/*- * Copyright (c) 2000 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999, Intel Corp. All rights * reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * *****************************************************************************/ #include "opt_acpi.h" #include #include #include #include #include #include #include "acpi.h" #include #include struct acpi_ec_softc { device_t ec_dev; ACPI_HANDLE ec_handle; ACPI_HANDLE ec_semaphore; UINT32 ec_gpebit; int ec_data_rid; struct resource *ec_data_res; bus_space_tag_t ec_data_tag; bus_space_handle_t ec_data_handle; int ec_csr_rid; struct resource *ec_csr_res; bus_space_tag_t ec_csr_tag; bus_space_handle_t ec_csr_handle; int ec_locked; }; #define EC_LOCK_TIMEOUT 1000 /* 1ms */ static __inline ACPI_STATUS EcLock(struct acpi_ec_softc *sc) { ACPI_STATUS status; status = AcpiOsWaitSemaphore((sc)->ec_semaphore, 1, EC_LOCK_TIMEOUT); (sc)->ec_locked = 1; return(status); } static __inline void EcUnlock(struct acpi_ec_softc *sc) { (sc)->ec_locked = 0; AcpiOsSignalSemaphore((sc)->ec_semaphore, 1); } static __inline int EcIsLocked(struct acpi_ec_softc *sc) { return((sc)->ec_locked != 0); } typedef struct { EC_COMMAND Command; UINT8 Address; UINT8 Data; } EC_REQUEST; static struct acpi_ec_softc acpi_ec_default; /* for the default EC handler */ static void EcGpeHandler(void *Context); static ACPI_STATUS EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function, void *Context, void **return_Context); static ACPI_STATUS EcSpaceHandler(UINT32 Function, UINT32 Address, UINT32 width, UINT32 *Value, void *Context, void *RegionContext); static ACPI_STATUS EcDefaultSpaceHandler(UINT32 Function, UINT32 Address, UINT32 width, UINT32 *Value, void *Context, void *RegionContext); static ACPI_STATUS EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event); static ACPI_STATUS EcQuery(struct acpi_ec_softc *sc, UINT8 *Data); static ACPI_STATUS EcTransaction(struct acpi_ec_softc *sc, EC_REQUEST *EcRequest); static ACPI_STATUS EcRead(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data); static ACPI_STATUS EcWrite(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data); static void acpi_ec_identify(driver_t driver, device_t bus); static int acpi_ec_probe(device_t dev); static int acpi_ec_attach(device_t dev); static device_method_t acpi_ec_methods[] = { /* Device interface */ DEVMETHOD(device_identify, acpi_ec_identify), DEVMETHOD(device_probe, acpi_ec_probe), DEVMETHOD(device_attach, acpi_ec_attach), {0, 0} }; static driver_t acpi_ec_driver = { "acpi_ec", acpi_ec_methods, sizeof(struct acpi_ec_softc), }; devclass_t acpi_ec_devclass; DRIVER_MODULE(acpi_ec, acpi, acpi_ec_driver, acpi_ec_devclass, 0, 0); /* * Look for an ECDT table and if we find one, set up a default EC * space handler to catch possible attempts to access EC space before * we have a real driver instance in place. * We're not really an identify routine, but because we get called * before most other things, this works out OK. */ static void acpi_ec_identify(driver_t driver, device_t bus) { ACPI_STATUS Status; /* XXX implement - need an ACPI 2.0 system to test this */ /* * XXX install a do-nothing handler at the top of the namespace to catch * bogus accesses being made due to apparent interpreter bugs. */ acpi_ec_default.ec_dev = bus; if ((Status = AcpiInstallAddressSpaceHandler(ACPI_ROOT_OBJECT, ADDRESS_SPACE_EC, &EcDefaultSpaceHandler, &EcSpaceSetup, &acpi_ec_default)) != AE_OK) { device_printf(acpi_ec_default.ec_dev, "can't install default EC address space handler - %s\n", acpi_strerror(Status)); } } /* * We could setup resources in the probe routine in order to have them printed * when the