (cur_patch == NULL) { stop(".else outsize of .if", EX_DATAERR); /* NOTREACHED */ } cur_patch->end = instruction_ptr; next_patch = patch_alloc(); next_patch->options = cur_patch->options; next_patch->negative = cur_patch->negative ? FALSE : TRUE; cur_patch = next_patch; cur_patch->begin = instruction_ptr; } ; conditional: T_ENDIF { if (cur_patch == NULL) { stop(".endif outsize of .if", EX_DATAERR); /* NOTREACHED */ } cur_patch->end = instruction_ptr; cur_patch = NULL; } ; option_list: '(' option_symbol_list ')' | '!' option_list { cur_patch->negative = cur_patch->negative ? FALSE : TRUE; } ; option_symbol_list: T_SYMBOL { add_conditional($1); } | option_list '|' T_SYMBOL { add_conditional($3); } ; f1_opcode: T_AND { $$ = AIC_OP_AND; } | T_XOR { $$ = AIC_OP_XOR; } | T_ADD { $$ = AIC_OP_ADD; } | T_ADC { $$ = AIC_OP_ADC; } ; code: f1_opcode destination ',' immediate_or_a opt_source ret ';' { format_1_instr($1, &$2, &$4, &$5, $6); } ; code: T_OR reg_symbol ',' immediate_or_a opt_source ret ';' { format_1_instr(AIC_OP_OR, &$2, &$4, &$5, $6); } ; code: T_INC destination opt_source ret ';' { expression_t immed; make_expression(&immed, 1); format_1_instr(AIC_OP_ADD, &$2, &immed, &$3, $4); } ; code: T_DEC destination opt_source ret ';' { expression_t immed; make_expression(&immed, -1); format_1_instr(AIC_OP_ADD, &$2, &immed, &$3, $4); } ; code: T_CLC ret ';' { expression_t immed; make_expression(&immed, -1); format_1_instr(AIC_OP_ADD, &none, &immed, &allzeros, $2); } | T_CLC T_MVI destination ',' immediate_or_a ret ';' { format_1_instr(AIC_OP_ADD, &$3, &$5, &allzeros, $6); } ; code: T_STC ret ';' { expression_t immed; make_expression(&immed, 1); format_1_instr(AIC_OP_ADD, &none, &immed, &allones, $2); } | T_STC destination ret ';' { expression_t immed; make_expression(&immed, 1); format_1_instr(AIC_OP_ADD, &$2, &immed, &allones, $3); } ; code: T_MOV destination ',' source ret ';' { expression_t immed; make_expression(&immed, 0xff); format_1_instr(AIC_OP_AND, &$2, &immed, &$4, $5); } ; code: T_MVI destination ',' immediate_or_a ret ';' { format_1_instr(AIC_OP_OR, &$2, &$4, &allzeros, $5); } ; code: T_CLR destination ret ';' { expression_t immed; make_expression(&immed, 0xff); format_1_instr(AIC_OP_AND, &$2, &immed, &allzeros, $3); } ; code: T_NOP ';' { expression_t immed; make_expression(&immed, 0xff); format_1_instr(AIC_OP_AND, &none, &immed, &allzeros, FALSE); } ; code: T_RET ';' { expression_t immed; make_expression(&immed, 0xff); format_1_instr(AIC_OP_AND, &none, &immed, &allzeros, TRUE); } ; /* * This grammer differs from the one in the aic7xxx * reference manual since the grammer listed there is * ambiguous and causes a shift/reduce conflict. * It also seems more logical as the "immediate" * argument is listed as the second arg like the * other formats. */ f2_opcode: T_SHL { $$ = AIC_OP_SHL; } | T_SHR { $$ = AIC_OP_SHR; } | T_ROL { $$ = AIC_OP_ROL; } | T_ROR { $$ = AIC_OP_ROR; } ; code: f2_opcode destination ',' expression opt_source ret ';' { format_2_instr($1, &$2, &$4, &$5, $6); } ; jmp_jc_jnc_call: T_JMP { $$ = AIC_OP_JMP; } | T_JC { $$ = AIC_OP_JC; } | T_JNC { $$ = AIC_OP_JNC; } | T_CALL { $$ = AIC_OP_CALL; } ; jz_jnz: T_JZ { $$ = AIC_OP_JZ; } | T_JNZ { $$ = AIC_OP_JNZ; } ; je_jne: T_JE { $$ = AIC_OP_JE; } | T_JNE { $$ = AIC_OP_JNE; } ; code: jmp_jc_jnc_call address ';' { expression_t