/*- * Copyright (c) 2009 Michael Gmelin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Driver for extra ACPI-controlled features found on HP laptops * that use a WMI enabled BIOS (e.g. HP Compaq 8510p and 6510p). * Allows to control and read status of integrated hardware and read * BIOS settings through CMI. * Inspired by the hp-wmi driver, which implements a subset of these * features (hotkeys) on Linux. * * HP CMI whitepaper: * http://h20331.www2.hp.com/Hpsub/downloads/cmi_whitepaper.pdf * wmi-hp for Linux: * http://www.kernel.org * WMI and ACPI: * http://www.microsoft.com/whdc/system/pnppwr/wmi/wmi-acpi.mspx */ #include "opt_acpi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "acpi_wmi_if.h" #define _COMPONENT ACPI_OEM ACPI_MODULE_NAME("HP") #define ACPI_HP_WMI_EVENT_GUID "95F24279-4D7B-4334-9387-ACCDC67EF61C" #define ACPI_HP_WMI_BIOS_GUID "5FB7F034-2C63-45E9-BE91-3D44E2C707E4" #define ACPI_HP_WMI_CMI_GUID "2D114B49-2DFB-4130-B8FE-4A3C09E75133" #define ACPI_HP_WMI_DISPLAY_COMMAND 0x1 #define ACPI_HP_WMI_HDDTEMP_COMMAND 0x2 #define ACPI_HP_WMI_ALS_COMMAND 0x3 #define ACPI_HP_WMI_DOCK_COMMAND 0x4 #define ACPI_HP_WMI_WIRELESS_COMMAND 0x5 #define ACPI_HP_METHOD_WLAN_ENABLED 1 #define ACPI_HP_METHOD_WLAN_RADIO 2 #define ACPI_HP_METHOD_WLAN_ON_AIR 3 #define ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON 4 #define ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF 5 #define ACPI_HP_METHOD_BLUETOOTH_ENABLED 6 #define ACPI_HP_METHOD_BLUETOOTH_RADIO 7 #define ACPI_HP_METHOD_BLUETOOTH_ON_AIR 8 #define ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON 9 #define ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF 10 #define ACPI_HP_METHOD_WWAN_ENABLED 11 #define ACPI_HP_METHOD_WWAN_RADIO 12 #define ACPI_HP_METHOD_WWAN_ON_AIR 13 #define ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON 14 #define ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF 15 #define ACPI_HP_METHOD_ALS 16 #define ACPI_HP_METHOD_DISPLAY 17 #define ACPI_HP_METHOD_HDDTEMP 18 #define ACPI_HP_METHOD_DOCK 19 #define ACPI_HP_METHOD_CMI_DETAIL 20 #define ACPI_HP_METHOD_VERBOSE 21 #define HP_MASK_WWAN_ON_AIR 0x1000000 #define HP_MASK_BLUETOOTH_ON_AIR 0x10000 #define HP_MASK_WLAN_ON_AIR 0x100 #define HP_MASK_WWAN_RADIO 0x8000000 #define HP_MASK_BLUETOOTH_RADIO 0x80000 #define HP_MASK_WLAN_RADIO 0x800 #define HP_MASK_WWAN_ENABLED 0x2000000 #define HP_MASK_BLUETOOTH_ENABLED 0x20000 #define HP_MASK_WLAN_ENABLED 0x200 #define ACPI_HP_CMI_DETAIL_PATHS 0x01 #define ACPI_HP_CMI_DETAIL_ENUMS 0x02 #define ACPI_HP_CMI_DETAIL_FLAGS 0x04 #define ACPI_HP_CMI_DETAIL_SHOW_MAX_INSTANCE 0x08 struct acpi_hp_inst_seq_pair { UINT32 sequence; /* sequence number as suggested by cmi bios */ UINT8 instance; /* object instance on guid */ }; struct acpi_hp_softc { device_t dev; device_t wmi_dev; int has_notify; /* notification GUID found */ int has_cmi; /* CMI GUID found */ int cmi_detail; /* CMI detail level (set by sysctl) */ int verbose; /* add debug output */ int wlan_enable_if_radio_on; /* set by sysctl */ int wlan_disable_if_radio_off; /* set by sysctl */ int bluetooth_enable_if_radio_on; /* set by sysctl */ int bluetooth_disable_if_radio_off; /* set by sysctl */ int wwan_enable_if_radio_on; /* set by sysctl */ int wwan_disable_if_radio_off; /* set by sysctl */ int was_wlan_on_air; /* last known WLAN on air status */ int was_bluetooth_on_air; /* last known BT on air status */ int was_wwan_on_air; /* last known WWAN on air status */ struct sysctl_ctx_list *sysctl_ctx; struct sysctl_oid *sysctl_tree; struct cdev *hpcmi_dev_t; /* hpcmi device handle */ struct sbuf hpcmi_sbuf; /* /dev/hpcmi output sbuf */ pid_t hpcmi_open_pid; /* pid operating on /dev/hpcmi */ int hpcmi_bufptr; /* current pointer position