/***********************license start*************** * Copyright (c) 2003-2012 Cavium Inc. (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Inc. nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * cvmx-sso-defs.h * * Configuration and status register (CSR) type definitions for * Octeon sso. * * This file is auto generated. Do not edit. * *
$Revision$
* */ #ifndef __CVMX_SSO_DEFS_H__ #define __CVMX_SSO_DEFS_H__ #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_ACTIVE_CYCLES CVMX_SSO_ACTIVE_CYCLES_FUNC() static inline uint64_t CVMX_SSO_ACTIVE_CYCLES_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_ACTIVE_CYCLES not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00016700000010E8ull); } #else #define CVMX_SSO_ACTIVE_CYCLES (CVMX_ADD_IO_SEG(0x00016700000010E8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_BIST_STAT CVMX_SSO_BIST_STAT_FUNC() static inline uint64_t CVMX_SSO_BIST_STAT_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_BIST_STAT not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001078ull); } #else #define CVMX_SSO_BIST_STAT (CVMX_ADD_IO_SEG(0x0001670000001078ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_CFG CVMX_SSO_CFG_FUNC() static inline uint64_t CVMX_SSO_CFG_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_CFG not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001088ull); } #else #define CVMX_SSO_CFG (CVMX_ADD_IO_SEG(0x0001670000001088ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_DS_PC CVMX_SSO_DS_PC_FUNC() static inline uint64_t CVMX_SSO_DS_PC_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_DS_PC not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001070ull); } #else #define CVMX_SSO_DS_PC (CVMX_ADD_IO_SEG(0x0001670000001070ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_ERR CVMX_SSO_ERR_FUNC() static inline uint64_t CVMX_SSO_ERR_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_ERR not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001038ull); } #else #define CVMX_SSO_ERR (CVMX_ADD_IO_SEG(0x0001670000001038ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_ERR_ENB CVMX_SSO_ERR_ENB_FUNC() static inline uint64_t CVMX_SSO_ERR_ENB_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_ERR_ENB not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001030ull); } #else #define CVMX_SSO_ERR_ENB (CVMX_ADD_IO_SEG(0x0001670000001030ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_FIDX_ECC_CTL CVMX_SSO_FIDX_ECC_CTL_FUNC() static inline uint64_t CVMX_SSO_FIDX_ECC_CTL_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_FIDX_ECC_CTL not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00016700000010D0ull); } #else #define CVMX_SSO_FIDX_ECC_CTL (CVMX_ADD_IO_SEG(0x00016700000010D0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_FIDX_ECC_ST CVMX_SSO_FIDX_ECC_ST_FUNC() static inline uint64_t CVMX_SSO_FIDX_ECC_ST_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_FIDX_ECC_ST not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00016700000010D8ull); } #else #define CVMX_SSO_FIDX_ECC_ST (CVMX_ADD_IO_SEG(0x00016700000010D8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_FPAGE_CNT CVMX_SSO_FPAGE_CNT_FUNC() static inline uint64_t CVMX_SSO_FPAGE_CNT_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_FPAGE_CNT not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001090ull); } #else #define CVMX_SSO_FPAGE_CNT (CVMX_ADD_IO_SEG(0x0001670000001090ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_GWE_CFG CVMX_SSO_GWE_CFG_FUNC() static inline uint64_t CVMX_SSO_GWE_CFG_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_GWE_CFG not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001098ull); } #else #define CVMX_SSO_GWE_CFG (CVMX_ADD_IO_SEG(0x0001670000001098ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_IDX_ECC_CTL CVMX_SSO_IDX_ECC_CTL_FUNC() static