immed; make_expression(&immed, 0); format_3_instr($1, &sindex, &immed, &$2); } ; code: T_OR reg_symbol ',' immediate jmp_jc_jnc_call address ';' { format_3_instr($5, &$2, &$4, &$6); } ; code: T_TEST source ',' immediate_or_a jz_jnz address ';' { format_3_instr($5, &$2, &$4, &$6); } ; code: T_CMP source ',' immediate_or_a je_jne address ';' { format_3_instr($5, &$2, &$4, &$6); } ; code: T_MOV source jmp_jc_jnc_call address ';' { expression_t immed; make_expression(&immed, 0); format_3_instr($3, &$2, &immed, &$4); } ; code: T_MVI immediate jmp_jc_jnc_call address ';' { format_3_instr($3, &allzeros, &$2, &$4); } ; %% static void process_bitmask(mask_type, sym, mask) int mask_type; symbol_t *sym; int mask; { /* * Add the current register to its * symbol list, if it already exists, * warn if we are setting it to a * different value, or in the bit to * the "allowed bits" of this register. */ if (sym->type == UNINITIALIZED) { sym->type = mask_type; initialize_symbol(sym); if (mask_type == BIT) { if (mask == 0) { stop("Bitmask with no bits set", EX_DATAERR); /* NOTREACHED */ } if ((mask & ~(0x01 << (ffs(mask) - 1))) != 0) { stop("Bitmask with more than one bit set", EX_DATAERR); /* NOTREACHED */ } } sym->info.minfo->mask = mask; } else if (sym->type != mask_type) { stop("Bit definition mirrors a definition of the same " " name, but a different type", EX_DATAERR); /* NOTREACHED */ } else if (mask != sym->info.minfo->mask) { stop("Bitmask redefined with a conflicting value", EX_DATAERR); /* NOTREACHED */ } /* Fail if this symbol is already listed */ if (symlist_search(&(sym->info.minfo->symrefs), cur_symbol->name) != NULL) { stop("Bitmask defined multiple times for register", EX_DATAERR); /* NOTREACHED */ } symlist_add(&(sym->info.minfo->symrefs), cur_symbol, SYMLIST_INSERT_HEAD); cur_symbol->info.rinfo->valid_bitmask |= mask; cur_symbol->info.rinfo->typecheck_masks = TRUE; } static void initialize_symbol(symbol) symbol_t *symbol; { switch (symbol->type) { case UNINITIALIZED: stop("Call to initialize_symbol with type field unset", EX_SOFTWARE); /* NOTREACHED */ break; case REGISTER: case SRAMLOC: case SCBLOC: symbol->info.rinfo = (struct reg_info *)malloc(sizeof(struct reg_info)); if (symbol->info.rinfo == NULL) { stop("Can't create register info", EX_SOFTWARE); /* NOTREACHED */ } memset(symbol->info.rinfo, 0, sizeof(struct reg_info)); break; case ALIAS: symbol->info.ainfo = (struct alias_info *)malloc(sizeof(struct alias_info)); if (symbol->info.ainfo == NULL) { stop("Can't create alias info", EX_SOFTWARE); /* NOTREACHED */ } memset(symbol->info.ainfo, 0, sizeof(struct alias_info)); break; case MASK: case BIT: symbol->info.minfo = (struct mask_info *)malloc(sizeof(struct mask_info)); if (symbol->info.minfo == NULL) { stop("Can't create bitmask info", EX_SOFTWARE); /* NOTREACHED */ } memset(symbol->info.minfo, 0, sizeof(struct mask_info)); SLIST_INIT(&(symbol->info.minfo->symrefs)); break; case CONST: symbol->info.cinfo = (struct const_info *)malloc(sizeof(struct const_info)); if (symbol->info.cinfo == NULL) { stop("Can't create alias info", EX_SOFTWARE); /* NOTREACHED */ } memset(symbol->info.cinfo, 0, sizeof(struct const_info)); break; case LABEL: symbol->info.linfo = (struct label_info *)malloc(sizeof(struct label_info)); if (symbol->info.linfo == NULL) { stop("Can't create label info", EX_SOFTWARE); /* NOTREACHED */ } memset(symbol->info.linfo, 0, sizeof(struct label_info)); break; case CONDITIONAL: symbol->info.condinfo = (struct cond_info *)malloc(sizeof(struct cond_info)); if (symbol->info.condinfo == NULL) { stop("Can't create conditional info", EX_SOFTWARE); /* NOTREACHED */ } memset(symbol->info.condinfo, 0, sizeof(struct cond_info)); break; default: stop("Call to initialize_symbol with invalid symbol type", EX_SOFTWARE); /* NOTREACHED */ break; } } static void process_register(p_symbol) symbol_t **p_symbol; { char buf[255]; symbol_t *symbol = *p_symbol; if (symbol->type == UNINITIALIZED) { snprintf(buf, sizeof(buf), "Undefined register %s", symbol->name); stop(buf, EX_DATAERR); /* NOTREACHED */ } else if (symbol->type == ALIAS) { *p_symbol = symbol->info.ainfo->parent; } else if ((symbol->type != REGISTER) && (symbol->type != SCBLOC) && (symbol->type != SRAMLOC)) { snprintf(buf, sizeof(buf), "Specified symbol %s is not a register", symbol->name); stop(buf, EX_DATAERR); } } static void format_1_instr(opcode, dest, immed, src, ret) int opcode; symbol_ref_t *dest; expression_t *immed; symbol_ref_t *src; int ret; { struct instruction *instr; struct ins_format1 *f1_instr; if (src->symbol == NULL) src = dest; /* Test register permissions */ test_writable_symbol(dest->symbol); test_readable_symbol(src->symbol); /* Ensure that immediate makes sense for this destination */ type_check(dest->symbol, immed, opcode); /* Allocate sequencer space for the instruction and fill it out */ instr = seq_alloc(); f1_instr = &instr->format.format1; f1_instr->opcode_ret = (opcode << 1) | (ret ? RETURN_BIT : 0); f1_instr->destination = dest->symbol->info.rinfo->address + dest->offset; f1_instr->source = src->symbol->info.rinfo->address + src->offset; f1_instr->immediate = immed->value; symlist_free(&immed->referenced_syms); instruction_ptr++; } static void format_2_instr(opcode, dest, places, src, ret) int opcode; symbol_ref_t *dest; expression_t *places; symbol_ref_t *src; int ret; { struct instruction *instr; struct ins_format2 *f2_instr; u_int8_t shift_control; if (src->symbol == NULL) src = dest; /* Test register permissions */ test_writable_symbol(dest->symbol); test_readable_symbol(src->symbol); /* Allocate sequencer space for the instruction and fill it out */ instr = seq_alloc(); f2_instr = &instr->format.format2; f2_instr->opcode_ret = (AIC_OP_ROL << 1) | (ret ? RETURN_BIT : 0); f2_instr->destination = dest->symbol->info.rinfo->address + dest->offset; f2_instr->source = src->symbol->info.rinfo->address + src->offset; if (places->value > 8 || places->value <= 0) { stop("illegal shift value", EX_DATAERR); /* NOTREACHED */ } switch (opcode) { case AIC_OP_SHL: if (places->value == 8) shift_control = 0xf0; else shift_control = (places->value << 4) | places->value; break; case AIC_OP_SHR: if (places->value == 8) { shift_control = 0xf8; } else { shift_control = (places->value << 4) | (8 - places->value) | 0x08; } break; case AIC_OP_ROL: shift_control = places->value & 0x7; break; case AIC_OP_ROR: shift_control = (8 - places->value) | 0x08; break; default: shift_control = 0; /* Quiet Compiler */ stop("Invalid shift operation specified", EX_SOFTWARE); /* NOTREACHED */ break; }; f2_instr->shift_control = shift_control; symlist_free(&places->referenced_syms); instruction_ptr++; } static void