device is attached. */ static int acpi_ec_probe(device_t dev) { if ((acpi_get_type(dev) == ACPI_TYPE_DEVICE) && acpi_MatchHid(dev, "PNP0C09")) { /* * Set device description */ device_set_desc(dev, "embedded controller"); return(0); } return(ENXIO); } static int acpi_ec_attach(device_t dev) { struct acpi_ec_softc *sc; ACPI_BUFFER *bufp; UINT32 *param; ACPI_STATUS Status; struct acpi_object_list *args; /* * Fetch/initialise softc */ sc = device_get_softc(dev); sc->ec_dev = dev; sc->ec_handle = acpi_get_handle(dev); /* * Evaluate resources */ acpi_parse_resources(sc->ec_dev, sc->ec_handle, &acpi_res_parse_set); /* * Attach bus resources */ sc->ec_data_rid = 0; if ((sc->ec_data_res = bus_alloc_resource(sc->ec_dev, SYS_RES_IOPORT, &sc->ec_data_rid, 0, ~0, 1, RF_ACTIVE)) == NULL) { device_printf(dev, "can't allocate data port\n"); return(ENXIO); } sc->ec_data_tag = rman_get_bustag(sc->ec_data_res); sc->ec_data_handle = rman_get_bushandle(sc->ec_data_res); sc->ec_csr_rid = 1; if ((sc->ec_csr_res = bus_alloc_resource(sc->ec_dev, SYS_RES_IOPORT, &sc->ec_csr_rid, 0, ~0, 1, RF_ACTIVE)) == NULL) { device_printf(dev, "can't allocate command/status port\n"); return(ENXIO); } sc->ec_csr_tag = rman_get_bustag(sc->ec_csr_res); sc->ec_csr_handle = rman_get_bushandle(sc->ec_csr_res); /* * Create serialisation semaphore */ if ((Status = AcpiOsCreateSemaphore(1, 1, &sc->ec_semaphore)) != AE_OK) { device_printf(dev, "can't create semaphore - %s\n", acpi_strerror(Status)); return(ENXIO); } /* * Install GPE handler * * Evaluate the _GPE method to find the GPE bit used by the EC to signal * status (SCI). */ if ((bufp = acpi_AllocBuffer(16)) == NULL) return(ENOMEM); if ((Status = AcpiEvaluateObject(sc->ec_handle, "_GPE", NULL, bufp)) != AE_OK) { device_printf(dev, "can't evaluate _GPE method - %s\n", acpi_strerror(Status)); return(ENXIO); } param = (UINT32 *)bufp->Pointer; if (param[0] != ACPI_TYPE_NUMBER) { device_printf(dev, "_GPE method returned bad result\n"); return(ENXIO); } sc->ec_gpebit = param[1]; AcpiOsFree(bufp); /* * Install a handler for this EC's GPE bit. Note that EC SCIs are * treated as both edge- and level-triggered interrupts; in other words * we clear the status bit immediately after getting an EC-SCI, then * again after we're done processing the event. This guarantees that * events we cause while performing a transaction (e.g. IBE/OBF) get * cleared before re-enabling the GPE. */ if ((Status = AcpiInstallGpeHandler(sc->ec_gpebit, ACPI_EVENT_LEVEL_TRIGGERED | ACPI_EVENT_EDGE_TRIGGERED, EcGpeHandler, sc)) != AE_OK) { device_printf(dev, "can't install GPE handler - %s\n", acpi_strerror(Status)); return(ENXIO); } /* * Install address space handler */ if ((Status = AcpiInstallAddressSpaceHandler(sc->ec_handle, ADDRESS_SPACE_EC, &EcSpaceHandler, &EcSpaceSetup, sc)) != AE_OK) { device_printf(dev, "can't install address space handler - %s\n", acpi_strerror(Status)); return(ENXIO); } /* * Evaluate _REG to indicate that the region is now available. */ if ((args = acpi_AllocObjectList(2)) == NULL) return(ENOMEM); args->object[0].Type = ACPI_TYPE_NUMBER; args->object[0].Number.Value = ADDRESS_SPACE_EC; args->object[1].Type = ACPI_TYPE_NUMBER; args->object[1].Number.Value = 1; Status = AcpiEvaluateObject(sc->ec_handle, "_REG", (ACPI_OBJECT_LIST *)args, NULL); AcpiOsFree(args); /* * If evaluation failed for some reason other than that the method didn't * exist, that's bad and we should not attach. */ if ((Status != AE_OK) && (Status != AE_NOT_FOUND)) { device_printf(dev, "can't evaluate _REG method - %s\n", acpi_strerror(Status)); return(ENXIO); } return(0); } static void EcGpeHandler(void *Context) { struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context; UINT8 Data; ACPI_STATUS Status; char qxx[5]; for (;;) { /* * Check EC_SCI. * * Bail out if the EC_SCI bit of the status register is not set. * Note that this function should only be called when * this bit is set (polling is used to detect IBE/OBF events). * * It is safe to do this without locking the controller, as it's * OK to call EcQuery when there's no data ready; in the worst * case we should just find nothing waiting for us and bail. */ if (!