inline uint64_t CVMX_SSO_IDX_ECC_CTL_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_IDX_ECC_CTL not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00016700000010C0ull); } #else #define CVMX_SSO_IDX_ECC_CTL (CVMX_ADD_IO_SEG(0x00016700000010C0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_IDX_ECC_ST CVMX_SSO_IDX_ECC_ST_FUNC() static inline uint64_t CVMX_SSO_IDX_ECC_ST_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_IDX_ECC_ST not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00016700000010C8ull); } #else #define CVMX_SSO_IDX_ECC_ST (CVMX_ADD_IO_SEG(0x00016700000010C8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SSO_IQ_CNTX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7))))) cvmx_warn("CVMX_SSO_IQ_CNTX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000009000ull) + ((offset) & 7) * 8; } #else #define CVMX_SSO_IQ_CNTX(offset) (CVMX_ADD_IO_SEG(0x0001670000009000ull) + ((offset) & 7) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_IQ_COM_CNT CVMX_SSO_IQ_COM_CNT_FUNC() static inline uint64_t CVMX_SSO_IQ_COM_CNT_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_IQ_COM_CNT not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001058ull); } #else #define CVMX_SSO_IQ_COM_CNT (CVMX_ADD_IO_SEG(0x0001670000001058ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_IQ_INT CVMX_SSO_IQ_INT_FUNC() static inline uint64_t CVMX_SSO_IQ_INT_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_IQ_INT not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001048ull); } #else #define CVMX_SSO_IQ_INT (CVMX_ADD_IO_SEG(0x0001670000001048ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_IQ_INT_EN CVMX_SSO_IQ_INT_EN_FUNC() static inline uint64_t CVMX_SSO_IQ_INT_EN_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_IQ_INT_EN not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001050ull); } #else #define CVMX_SSO_IQ_INT_EN (CVMX_ADD_IO_SEG(0x0001670000001050ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SSO_IQ_THRX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7))))) cvmx_warn("CVMX_SSO_IQ_THRX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x000167000000A000ull) + ((offset) & 7) * 8; } #else #define CVMX_SSO_IQ_THRX(offset) (CVMX_ADD_IO_SEG(0x000167000000A000ull) + ((offset) & 7) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_NOS_CNT CVMX_SSO_NOS_CNT_FUNC() static inline uint64_t CVMX_SSO_NOS_CNT_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_NOS_CNT not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001040ull); } #else #define CVMX_SSO_NOS_CNT (CVMX_ADD_IO_SEG(0x0001670000001040ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_NW_TIM CVMX_SSO_NW_TIM_FUNC() static inline uint64_t CVMX_SSO_NW_TIM_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_NW_TIM not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001028ull); } #else #define CVMX_SSO_NW_TIM (CVMX_ADD_IO_SEG(0x0001670000001028ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_OTH_ECC_CTL CVMX_SSO_OTH_ECC_CTL_FUNC() static inline uint64_t CVMX_SSO_OTH_ECC_CTL_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_OTH_ECC_CTL not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00016700000010B0ull); } #else #define CVMX_SSO_OTH_ECC_CTL (CVMX_ADD_IO_SEG(0x00016700000010B0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_OTH_ECC_ST CVMX_SSO_OTH_ECC_ST_FUNC() static inline uint64_t CVMX_SSO_OTH_ECC_ST_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_OTH_ECC_ST not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00016700000010B8ull); } #else #define CVMX_SSO_OTH_ECC_ST (CVMX_ADD_IO_SEG(0x00016700000010B8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_PND_ECC_CTL CVMX_SSO_PND_ECC_CTL_FUNC() static inline uint64_t CVMX_SSO_PND_ECC_CTL_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_PND_ECC_CTL