in /dev/hpcmi output buffer */ int cmi_order_size; /* size of cmi_order list */ struct acpi_hp_inst_seq_pair cmi_order[128]; /* list of CMI instances ordered by BIOS suggested sequence */ }; static struct { char *name; int method; char *description; int access; } acpi_hp_sysctls[] = { { .name = "wlan_enabled", .method = ACPI_HP_METHOD_WLAN_ENABLED, .description = "Enable/Disable WLAN (WiFi)", .access = CTLTYPE_INT | CTLFLAG_RW }, { .name = "wlan_radio", .method = ACPI_HP_METHOD_WLAN_RADIO, .description = "WLAN radio status", .access = CTLTYPE_INT | CTLFLAG_RD }, { .name = "wlan_on_air", .method = ACPI_HP_METHOD_WLAN_ON_AIR, .description = "WLAN radio ready to use (enabled and radio)", .access = CTLTYPE_INT | CTLFLAG_RD }, { .name = "wlan_enable_if_radio_on", .method = ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON, .description = "Enable WLAN if radio is turned on", .access = CTLTYPE_INT | CTLFLAG_RW }, { .name = "wlan_disable_if_radio_off", .method = ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF, .description = "Disable WLAN if radio is turned off", .access = CTLTYPE_INT | CTLFLAG_RW }, { .name = "bt_enabled", .method = ACPI_HP_METHOD_BLUETOOTH_ENABLED, .description = "Enable/Disable Bluetooth", .access = CTLTYPE_INT | CTLFLAG_RW }, { .name = "bt_radio", .method = ACPI_HP_METHOD_BLUETOOTH_RADIO, .description = "Bluetooth radio status", .access = CTLTYPE_INT | CTLFLAG_RD }, { .name = "bt_on_air", .method = ACPI_HP_METHOD_BLUETOOTH_ON_AIR, .description = "Bluetooth radio ready to use" " (enabled and radio)", .access = CTLTYPE_INT | CTLFLAG_RD }, { .name = "bt_enable_if_radio_on", .method = ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON, .description = "Enable bluetooth if radio is turned on", .access = CTLTYPE_INT | CTLFLAG_RW }, { .name = "bt_disable_if_radio_off", .method = ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF, .description = "Disable bluetooth if radio is turned off", .access = CTLTYPE_INT | CTLFLAG_RW }, { .name = "wwan_enabled", .method = ACPI_HP_METHOD_WWAN_ENABLED, .description = "Enable/Disable WWAN (UMTS)", .access = CTLTYPE_INT | CTLFLAG_RW }, { .name = "wwan_radio", .method = ACPI_HP_METHOD_WWAN_RADIO, .description = "WWAN radio status", .access = CTLTYPE_INT | CTLFLAG_RD }, { .name = "wwan_on_air", .method = ACPI_HP_METHOD_WWAN_ON_AIR, .description = "WWAN radio ready to use (enabled and radio)", .access = CTLTYPE_INT | CTLFLAG_RD }, { .name = "wwan_enable_if_radio_on", .method = ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON, .description = "Enable WWAN if radio is turned on", .access = CTLTYPE_INT | CTLFLAG_RW }, { .name = "wwan_disable_if_radio_off", .method = ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF, .description = "Disable WWAN if radio is turned off", .access = CTLTYPE_INT | CTLFLAG_RW }, { .name = "als_enabled", .method = ACPI_HP_METHOD_ALS, .description = "Enable/Disable ALS (Ambient light sensor)", .access = CTLTYPE_INT | CTLFLAG_RW }, { .name = "display", .method = ACPI_HP_METHOD_DISPLAY, .description = "Display status", .access = CTLTYPE_INT | CTLFLAG_RD }, { .name = "hdd_temperature", .method = ACPI_HP_METHOD_HDDTEMP, .description = "HDD temperature", .access = CTLTYPE_INT | CTLFLAG_RD }, { .name = "is_docked", .method = ACPI_HP_METHOD_DOCK, .description = "Docking station status", .access = CTLTYPE_INT | CTLFLAG_RD }, { .name = "cmi_detail", .method = ACPI_HP_METHOD_CMI_DETAIL, .description = "Details shown in CMI output " "(cat /dev/hpcmi)", .access = CTLTYPE_INT | CTLFLAG_RW }, { .name = "verbose", .method = ACPI_HP_METHOD_VERBOSE, .description = "Verbosity level", .access = CTLTYPE_INT | CTLFLAG_RW }, { NULL, 0, NULL, 0 } }; ACPI_SERIAL_DECL(hp, "HP ACPI-WMI Mapping"); static void