(EC_GET_CSR(sc) & EC_EVENT_SCI)) break; /* * Find out why the EC is signalling us */ Status = EcQuery(sc, &Data); /* * If we failed to get anything from the EC, give up */ if (Status != AE_OK) { device_printf(sc->ec_dev, "GPE query failed - %s\n", acpi_strerror(Status)); break; } /* * Evaluate _Qxx to respond to the controller. */ sprintf(qxx, "_Q%02x", Data); strupr(qxx); if ((Status - AcpiEvaluateObject(sc->ec_handle, qxx, NULL, NULL)) != AE_OK) { device_printf(sc->ec_dev, "evaluation of GPE query method %s failed - %s\n", qxx, acpi_strerror(Status)); } } } static ACPI_STATUS EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function, void *Context, void **RegionContext) { /* * Just pass the context through, there's nothing to do here. */ *RegionContext = Context; return(AE_OK); } static ACPI_STATUS EcSpaceHandler(UINT32 Function, UINT32 Address, UINT32 width, UINT32 *Value, void *Context, void *RegionContext) { struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context; ACPI_STATUS Status = AE_OK; EC_REQUEST EcRequest; if ((Address > 0xFF) || (width != 8) || (Value == NULL) || (Context == NULL)) return(AE_BAD_PARAMETER); switch (Function) { case ADDRESS_SPACE_READ: EcRequest.Command = EC_COMMAND_READ; EcRequest.Address = Address; EcRequest.Data = 0; break; case ADDRESS_SPACE_WRITE: EcRequest.Command = EC_COMMAND_WRITE; EcRequest.Address = Address; EcRequest.Data = (UINT8)(*Value); break; default: device_printf(sc->ec_dev, "invalid Address Space function %d\n", Function); return(AE_BAD_PARAMETER); } /* * Perform the transaction. */ if ((Status = EcTransaction(sc, &EcRequest)) == AE_OK) (*Value) = (UINT32)EcRequest.Data; return(Status); } static ACPI_STATUS EcDefaultSpaceHandler(UINT32 Function, UINT32 Address, UINT32 width, UINT32 *Value, void *Context, void *RegionContext) { if ((Address > 0xFF) || (width != 8) || (Value == NULL) || (Context == NULL)) return(AE_BAD_PARAMETER); switch (Function) { case ADDRESS_SPACE_READ: printf("ACPI: Illegal EC read from 0x%x\n", Address); *Value = 0; break; case ADDRESS_SPACE_WRITE: printf("ACPI: Illegal EC write 0x%x to 0x%x\n", *Value, Address); break; default: printf("ACPI: Illegal EC unknown operation"); break; } /* let things keep going */ return(AE_OK); } static ACPI_STATUS EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event) { EC_STATUS EcStatus; UINT32 i = 0; if (!EcIsLocked(sc)) device_printf(sc->ec_dev, "EcWaitEvent called without EC lock!\n"); /* * Stall 1us: * ---------- * Stall for 1 microsecond before reading the status register * for the first time. This allows the EC to set the IBF/OBF * bit to its proper state. * * XXX it is not clear why we read the CSR twice. */ AcpiOsSleepUsec(1); EcStatus = EC_GET_CSR(sc); /* * Wait For Event: * --------------- * Poll the EC status register to detect completion of the last * command. Wait up to 10ms (in 100us chunks) for this to occur. */ for (i = 0; i < 100; i++) { EcStatus = EC_GET_CSR(sc); if ((Event == EC_EVENT_OUTPUT_BUFFER_FULL) && (EcStatus & EC_FLAG_OUTPUT_BUFFER)) return(AE_OK); if ((Event == EC_EVENT_INPUT_BUFFER_EMPTY) && !