not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00016700000010A0ull); } #else #define CVMX_SSO_PND_ECC_CTL (CVMX_ADD_IO_SEG(0x00016700000010A0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_PND_ECC_ST CVMX_SSO_PND_ECC_ST_FUNC() static inline uint64_t CVMX_SSO_PND_ECC_ST_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_PND_ECC_ST not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00016700000010A8ull); } #else #define CVMX_SSO_PND_ECC_ST (CVMX_ADD_IO_SEG(0x00016700000010A8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SSO_PPX_GRP_MSK(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 31))))) cvmx_warn("CVMX_SSO_PPX_GRP_MSK(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000006000ull) + ((offset) & 31) * 8; } #else #define CVMX_SSO_PPX_GRP_MSK(offset) (CVMX_ADD_IO_SEG(0x0001670000006000ull) + ((offset) & 31) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SSO_PPX_QOS_PRI(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 31))))) cvmx_warn("CVMX_SSO_PPX_QOS_PRI(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000003000ull) + ((offset) & 31) * 8; } #else #define CVMX_SSO_PPX_QOS_PRI(offset) (CVMX_ADD_IO_SEG(0x0001670000003000ull) + ((offset) & 31) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_PP_STRICT CVMX_SSO_PP_STRICT_FUNC() static inline uint64_t CVMX_SSO_PP_STRICT_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_PP_STRICT not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00016700000010E0ull); } #else #define CVMX_SSO_PP_STRICT (CVMX_ADD_IO_SEG(0x00016700000010E0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SSO_QOSX_RND(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7))))) cvmx_warn("CVMX_SSO_QOSX_RND(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000002000ull) + ((offset) & 7) * 8; } #else #define CVMX_SSO_QOSX_RND(offset) (CVMX_ADD_IO_SEG(0x0001670000002000ull) + ((offset) & 7) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SSO_QOS_THRX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7))))) cvmx_warn("CVMX_SSO_QOS_THRX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x000167000000B000ull) + ((offset) & 7) * 8; } #else #define CVMX_SSO_QOS_THRX(offset) (CVMX_ADD_IO_SEG(0x000167000000B000ull) + ((offset) & 7) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_QOS_WE CVMX_SSO_QOS_WE_FUNC() static inline uint64_t CVMX_SSO_QOS_WE_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_QOS_WE not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001080ull); } #else #define CVMX_SSO_QOS_WE (CVMX_ADD_IO_SEG(0x0001670000001080ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_RESET CVMX_SSO_RESET_FUNC() static inline uint64_t CVMX_SSO_RESET_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_RESET not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00016700000010F0ull); } #else #define CVMX_SSO_RESET (CVMX_ADD_IO_SEG(0x00016700000010F0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SSO_RWQ_HEAD_PTRX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7))))) cvmx_warn("CVMX_SSO_RWQ_HEAD_PTRX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x000167000000C000ull) + ((offset) & 7) * 8; } #else #define CVMX_SSO_RWQ_HEAD_PTRX(offset) (CVMX_ADD_IO_SEG(0x000167000000C000ull) + ((offset) & 7) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_RWQ_POP_FPTR CVMX_SSO_RWQ_POP_FPTR_FUNC() static inline uint64_t CVMX_SSO_RWQ_POP_FPTR_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_RWQ_POP_FPTR not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x000167000000C408ull); } #else #define CVMX_SSO_RWQ_POP_FPTR (CVMX_ADD_IO_SEG(0x000167000000C408ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_RWQ_PSH_FPTR CVMX_SSO_RWQ_PSH_FPTR_FUNC() static inline uint64_t CVMX_SSO_RWQ_PSH_FPTR_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_RWQ_PSH_FPTR