acpi_hp_identify(driver_t *driver, device_t parent); static int acpi_hp_probe(device_t dev); static int acpi_hp_attach(device_t dev); static int acpi_hp_detach(device_t dev); static void acpi_hp_evaluate_auto_on_off(struct acpi_hp_softc* sc); static int acpi_hp_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_hp_sysctl_set(struct acpi_hp_softc *sc, int method, int arg, int oldarg); static int acpi_hp_sysctl_get(struct acpi_hp_softc *sc, int method); static int acpi_hp_exec_wmi_command(device_t wmi_dev, int command, int is_write, int val); static void acpi_hp_notify(ACPI_HANDLE h, UINT32 notify, void *context); static int acpi_hp_get_cmi_block(device_t wmi_dev, const char* guid, UINT8 instance, char* outbuf, size_t outsize, UINT32* sequence, int detail); static void acpi_hp_hex_decode(char* buffer); static d_open_t acpi_hp_hpcmi_open; static d_close_t acpi_hp_hpcmi_close; static d_read_t acpi_hp_hpcmi_read; /* handler /dev/hpcmi device */ static struct cdevsw hpcmi_cdevsw = { .d_version = D_VERSION, .d_open = acpi_hp_hpcmi_open, .d_close = acpi_hp_hpcmi_close, .d_read = acpi_hp_hpcmi_read, .d_name = "hpcmi", }; static device_method_t acpi_hp_methods[] = { DEVMETHOD(device_identify, acpi_hp_identify), DEVMETHOD(device_probe, acpi_hp_probe), DEVMETHOD(device_attach, acpi_hp_attach), DEVMETHOD(device_detach, acpi_hp_detach), DEVMETHOD_END }; static driver_t acpi_hp_driver = { "acpi_hp", acpi_hp_methods, sizeof(struct acpi_hp_softc), }; static devclass_t acpi_hp_devclass; DRIVER_MODULE(acpi_hp, acpi_wmi, acpi_hp_driver, acpi_hp_devclass, 0, 0); MODULE_DEPEND(acpi_hp, acpi_wmi, 1, 1, 1); MODULE_DEPEND(acpi_hp, acpi, 1, 1, 1); static void acpi_hp_evaluate_auto_on_off(struct acpi_hp_softc *sc) { int wireless; int new_wlan_status; int new_bluetooth_status; int new_wwan_status; wireless = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0); new_wlan_status = -1; new_bluetooth_status = -1; new_wwan_status = -1; if (sc->verbose) device_printf(sc->wmi_dev, "Wireless status is %x\n", wireless); if (sc->wlan_disable_if_radio_off && !(wireless & HP_MASK_WLAN_RADIO) && (wireless & HP_MASK_WLAN_ENABLED)) { acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x100); new_wlan_status = 0; } else if (sc->wlan_enable_if_radio_on && (wireless & HP_MASK_WLAN_RADIO) && !(wireless & HP_MASK_WLAN_ENABLED)) { acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x101); new_wlan_status = 1; } if (sc->bluetooth_disable_if_radio_off && !(wireless & HP_MASK_BLUETOOTH_RADIO) && (wireless & HP_MASK_BLUETOOTH_ENABLED)) { acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x200); new_bluetooth_status = 0; } else if (sc->bluetooth_enable_if_radio_on && (wireless & HP_MASK_BLUETOOTH_RADIO) && !(wireless & HP_MASK_BLUETOOTH_ENABLED)) { acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x202); new_bluetooth_status = 1; } if (sc->wwan_disable_if_radio_off && !(wireless & HP_MASK_WWAN_RADIO) && (wireless & HP_MASK_WWAN_ENABLED)) { acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x400); new_wwan_status = 0; } else if (sc->wwan_enable_if_radio_on && (wireless & HP_MASK_WWAN_RADIO) && !(wireless & HP_MASK_WWAN_ENABLED)) { acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x404); new_wwan_status = 1; } if (new_wlan_status == -1) { new_wlan_status = (wireless & HP_MASK_WLAN_ON_AIR); if ((new_wlan_status?1:0) != sc->was_wlan_on_air) { sc->was_wlan_on_air = sc->was_wlan_on_air?0:1; if (sc->verbose) device_printf(sc->wmi_dev, "WLAN on air changed to %i " "(new_wlan_status is %i)\n", sc->was_wlan_on_air, new_wlan_status); acpi_UserNotify("HP", ACPI_ROOT_OBJECT, 0xc0+sc->was_wlan_on_air); } } if (new_bluetooth_status == -1) { new_bluetooth_status = (wireless & HP_MASK_BLUETOOTH_ON_AIR); if ((new_bluetooth_status?1:0) != sc->was_bluetooth_on_air) { sc->was_bluetooth_on_air = sc->was_bluetooth_on_air? 0:1; if (sc->verbose) device_printf(sc->wmi_dev, "BLUETOOTH on air changed" " to %i (new_bluetooth_status is %i)\n", sc->was_bluetooth_on_air, new_bluetooth_status); acpi_UserNotify("HP", ACPI_ROOT_OBJECT, 0xd0+sc->was_bluetooth_on_air); } } if (new_wwan_status == -1) { new_wwan_status = (wireless & HP_MASK_WWAN_ON_AIR); if ((new_wwan_status?1:0) != sc->was_wwan_on_air) { sc->was_wwan_on_air = sc->was_wwan_on_air?0:1; if (sc->verbose) device_printf(sc->wmi_dev, "WWAN on air changed to %i" " (new_wwan_status is %i)\n", sc->was_wwan_on_air, new_wwan_status); acpi_UserNotify("HP", ACPI_ROOT_OBJECT, 0xe0+sc->was_wwan_on_air); } } } static void acpi_hp_identify(driver_t *driver, device_t parent) { /* Don't do anything if driver is disabled. */ if (acpi_disabled("hp")) return; /* Add only a single device instance. */ if (device_find_child(parent, "acpi_hp", -1) != NULL) return; if (BUS_ADD_CHILD(parent, 0, "acpi_hp", -1) == NULL) device_printf(parent, "add acpi_hp child failed\n"); } static int acpi_hp_probe(device_t dev) { device_set_desc(dev, "HP ACPI-WMI Mapping"); return (0); } static int acpi_hp_attach(device_t dev) { struct acpi_hp_softc *sc; int arg; ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__); sc = device_get_softc(dev); sc->dev = dev; sc->has_notify = 0; sc->has_cmi = 0; sc->bluetooth_enable_if_radio_on = 0; sc->bluetooth_disable_if_radio_off = 0; sc->wlan_enable_if_radio_on = 0; sc->wlan_disable_if_radio_off = 0; sc->wlan_enable_if_radio_on = 0; sc->wlan_disable_if_radio_off = 0; sc->was_wlan_on_air = 0; sc->was_bluetooth_on_air = 0; sc->was_wwan_on_air = 0; sc->cmi_detail = 0; sc->cmi_order_size = -1; sc->verbose = 0; memset(sc->cmi_order, 0, sizeof(sc->cmi_order)); sc->wmi_dev = device_get_parent(dev); if (!ACPI_WMI_PROVIDES_GUID_STRING(sc->wmi_dev, ACPI_HP_WMI_BIOS_GUID)) { device_printf(dev, "WMI device does not provide the HP BIOS GUID\n"); return (EINVAL); } if (ACPI_WMI_PROVIDES_GUID_STRING(sc->wmi_dev, ACPI_HP_WMI_EVENT_GUID)) { device_printf(dev, "HP event GUID detected, installing event handler\n"); if (ACPI_WMI_INSTALL_EVENT_HANDLER(sc->wmi_dev, ACPI_HP_WMI_EVENT_GUID, acpi_hp_notify, dev)) { device_printf(dev, "Could not install notification handler!\n"); } else { sc->has_notify = 1; } } if ((sc->has_cmi = ACPI_WMI_PROVIDES_GUID_STRING(sc->wmi_dev, ACPI_HP_WMI_CMI_GUID) )) { device_printf(dev, "HP CMI GUID detected\n"); } if (sc->has_cmi) { sc->hpcmi_dev_t = make_dev(&hpcmi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, "hpcmi"); sc->hpcmi_dev_t->si_drv1 = sc; sc->hpcmi_open_pid = 0; sc->hpcmi_bufptr = -1; } ACPI_SERIAL_BEGIN(hp); sc->sysctl_ctx = device_get_sysctl_ctx(dev); sc->sysctl_tree = device_get_sysctl_tree(dev); for (int i = 0; acpi_hp_sysctls[i].name != NULL; ++i) { arg = 0; if ((!sc->has_notify && (acpi_hp_sysctls[i].method == ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON || acpi_hp_sysctls[i].method == ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF || acpi_hp_sysctls[i].method == ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON || acpi_hp_sysctls[i].method == ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF || acpi_hp_sysctls[i].method == ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON || acpi_hp_sysctls[i].method == ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF)) || (arg = acpi_hp_sysctl_get(sc, acpi_hp_sysctls[i].method)) < 0) { continue; } if (acpi_hp_sysctls[i].method == ACPI_HP_METHOD_WLAN_ON_AIR) { sc->was_wlan_on_air = arg; } else if (acpi_hp_sysctls[i].method == ACPI_HP_METHOD_BLUETOOTH_ON_AIR) { sc->was_bluetooth_on_air = arg; } else if (acpi_hp_sysctls[i].method == ACPI_HP_METHOD_WWAN_ON_AIR) { sc->was_wwan_on_air = arg; } SYSCTL_ADD_PROC(sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, acpi_hp_sysctls[i].name, acpi_hp_sysctls[i].access, sc, i, acpi_hp_sysctl, "I", acpi_hp_sysctls[i].description); } ACPI_SERIAL_END(hp); return (0); } static int acpi_hp_detach(device_t dev) { int ret; ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__); struct acpi_hp_softc *sc = device_get_softc(dev); if (sc->has_cmi && sc->hpcmi_open_pid != 0) { ret = EBUSY; } else { if (sc->has_notify) { ACPI_WMI_REMOVE_EVENT_HANDLER(dev, ACPI_HP_WMI_EVENT_GUID); } if (sc->hpcmi_bufptr != -1) { sbuf_delete(&sc->hpcmi_sbuf); sc->hpcmi_bufptr = -1; } sc->hpcmi_open_pid = 0; destroy_dev(sc->hpcmi_dev_t); ret = 0; } return (ret); } static int acpi_hp_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_hp_softc *sc; int arg; int oldarg; int error = 0; int function; int method; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = (struct acpi_hp_softc *)oidp->oid_arg1; function = oidp->oid_arg2; method = acpi_hp_sysctls[function].method; ACPI_SERIAL_BEGIN(hp); arg = acpi_hp_sysctl_get(sc, method); oldarg = arg; error = sysctl_handle_int(oidp, &arg, 0, req); if (!error && req->newptr != NULL) { error = acpi_hp_sysctl_set(sc, method, arg, oldarg); } ACPI_SERIAL_END(hp); return (error); } static int acpi_hp_sysctl_get(struct acpi_hp_softc *sc, int method) { int val = 0; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); ACPI_SERIAL_ASSERT(hp); switch (method) { case ACPI_HP_METHOD_WLAN_ENABLED: val = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0); val = ((val & HP_MASK_WLAN_ENABLED) != 0); break; case ACPI_HP_METHOD_WLAN_RADIO: val = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0); val = ((val & HP_MASK_WLAN_RADIO) != 0); break; case ACPI_HP_METHOD_WLAN_ON_AIR: val = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0); val = ((val & HP_MASK_WLAN_ON_AIR) != 0); break; case ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON: val = sc->wlan_enable_if_radio_on; break; case ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF: val = sc->wlan_disable_if_radio_off; break; case ACPI_HP_METHOD_BLUETOOTH_ENABLED: val = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0); val = ((val & HP_MASK_BLUETOOTH_ENABLED) != 0); break; case ACPI_HP_METHOD_BLUETOOTH_RADIO: val = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0); val = ((val & HP_MASK_BLUETOOTH_RADIO) != 0); break; case ACPI_HP_METHOD_BLUETOOTH_ON_AIR: val = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0); val = ((val & HP_MASK_BLUETOOTH_ON_AIR) != 0); break; case ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON: val = sc->bluetooth_enable_if_radio_on; break; case ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF: val = sc->bluetooth_disable_if_radio_off; break; case ACPI_HP_METHOD_WWAN_ENABLED: val = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0); val = ((val & HP_MASK_WWAN_ENABLED) != 0); break; case ACPI_HP_METHOD_WWAN_RADIO: val = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0); val = ((val & HP_MASK_WWAN_RADIO) != 0); break; case ACPI_HP_METHOD_WWAN_ON_AIR: val = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0); val = ((val & HP_MASK_WWAN_ON_AIR) != 0); break; case ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON: val = sc->wwan_enable_if_radio_on; break; case ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF: val = sc->wwan_disable_if_radio_off; break; case ACPI_HP_METHOD_ALS: val = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_ALS_COMMAND, 0, 0); break; case ACPI_HP_METHOD_DISPLAY: val = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_DISPLAY_COMMAND, 0, 0); break; case ACPI_HP_METHOD_HDDTEMP: val = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_HDDTEMP_COMMAND, 0, 0); break; case ACPI_HP_METHOD_DOCK: val = acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_DOCK_COMMAND, 0, 0); break; case ACPI_HP_METHOD_CMI_DETAIL: val = sc->cmi_detail; break; case ACPI_HP_METHOD_VERBOSE: val = sc->verbose; break; } return (val); } static int acpi_hp_sysctl_set(struct acpi_hp_softc *sc, int method, int arg, int oldarg) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); ACPI_SERIAL_ASSERT(hp); if (method != ACPI_HP_METHOD_CMI_DETAIL && method != ACPI_HP_METHOD_VERBOSE) arg = arg?1:0; if (arg != oldarg) { switch (method) { case ACPI_HP_METHOD_WLAN_ENABLED: return (acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 1, arg?0x101:0x100)); case ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON: sc->wlan_enable_if_radio_on = arg; acpi_hp_evaluate_auto_on_off(sc); break; case ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF: sc->wlan_disable_if_radio_off = arg; acpi_hp_evaluate_auto_on_off(sc); break; case ACPI_HP_METHOD_BLUETOOTH_ENABLED: return (acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 1, arg?0x202:0x200)); case ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON: sc->bluetooth_enable_if_radio_on = arg; acpi_hp_evaluate_auto_on_off(sc); break; case ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF: sc->bluetooth_disable_if_radio_off = arg?1:0; acpi_hp_evaluate_auto_on_off(sc); break; case ACPI_HP_METHOD_WWAN_ENABLED: return (acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_WIRELESS_COMMAND, 1, arg?0x404:0x400)); case ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON: sc->wwan_enable_if_radio_on = arg?1:0; acpi_hp_evaluate_auto_on_off(sc); break; case ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF: sc->wwan_disable_if_radio_off = arg?1:0; acpi_hp_evaluate_auto_on_off(sc); break; case ACPI_HP_METHOD_ALS: return (acpi_hp_exec_wmi_command(sc->wmi_dev, ACPI_HP_WMI_ALS_COMMAND, 1, arg?1:0)); case ACPI_HP_METHOD_CMI_DETAIL: sc->cmi_detail = arg; if ((arg & ACPI_HP_CMI_DETAIL_SHOW_MAX_INSTANCE) != (oldarg & ACPI_HP_CMI_DETAIL_SHOW_MAX_INSTANCE)) { sc->cmi_order_size = -1; } break; case ACPI_HP_METHOD_VERBOSE: sc->verbose = arg; break; } } return (0); } static __inline void acpi_hp_free_buffer(ACPI_BUFFER* buf) { if (buf && buf->Pointer) { AcpiOsFree(buf->Pointer); } } static void acpi_hp_notify(ACPI_HANDLE h, UINT32 notify, void *context) { device_t dev = context; ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, notify); struct acpi_hp_softc *sc = device_get_softc(dev); ACPI_BUFFER response = { ACPI_ALLOCATE_BUFFER, NULL }; ACPI_OBJECT *obj; ACPI_WMI_GET_EVENT_DATA(sc->wmi_dev, notify, &response); obj = (ACPI_OBJECT*) response.Pointer; if (obj && obj->Type == ACPI_TYPE_BUFFER && obj->Buffer.Length == 8) { if (*((UINT8 *) obj->Buffer.Pointer) == 0x5) { acpi_hp_evaluate_auto_on_off(sc); } } acpi_hp_free_buffer(&response); } static int acpi_hp_exec_wmi_command(device_t wmi_dev, int command, int is_write, int val) { UINT32 params[5] = { 0x55434553, is_write?2:1, command, is_write?4:0, val}; UINT32* result; ACPI_OBJECT *obj; ACPI_BUFFER in = { sizeof(params), ¶ms }; ACPI_BUFFER out = { ACPI_ALLOCATE_BUFFER, NULL }; int retval; if (ACPI_FAILURE(ACPI_WMI_EVALUATE_CALL(wmi_dev, ACPI_HP_WMI_BIOS_GUID, 0, 0x3, &in, &out))) { acpi_hp_free_buffer(&out); return (-EINVAL); } obj = out.Pointer; if (!obj || obj->Type != ACPI_TYPE_BUFFER) { acpi_hp_free_buffer(&out); return (-EINVAL); } result = (UINT32*) obj->Buffer.Pointer; retval = result[2]; if (result[1] > 0) { retval = result[1]; } acpi_hp_free_buffer(&out); return (retval); } static __inline char* acpi_hp_get_string_from_object(ACPI_OBJECT* obj, char* dst, size_t size) { int length; dst[0] = 0; if (obj->Type == ACPI_TYPE_STRING) { length = obj->String.Length+1; if (length > size) { length = size - 1; } strlcpy(dst, obj->String.Pointer, length); acpi_hp_hex_decode(dst); } return (dst); } /* * Read BIOS Setting block in instance "instance". * The block returned is ACPI_TYPE_PACKAGE which should contain the following * elements: * Index Meaning * 0 Setting Name [string] * 1 Value (comma separated, asterisk marks the current value) [string] * 2 Path within the bios hierarchy [string] * 3 IsReadOnly [int] * 4 DisplayInUI [int] * 5 RequiresPhysicalPresence [int] * 6 Sequence for ordering within the bios settings (absolute) [int] * 7 Length of prerequisites array [int] * 8..8+[7] PrerequisiteN [string] * 9+[7] Current value (in case of enum) [string] / Array length [int] * 10+[7] Enum length [int] / Array values * 11+[7]ff Enum value at index x [string] */ static int acpi_hp_get_cmi_block(device_t wmi_dev, const char* guid, UINT8 instance, char* outbuf, size_t outsize, UINT32* sequence, int detail) { ACPI_OBJECT *obj; ACPI_BUFFER out = { ACPI_ALLOCATE_BUFFER, NULL }; int i; int outlen; int size = 255; int has_enums = 0; int valuebase = 0; char string_buffer[size]; int enumbase; outlen = 0; outbuf[0] = 0; if (ACPI_FAILURE(ACPI_WMI_GET_BLOCK(wmi_dev, guid, instance, &out))) { acpi_hp_free_buffer(&out); return (-EINVAL); } obj = out.Pointer; if (!obj || obj->Type != ACPI_TYPE_PACKAGE) { acpi_hp_free_buffer(&out); return (-EINVAL); } if (obj->Package.Count >= 8 && obj->Package.Elements[7].Type == ACPI_TYPE_INTEGER) { valuebase = 8 + obj->Package.Elements[7].Integer.Value; } /* check if this matches our expectations based on limited knowledge */ if (valuebase > 7 && obj->Package.Count > valuebase + 1 && obj->Package.Elements[0].Type == ACPI_TYPE_STRING && obj->Package.Elements[1].Type == ACPI_TYPE_STRING && obj->Package.Elements[2].Type == ACPI_TYPE_STRING && obj->Package.Elements[3].Type == ACPI_TYPE_INTEGER && obj->Package.Elements[4].Type == ACPI_TYPE_INTEGER && obj->Package.Elements[5].Type == ACPI_TYPE_INTEGER && obj->Package.Elements[6].Type == ACPI_TYPE_INTEGER && obj->Package.Elements[valuebase].Type == ACPI_TYPE_STRING && obj->Package.Elements[valuebase+1].Type == ACPI_TYPE_INTEGER && obj->Package.Count > valuebase + obj->Package.Elements[valuebase+1].Integer.Value ) { enumbase = valuebase + 1; if (detail & ACPI_HP_CMI_DETAIL_PATHS) { strlcat(outbuf, acpi_hp_get_string_from_object( &obj->Package.Elements[2], string_buffer, size), outsize); outlen += 48; while (strlen(outbuf) < outlen) strlcat(outbuf, " ", outsize); } strlcat(outbuf, acpi_hp_get_string_from_object( &obj->Package.Elements[0], string_buffer, size), outsize); outlen += 43; while (strlen(outbuf) < outlen) strlcat(outbuf, " ", outsize); strlcat(outbuf, acpi_hp_get_string_from_object( &obj->Package.Elements[valuebase], string_buffer, size), outsize); outlen += 21; while (strlen(outbuf) < outlen) strlcat(outbuf, " ", outsize); for (i = 0; i < strlen(outbuf); ++i) if (outbuf[i] == '\\') outbuf[i] = '/'; if (detail & ACPI_HP_CMI_DETAIL_ENUMS) { for (i = enumbase + 1; i < enumbase + 1 + obj->Package.Elements[enumbase].Integer.Value; ++i) { acpi_hp_get_string_from_object( &obj->Package.Elements[i], string_buffer, size); if (strlen(string_buffer) > 1 || (strlen(string_buffer) == 1 && string_buffer[0] != ' ')) { if (has_enums) strlcat(outbuf, "/", outsize); else strlcat(outbuf, " (", outsize); strlcat(outbuf, string_buffer, outsize); has_enums = 1; } } } if (has_enums) strlcat(outbuf, ")", outsize); if (detail & ACPI_HP_CMI_DETAIL_FLAGS) { strlcat(outbuf, obj->Package.Elements[3].Integer.Value? " [ReadOnly]":"", outsize); strlcat(outbuf, obj->Package.Elements[4].Integer.Value? "":" [NOUI]", outsize); strlcat(outbuf, obj->Package.Elements[5].Integer.Value? " [RPP]":"", outsize); } *sequence = (UINT32) obj->Package.Elements[6].Integer.Value; } acpi_hp_free_buffer(&out); return (0); } /* * Convert given two digit hex string (hexin) to an UINT8 referenced * by byteout. * Return != 0 if the was a problem (invalid input) */ static __inline int acpi_hp_hex_to_int(const UINT8 *hexin, UINT8 *byteout) { unsigned int hi; unsigned int lo; hi = hexin[0]; lo = hexin[1]; if ('0' <= hi && hi <= '9') hi -= '0'; else if ('A' <= hi && hi <= 'F') hi -= ('A' - 10); else if ('a' <= hi && hi <= 'f') hi -= ('a' - 10); else return (1); if ('0' <= lo && lo <= '9') lo -= '0'; else if ('A' <= lo && lo <= 'F') lo -= ('A' - 10); else if ('a' <= lo && lo <= 'f') lo -= ('a' - 10); else return (1); *byteout = (hi << 4) + lo; return (0); } static void acpi_hp_hex_decode(char* buffer) { int i; int length = strlen(buffer); UINT8 *uin; UINT8 uout; if (((int)length/2)*2 == length || length < 10) return; for (i = 0; i= '0' && buffer[i] <= '9') || (buffer[i] >= 'A' && buffer[i] <= 'F'))) return; } for (i = 0; isi_drv1 == NULL) return (EBADF); sc = dev->si_drv1; ACPI_SERIAL_BEGIN(hp); if (sc->hpcmi_open_pid != 0) { ret = EBUSY; } else { if (sbuf_new(&sc->hpcmi_sbuf, NULL, 4096, SBUF_AUTOEXTEND) == NULL) { ret = ENXIO; } else { sc->hpcmi_open_pid = td->td_proc->p_pid; sc->hpcmi_bufptr = 0; ret = 0; } } ACPI_SERIAL_END(hp); return (ret); } /* * close hpcmi device */ static int acpi_hp_hpcmi_close(struct cdev* dev, int flags, int mode, struct thread *td) { struct acpi_hp_softc *sc; int ret; if (dev == NULL || dev->si_drv1 == NULL) return (EBADF); sc = dev->si_drv1; ACPI_SERIAL_BEGIN(hp); if (sc->hpcmi_open_pid == 0) { ret = EBADF; } else { if (sc->hpcmi_bufptr != -1) { sbuf_delete(&sc->hpcmi_sbuf); sc->hpcmi_bufptr = -1; } sc->hpcmi_open_pid = 0; ret = 0; } ACPI_SERIAL_END(hp); return (ret); } /* * Read from hpcmi bios information */ static int acpi_hp_hpcmi_read(struct cdev *dev, struct uio *buf, int flag) { struct acpi_hp_softc *sc; int pos, i, l, ret; UINT8 instance; UINT8 maxInstance; UINT32 sequence; int linesize = 1025; char line[linesize]; if (dev == NULL || dev->si_drv1 == NULL) return (EBADF); sc = dev->si_drv1; ACPI_SERIAL_BEGIN(hp); if (sc->hpcmi_open_pid != buf->uio_td->td_proc->p_pid || sc->hpcmi_bufptr == -1) { ret = EBADF; } else { if (!sbuf_done(&sc->hpcmi_sbuf)) { if (sc->cmi_order_size < 0) { maxInstance = sc->has_cmi; if (!(sc->cmi_detail & ACPI_HP_CMI_DETAIL_SHOW_MAX_INSTANCE) && maxInstance > 0) { maxInstance--; } sc->cmi_order_size = 0; for (instance = 0; instance < maxInstance; ++instance) { if (acpi_hp_get_cmi_block(sc->wmi_dev, ACPI_HP_WMI_CMI_GUID, instance, line, linesize, &sequence, sc->cmi_detail)) { instance = maxInstance; } else { pos = sc->cmi_order_size; for (i=0; icmi_order_size && i<127; ++i) { if (sc->cmi_order[i].sequence > sequence) { pos = i; break; } } for (i=sc->cmi_order_size; i>pos; --i) { sc->cmi_order[i].sequence = sc->cmi_order[i-1].sequence; sc->cmi_order[i].instance = sc->cmi_order[i-1].instance; } sc->cmi_order[pos].sequence = sequence; sc->cmi_order[pos].instance = instance; sc->cmi_order_size++; } } } for (i=0; icmi_order_size; ++i) { if (!acpi_hp_get_cmi_block(sc->wmi_dev, ACPI_HP_WMI_CMI_GUID, sc->cmi_order[i].instance, line, linesize, &sequence, sc->cmi_detail)) { sbuf_printf(&sc->hpcmi_sbuf, "%s\n", line); } } sbuf_finish(&sc->hpcmi_sbuf); } if (sbuf_len(&sc->hpcmi_sbuf) <= 0) { sbuf_delete(&sc->hpcmi_sbuf); sc->hpcmi_bufptr = -1; sc->hpcmi_open_pid = 0; ret = ENOMEM; } else { l = min(buf->uio_resid, sbuf_len(&sc->hpcmi_sbuf) - sc->hpcmi_bufptr); ret = (l > 0)?uiomove(sbuf_data(&sc->hpcmi_sbuf) + sc->hpcmi_bufptr, l, buf) : 0; sc->hpcmi_bufptr += l; } } ACPI_SERIAL_END(hp); return (ret); }