(EcStatus & EC_FLAG_INPUT_BUFFER)) return(AE_OK); AcpiOsSleepUsec(100); } return(AE_ERROR); } static ACPI_STATUS EcQuery(struct acpi_ec_softc *sc, UINT8 *Data) { ACPI_STATUS Status; if ((Status = EcLock(sc)) != AE_OK) return(Status); EC_SET_CSR(sc, EC_COMMAND_QUERY); Status = EcWaitEvent(sc, EC_EVENT_OUTPUT_BUFFER_FULL); if (Status == AE_OK) *Data = EC_GET_DATA(sc); EcUnlock(sc); if (Status != AE_OK) device_printf(sc->ec_dev, "timeout waiting for EC to respond to EC_COMMAND_QUERY\n"); return(Status); } static ACPI_STATUS EcTransaction(struct acpi_ec_softc *sc, EC_REQUEST *EcRequest) { ACPI_STATUS Status; /* * Lock the EC */ if ((Status = EcLock(sc)) != AE_OK) return(Status); /* * Disable EC GPE: * --------------- * Disable EC interrupts (GPEs) from occuring during this transaction. * This is done here as EcTransaction() is also called by the EC GPE * handler -- where disabling/re-enabling the EC GPE is automatically * handled by the ACPI Core Subsystem. */ if (AcpiDisableEvent(sc->ec_gpebit, ACPI_EVENT_GPE) != AE_OK) device_printf(sc->ec_dev, "EcRequest: Unable to disable the EC GPE.\n"); /* * Perform the transaction. */ switch (EcRequest->Command) { case EC_COMMAND_READ: Status = EcRead(sc, EcRequest->Address, &(EcRequest->Data)); break; case EC_COMMAND_WRITE: Status = EcWrite(sc, EcRequest->Address, &(EcRequest->Data)); break; default: Status = AE_SUPPORT; break; } /* * Clear & Re-Enable the EC GPE: * ----------------------------- * 'Consume' any EC GPE events that we generated while performing * the transaction (e.g. IBF/OBF). Clearing the GPE here shouldn't * have an adverse affect on outstanding EC-SCI's, as the source * (EC-SCI) will still be high and thus should trigger the GPE * immediately after we re-enabling it. */ if (AcpiClearEvent(sc->ec_gpebit, ACPI_EVENT_GPE) != AE_OK) device_printf(sc->ec_dev, "EcRequest: Unable to clear the EC GPE.\n"); if (AcpiEnableEvent(sc->ec_gpebit, ACPI_EVENT_GPE) != AE_OK) device_printf(sc->ec_dev, "EcRequest: Unable to re-enable the EC GPE.\n"); /* * Unlock the EC */ EcUnlock(sc); return(Status); } static ACPI_STATUS EcRead(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data) { ACPI_STATUS Status; if (!EcIsLocked(sc)) device_printf(sc->ec_dev, "EcRead called without EC lock!\n"); /*EcBurstEnable(EmbeddedController);*/ EC_SET_CSR(sc, EC_COMMAND_READ); if ((Status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY)) != AE_OK) { device_printf(sc->ec_dev, "EcRead: Failed waiting for EC to process read command.\n"); return(Status); } EC_SET_DATA(sc, Address); if ((Status = EcWaitEvent(sc, EC_EVENT_OUTPUT_BUFFER_FULL)) != AE_OK) { device_printf(sc->ec_dev, "EcRead: Failed waiting for EC to send data.\n"); return(Status); } (*Data) = EC_GET_DATA(sc); /*EcBurstDisable(EmbeddedController);*/ return(AE_OK); } static ACPI_STATUS EcWrite(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data) { ACPI_STATUS Status; if (!EcIsLocked(sc)) device_printf(sc->ec_dev, "EcWrite called without EC lock!\n"); /*EcBurstEnable(EmbeddedController);*/ EC_SET_CSR(sc, EC_COMMAND_WRITE); if ((Status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY)) != AE_OK) { device_printf(sc->ec_dev, "EcWrite: Failed waiting for EC to process write command.\n"); return(Status); } EC_SET_DATA(sc, Address); if ((Status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY)) != AE_OK) { device_printf(sc->ec_dev, "EcRead: Failed waiting for EC to process address.\n"); return(Status); } EC_SET_DATA(sc, *Data); if ((Status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY)) != AE_OK) { device_printf(sc->ec_dev, "EcWrite: Failed waiting for EC to process data.\n"); return(Status); } /*EcBurstDisable(EmbeddedController);*/ return(AE_OK); }