not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x000167000000C400ull); } #else #define CVMX_SSO_RWQ_PSH_FPTR (CVMX_ADD_IO_SEG(0x000167000000C400ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SSO_RWQ_TAIL_PTRX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7))))) cvmx_warn("CVMX_SSO_RWQ_TAIL_PTRX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x000167000000C200ull) + ((offset) & 7) * 8; } #else #define CVMX_SSO_RWQ_TAIL_PTRX(offset) (CVMX_ADD_IO_SEG(0x000167000000C200ull) + ((offset) & 7) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_TS_PC CVMX_SSO_TS_PC_FUNC() static inline uint64_t CVMX_SSO_TS_PC_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_TS_PC not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001068ull); } #else #define CVMX_SSO_TS_PC (CVMX_ADD_IO_SEG(0x0001670000001068ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_WA_COM_PC CVMX_SSO_WA_COM_PC_FUNC() static inline uint64_t CVMX_SSO_WA_COM_PC_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_WA_COM_PC not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001060ull); } #else #define CVMX_SSO_WA_COM_PC (CVMX_ADD_IO_SEG(0x0001670000001060ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SSO_WA_PCX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7))))) cvmx_warn("CVMX_SSO_WA_PCX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000005000ull) + ((offset) & 7) * 8; } #else #define CVMX_SSO_WA_PCX(offset) (CVMX_ADD_IO_SEG(0x0001670000005000ull) + ((offset) & 7) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_WQ_INT CVMX_SSO_WQ_INT_FUNC() static inline uint64_t CVMX_SSO_WQ_INT_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_WQ_INT not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001000ull); } #else #define CVMX_SSO_WQ_INT (CVMX_ADD_IO_SEG(0x0001670000001000ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SSO_WQ_INT_CNTX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63))))) cvmx_warn("CVMX_SSO_WQ_INT_CNTX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000008000ull) + ((offset) & 63) * 8; } #else #define CVMX_SSO_WQ_INT_CNTX(offset) (CVMX_ADD_IO_SEG(0x0001670000008000ull) + ((offset) & 63) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_WQ_INT_PC CVMX_SSO_WQ_INT_PC_FUNC() static inline uint64_t CVMX_SSO_WQ_INT_PC_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_WQ_INT_PC not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001020ull); } #else #define CVMX_SSO_WQ_INT_PC (CVMX_ADD_IO_SEG(0x0001670000001020ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SSO_WQ_INT_THRX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63))))) cvmx_warn("CVMX_SSO_WQ_INT_THRX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000007000ull) + ((offset) & 63) * 8; } #else #define CVMX_SSO_WQ_INT_THRX(offset) (CVMX_ADD_IO_SEG(0x0001670000007000ull) + ((offset) & 63) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_SSO_WQ_IQ_DIS CVMX_SSO_WQ_IQ_DIS_FUNC() static inline uint64_t CVMX_SSO_WQ_IQ_DIS_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN68XX))) cvmx_warn("CVMX_SSO_WQ_IQ_DIS not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000001010ull); } #else #define CVMX_SSO_WQ_IQ_DIS (CVMX_ADD_IO_SEG(0x0001670000001010ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_SSO_WS_PCX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63))))) cvmx_warn("CVMX_SSO_WS_PCX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000004000ull) + ((offset) & 63) * 8; } #else #define CVMX_SSO_WS_PCX(offset) (CVMX_ADD_IO_SEG(0x0001670000004000ull) + ((offset) & 63) * 8) #endif /** * cvmx_sso_active_cycles * * SSO_ACTIVE_CYCLES = SSO cycles SSO active * * This register counts every sclk cycle that the SSO clocks are active. * **NOTE: Added in pass 2.0 */ union cvmx_sso_active_cycles { uint64_t u64; struct cvmx_sso_active_cycles_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t