format_3_instr(opcode, src, immed, address) int opcode; symbol_ref_t *src; expression_t *immed; symbol_ref_t *address; { struct instruction *instr; struct ins_format3 *f3_instr; int addr; /* Test register permissions */ test_readable_symbol(src->symbol); /* Ensure that immediate makes sense for this source */ type_check(src->symbol, immed, opcode); /* Allocate sequencer space for the instruction and fill it out */ instr = seq_alloc(); f3_instr = &instr->format.format3; if (address->symbol == NULL) { /* 'dot' referrence. Use the current instruction pointer */ addr = instruction_ptr + address->offset; } else if (address->symbol->type == UNINITIALIZED) { /* forward reference */ addr = address->offset; instr->patch_label = address->symbol; } else addr = address->symbol->info.linfo->address + address->offset; f3_instr->opcode_addr = (opcode << 1) | ((addr >> 8) & 0x01); f3_instr->address = addr & 0xff; f3_instr->source = src->symbol->info.rinfo->address + src->offset; f3_instr->immediate = immed->value; symlist_free(&immed->referenced_syms); instruction_ptr++; } static void test_readable_symbol(symbol) symbol_t *symbol; { if (symbol->info.rinfo->mode == WO) { stop("Write Only register specified as source", EX_DATAERR); /* NOTREACHED */ } } static void test_writable_symbol(symbol) symbol_t *symbol; { if (symbol->info.rinfo->mode == RO) { stop("Read Only register specified as destination", EX_DATAERR); /* NOTREACHED */ } } static void type_check(symbol, expression, opcode) symbol_t *symbol; expression_t *expression; int opcode; { symbol_node_t *node; int and_op; char buf[255]; and_op = FALSE; if (opcode == AIC_OP_AND || opcode == AIC_OP_JNZ || AIC_OP_JZ) and_op = TRUE; /* * Make sure that we aren't attempting to write something * that hasn't been defined. If this is an and operation, * this is a mask, so "undefined" bits are okay. */ if (and_op == FALSE && (expression->value & ~symbol->info.rinfo->valid_bitmask) != 0) { snprintf(buf, sizeof(buf), "Invalid bit(s) 0x%x in immediate written to %s", expression->value & ~symbol->info.rinfo->valid_bitmask, symbol->name); stop(buf, EX_DATAERR); /* NOTREACHED */ } /* * Now make sure that all of the symbols referenced by the * expression are defined for this register. */ if(symbol->info.rinfo->typecheck_masks != FALSE) { for(node = expression->referenced_syms.slh_first; node != NULL; node = node->links.sle_next) { if ((node->symbol->type == MASK || node->symbol->type == BIT) && symlist_search(&node->symbol->info.minfo->symrefs, symbol->name) == NULL) { snprintf(buf, sizeof(buf), "Invalid bit or mask %s " "for register %s", node->symbol->name, symbol->name); stop(buf, EX_DATAERR); /* NOTREACHED */ } } } } static void make_expression(immed, value) expression_t *immed; int value; { SLIST_INIT(&immed->referenced_syms); immed->value = value & 0xff; } static void add_conditional(symbol) symbol_t *symbol; { static int numoptions = 1; if (symbol->type == UNINITIALIZED) { symbol->type = CONDITIONAL; initialize_symbol(symbol); symbol->info.condinfo->value = 0x01 << numoptions++; symlist_add(&patch_options, symbol, SYMLIST_INSERT_HEAD); } else if (symbol->type != CONDITIONAL) { stop("Conditional symbol mirrors other symbol", EX_DATAERR); /* NOTREACHED */ } cur_patch->options |= symbol->info.condinfo->value; } void yyerror(string) const char *string; { stop(string, EX_DATAERR); }