act_cyc : 64; /**< Counts number of active cycles. */ #else uint64_t act_cyc : 64; #endif } s; struct cvmx_sso_active_cycles_s cn68xx; }; typedef union cvmx_sso_active_cycles cvmx_sso_active_cycles_t; /** * cvmx_sso_bist_stat * * SSO_BIST_STAT = SSO BIST Status Register * * Contains the BIST status for the SSO memories ('0' = pass, '1' = fail). * Note that PP BIST status is not reported here as it was in previous designs. * * There may be more for DDR interface buffers. * It's possible that a RAM will be used for SSO_PP_QOS_RND. */ union cvmx_sso_bist_stat { uint64_t u64; struct cvmx_sso_bist_stat_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_62_63 : 2; uint64_t odu_pref : 2; /**< ODU Prefetch memory BIST status */ uint64_t reserved_54_59 : 6; uint64_t fptr : 2; /**< FPTR memory BIST status */ uint64_t reserved_45_51 : 7; uint64_t rwo_dat : 1; /**< RWO_DAT memory BIST status */ uint64_t rwo : 2; /**< RWO memory BIST status */ uint64_t reserved_35_41 : 7; uint64_t rwi_dat : 1; /**< RWI_DAT memory BIST status */ uint64_t reserved_32_33 : 2; uint64_t soc : 1; /**< SSO CAM BIST status */ uint64_t reserved_28_30 : 3; uint64_t ncbo : 4; /**< NCBO transmitter memory BIST status */ uint64_t reserved_21_23 : 3; uint64_t index : 1; /**< Index memory BIST status */ uint64_t reserved_17_19 : 3; uint64_t fidx : 1; /**< Forward index memory BIST status */ uint64_t reserved_10_15 : 6; uint64_t pend : 2; /**< Pending switch memory BIST status */ uint64_t reserved_2_7 : 6; uint64_t oth : 2; /**< WQP, GRP memory BIST status */ #else uint64_t oth : 2; uint64_t reserved_2_7 : 6; uint64_t pend : 2; uint64_t reserved_10_15 : 6; uint64_t fidx : 1; uint64_t reserved_17_19 : 3; uint64_t index : 1; uint64_t reserved_21_23 : 3; uint64_t ncbo : 4; uint64_t reserved_28_30 : 3; uint64_t soc : 1; uint64_t reserved_32_33 : 2; uint64_t rwi_dat : 1; uint64_t reserved_35_41 : 7; uint64_t rwo : 2; uint64_t rwo_dat : 1; uint64_t reserved_45_51 : 7; uint64_t fptr : 2; uint64_t reserved_54_59 : 6; uint64_t odu_pref : 2; uint64_t reserved_62_63 : 2; #endif } s; struct cvmx_sso_bist_stat_s cn68xx; struct cvmx_sso_bist_stat_cn68xxp1 { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_54_63 : 10; uint64_t fptr : 2; /**< FPTR memory BIST status */ uint64_t reserved_45_51 : 7; uint64_t rwo_dat : 1; /**< RWO_DAT memory BIST status */ uint64_t rwo : 2; /**< RWO memory BIST status */ uint64_t reserved_35_41 : 7; uint64_t rwi_dat : 1; /**< RWI_DAT memory BIST status */ uint64_t reserved_32_33 : 2; uint64_t soc : 1; /**< SSO CAM BIST status */ uint64_t reserved_28_30 : 3; uint64_t ncbo : 4; /**< NCBO transmitter memory BIST status */ uint64_t reserved_21_23 : 3; uint64_t index : 1; /**< Index memory BIST status */ uint64_t reserved_17_19 : 3; uint64_t fidx : 1; /**< Forward index memory BIST status */ uint64_t reserved_10_15 : 6; uint64_t pend : 2; /**< Pending switch memory BIST status */ uint64_t reserved_2_7 : 6; uint64_t oth : 2; /**< WQP, GRP memory BIST status */ #else uint64_t oth : 2; uint64_t reserved_2_7 : 6; uint64_t pend : 2; uint64_t reserved_10_15 : 6; uint64_t fidx : 1; uint64_t reserved_17_19 : 3; uint64_t index : 1; uint64_t reserved_21_23 : 3; uint64_t ncbo : 4; uint64_t reserved_28_30 : 3; uint64_t soc : 1; uint64_t reserved_32_33 : 2; uint64_t rwi_dat : 1; uint64_t reserved_35_41 : 7; uint64_t rwo : 2; uint64_t rwo_dat : 1; uint64_t reserved_45_51 : 7; uint64_t fptr : 2; uint64_t reserved_54_63 : 10; #endif } cn68xxp1; }; typedef union cvmx_sso_bist_stat cvmx_sso_bist_stat_t; /** * cvmx_sso_cfg * * SSO_CFG = SSO Config * * This register is an assortment of various SSO configuration bits. */ union cvmx_sso_cfg { uint64_t u64; struct cvmx_sso_cfg_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_16_63 : 48; uint64_t qck_gw_rsp_adj : 3; /**< Fast GET_WORK response fine adjustment Allowed values are 0, 1, and 2 (0 is quickest) */ uint64_t qck_gw_rsp_dis : 1; /**< Disable faster response to GET_WORK */ uint64_t qck_sw_dis : 1; /**< Disable faster switch to UNSCHEDULED on GET_WORK */ uint64_t rwq_alloc_dis : 1; /**< Disable FPA Alloc Requests when SSO_FPAGE_CNT < 16 */ uint64_t soc_ccam_dis : 1; /**< Disable power saving SOC conditional CAM (**NOTE: Added in pass 2.0) */ uint64_t sso_cclk_dis : 1; /**< Disable power saving SSO conditional clocking (**NOTE: Added in pass 2.0) */ uint64_t rwo_flush : 1; /**< Flush RWO engine Allows outbound NCB entries to go immediately rather than waiting for a complete fill packet. This register is one-shot and clears itself each time it is set. */ uint64_t wfe_thr : 1; /**< Use 1 Work-fetch engine (instead of 4) */ uint64_t rwio_byp_dis : 1; /**< Disable Bypass path in RWI/RWO Engines */ uint64_t rwq_byp_dis : 1; /**< Disable Bypass path in RWQ Engine */ uint64_t stt : 1; /**< STT Setting for RW Stores */ uint64_t ldt : 1; /**< LDT Setting for RW Loads */ uint64_t dwb : 1; /**< DWB Setting for Return Page Requests 1 = 2 128B cache pages to issue DWB for 0 = 0 128B cache pages ro issue DWB for */ uint64_t rwen : 1; /**< Enable RWI/RWO operations This bit should be set after SSO_RWQ_HEAD_PTRX and SSO_RWQ_TAIL_PTRX have been programmed. */ #else uint64_t rwen : 1; uint64_t dwb : 1; uint64_t ldt : 1; uint64_t stt : 1; uint64_t rwq_byp_dis : 1; uint64_t rwio_byp_dis : 1; uint64_t wfe_thr : 1; uint64_t rwo_flush : 1; uint64_t sso_cclk_dis : 1; uint64_t soc_ccam_dis : 1; uint64_t rwq_alloc_dis : 1; uint64_t qck_sw_dis : 1; uint64_t qck_gw_rsp_dis : 1; uint64_t qck_gw_rsp_adj : 3; uint64_t reserved_16_63 : 48; #endif } s; struct cvmx_sso_cfg_s cn68xx; struct cvmx_sso_cfg_cn68xxp1 { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_8_63 : 56; uint64_t rwo_flush : 1; /**< Flush RWO engine Allows outbound NCB entries to go immediately rather than waiting for a complete fill packet. This register is one-shot and clears itself each time it is set. */ uint64_t wfe_thr : 1; /**< Use 1 Work-fetch engine (instead of 4) */ uint64_t rwio_byp_dis : 1; /**< Disable Bypass path in RWI/RWO Engines */ uint64_t rwq_byp_dis : 1; /**< Disable Bypass path in RWQ Engine */ uint64_t stt : 1; /**< STT Setting for RW Stores */ uint64_t ldt : 1; /**< LDT Setting for RW Loads */ uint64_t dwb : 1; /**< DWB Setting for Return Page Requests 1 = 2 128B cache pages to issue DWB for 0 = 0 128B cache pages ro issue DWB for */ uint64_t rwen : 1; /**< Enable RWI/RWO operations This bit should be set after SSO_RWQ_HEAD_PTRX and SSO_RWQ_TAIL_PTRX have been programmed. */ #else uint64_t rwen : 1; uint64_t dwb : 1; uint64_t ldt : 1; uint64_t stt : 1; uint64_t rwq_byp_dis : 1; uint64_t rwio_byp_dis : 1; uint64_t wfe_thr : 1; uint64_t rwo_flush : 1; uint64_t reserved_8_63 : 56; #endif } cn68xxp1; }; typedef union cvmx_sso_cfg cvmx_sso_cfg_t; /** * cvmx_sso_ds_pc * * SSO_DS_PC = SSO De-Schedule Performance Counter * * Counts the number of de-schedule requests. * Counter rolls over through zero when max value exceeded. */ union cvmx_sso_ds_pc { uint64_t u64; struct cvmx_sso_ds_pc_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t ds_pc : 64; /**< De-schedule performance counter */ #else uint64_t ds_pc : 64; #endif } s; struct cvmx_sso_ds_pc_s cn68xx; struct cvmx_sso_ds_pc_s cn68xxp1; }; typedef union cvmx_sso_ds_pc cvmx_sso_ds_pc_t; /** * cvmx_sso_err * * SSO_ERR = SSO Error Register * * Contains ECC and other misc error bits. * * <45> The free page error bit will assert when SSO_FPAGE_CNT <= 16 and * SSO_CFG[RWEN] is 1. Software will want to disable the interrupt * associated with this error when recovering SSO pointers from the * FPA and SSO. * * This register also contains the illegal operation error bits: * * <42> Received ADDWQ with tag specified as EMPTY * <41> Received illegal opcode * <40> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/ALLOC_WE * from WS with CLR_NSCHED pending * <39> Received CLR_NSCHED * from WS with SWTAG_DESCH/DESCH/CLR_NSCHED pending * <38> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/ALLOC_WE * from WS with ALLOC_WE pending * <37> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/ALLOC_WE/CLR_NSCHED * from WS with GET_WORK pending * <36> Received SWTAG_FULL/SWTAG_DESCH * with tag specified as UNSCHEDULED * <35> Received SWTAG/SWTAG_FULL/SWTAG_DESCH * with tag specified as EMPTY * <34> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/GET_WORK * from WS with pending tag switch to ORDERED or ATOMIC * <33> Received SWTAG/SWTAG_DESCH/DESCH/UPD_WQP * from WS in UNSCHEDULED state * <32> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP * from WS in EMPTY state */ union cvmx_sso_err { uint64_t u64; struct cvmx_sso_err_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_48_63 : 16; uint64_t bfp : 1; /**< Bad Fill Packet error Last byte of the fill packet did not match 8'h1a */ uint64_t awe : 1; /**< Out-of-memory error (ADDWQ Request is dropped) */ uint64_t fpe : 1; /**< Free page error */ uint64_t reserved_43_44 : 2; uint64_t iop : 11; /**< Illegal operation errors */ uint64_t reserved_12_31 : 20; uint64_t pnd_dbe0 : 1; /**< Double bit error for even PND RAM */ uint64_t pnd_sbe0 : 1; /**< Single bit error for even PND RAM */ uint64_t pnd_dbe1 : 1; /**< Double bit error for odd PND RAM */ uint64_t pnd_sbe1 : 1; /**< Single bit error for odd PND RAM */ uint64_t oth_dbe0 : 1; /**< Double bit error for even OTH RAM */ uint64_t oth_sbe0 : 1; /**< Single bit error for even OTH RAM */ uint64_t oth_dbe1 : 1; /**< Double bit error for odd OTH RAM */ uint64_t oth_sbe1 : 1; /**< Single bit error for odd OTH RAM */ uint64_t idx_dbe : 1; /**< Double bit error for IDX RAM */ uint64_t idx_sbe : 1; /**< Single bit error for IDX RAM */ uint64_t fidx_dbe : 1; /**< Double bit error for FIDX RAM */ uint64_t fidx_sbe : 1; /**< Single bit error for FIDX RAM */ #else uint64_t fidx_sbe : 1; uint64_t fidx_dbe : 1; uint64_t idx_sbe : 1; uint64_t idx_dbe : 1; uint64_t oth_sbe1 : 1; uint64_t oth_dbe1 : 1; uint64_t oth_sbe0 : 1; uint64_t oth_dbe0 : 1; uint64_t pnd_sbe1 : 1; uint64_t pnd_dbe1 : 1; uint64_t pnd_sbe0 : 1; uint64_t pnd_dbe0 : 1; uint64_t reserved_12_31 : 20; uint64_t iop : 11; uint64_t reserved_43_44 : 2; uint64_t fpe : 1; uint64_t awe : 1; uint64_t bfp : 1; uint64_t reserved_48_63 : 16; #endif } s; struct cvmx_sso_err_s cn68xx; struct cvmx_sso_err_s cn68xxp1; }; typedef union cvmx_sso_err cvmx_sso_err_t; /** * cvmx_sso_err_enb * * SSO_ERR_ENB = SSO Error Enable Register * * Contains the interrupt enables corresponding to SSO_ERR. */ union cvmx_sso_err_enb { uint64_t u64; struct cvmx_sso_err_enb_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_48_63 : 16; uint64_t bfp_ie : 1; /**< Bad Fill Packet error interrupt enable */ uint64_t awe_ie : 1; /**< Add-work error interrupt enable */ uint64_t fpe_ie : 1; /**< Free Page error interrupt enable */ uint64_t reserved_43_44 : 2; uint64_t iop_ie : 11; /**< Illegal operation interrupt enables */ uint64_t reserved_12_31 : 20; uint64_t pnd_dbe0_ie : 1; /**< Double bit error interrupt enable for even PND RAM */ uint64_t pnd_sbe0_ie : 1; /**< Single bit error interrupt enable for even PND RAM */ uint64_t pnd_dbe1_ie : 1; /**< Double bit error interrupt enable for odd PND RAM */ uint64_t pnd_sbe1_ie : 1; /**< Single bit error interrupt enable for odd PND RAM */ uint64_t oth_dbe0_ie : 1; /**< Double bit error interrupt enable for even OTH RAM */ uint64_t oth_sbe0_ie : 1; /**< Single bit error interrupt enable for even OTH RAM */ uint64_t oth_dbe1_ie : 1; /**< Double bit error interrupt enable for odd OTH RAM */ uint64_t oth_sbe1_ie : 1; /**< Single bit error interrupt enable for odd OTH RAM */ uint64_t idx_dbe_ie : 1; /**< Double bit error interrupt enable for IDX RAM */ uint64_t idx_sbe_ie : 1; /**< Single bit error interrupt enable for IDX RAM */ uint64_t fidx_dbe_ie : 1; /**< Double bit error interrupt enable for FIDX RAM */ uint64_t fidx_sbe_ie : 1; /**< Single bit error interrupt enable for FIDX RAM */ #else uint64_t fidx_sbe_ie : 1; uint64_t fidx_dbe_ie : 1; uint64_t idx_sbe_ie : 1; uint64_t idx_dbe_ie : 1; uint64_t oth_sbe1_ie : 1; uint64_t oth_dbe1_ie : 1; uint64_t oth_sbe0_ie : 1; uint64_t oth_dbe0_ie : 1; uint64_t pnd_sbe1_ie : 1; uint64_t pnd_dbe1_ie : 1; uint64_t pnd_sbe0_ie : 1; uint64_t pnd_dbe0_ie : 1; uint64_t reserved_12_31 : 20; uint64_t iop_ie : 11; uint64_t reserved_43_44 : 2; uint64_t fpe_ie : 1; uint64_t awe_ie : 1; uint64_t bfp_ie : 1; uint64_t reserved_48_63 : 16; #endif } s; struct cvmx_sso_err_enb_s cn68xx; struct cvmx_sso_err_enb_s cn68xxp1; }; typedef union cvmx_sso_err_enb cvmx_sso_err_enb_t; /** * cvmx_sso_fidx_ecc_ctl * * SSO_FIDX_ECC_CTL = SSO FIDX ECC Control * */ union cvmx_sso_fidx_ecc_ctl { uint64_t u64; struct cvmx_sso_fidx_ecc_ctl_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_3_63 : 61; uint64_t flip_synd : 2; /**< Testing feature. Flip Syndrom to generate single or double bit error for the FIDX RAM. */ uint64_t ecc_ena : 1; /**< ECC Enable: When set will enable the 5 bit ECC correct logic for the FIDX RAM. */ #else uint64_t ecc_ena : 1; uint64_t flip_synd : 2; uint64_t reserved_3_63 : 61; #endif } s; struct cvmx_sso_fidx_ecc_ctl_s cn68xx; struct cvmx_sso_fidx_ecc_ctl_s cn68xxp1; }; typedef union cvmx_sso_fidx_ecc_ctl cvmx_sso_fidx_ecc_ctl_t; /** * cvmx_sso_fidx_ecc_st * * SSO_FIDX_ECC_ST = SSO FIDX ECC Status * */ union cvmx_sso_fidx_ecc_st { uint64_t u64; struct cvmx_sso_fidx_ecc_st_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_27_63 : 37; uint64_t addr : 11; /**< Latch the address for latest sde/dbe occured for the FIDX RAM */ uint64_t reserved_9_15 : 7; uint64_t syndrom : 5; /**< Report the latest error syndrom for the FIDX RAM */ uint64_t reserved_0_3 : 4; #else uint64_t reserved_0_3 : 4; uint64_t syndrom : 5; uint64_t reserved_9_15 : 7; uint64_t addr : 11; uint64_t reserved_27_63 : 37; #endif } s; struct cvmx_sso_fidx_ecc_st_s cn68xx; struct cvmx_sso_fidx_ecc_st_s cn68xxp1; }; typedef union cvmx_sso_fidx_ecc_st cvmx_sso_fidx_ecc_st_t; /** * cvmx_sso_fpage_cnt * * SSO_FPAGE_CNT = SSO Free Page Cnt * * This register keeps track of the number of free pages pointers available for use in external memory. */ union cvmx_sso_fpage_cnt { uint64_t u64; struct cvmx_sso_fpage_cnt_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_32_63 : 32; uint64_t fpage_cnt : 32; /**< Free Page Cnt HW updates this register. Writes to this register are only for diagnostic purposes */ #else uint64_t fpage_cnt : 32; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_sso_fpage_cnt_s cn68xx; struct cvmx_sso_fpage_cnt_s cn68xxp1; }; typedef union cvmx_sso_fpage_cnt cvmx_sso_fpage_cnt_t; /** * cvmx_sso_gwe_cfg * * SSO_GWE_CFG = SSO Get-Work Examiner Configuration * * This register controls the operation of the Get-Work Examiner (GWE) */ union cvmx_sso_gwe_cfg { uint64_t u64; struct cvmx_sso_gwe_cfg_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_12_63 : 52; uint64_t odu_ffpgw_dis : 1; /**< Disable flushing ODU on periodic restart of GWE */ uint64_t gwe_rfpgw_dis : 1; /**< Disable periodic restart of GWE for pending get_work */ uint64_t odu_prf_dis : 1; /**< Disable ODU-initiated prefetches of WQEs into L2C For diagnostic use only. */ uint64_t odu_bmp_dis : 1; /**< Disable ODU bumps. If SSO_PP_STRICT is true, could prevent forward progress under some circumstances. For diagnostic use only. */ uint64_t reserved_5_7 : 3; uint64_t gwe_hvy_dis : 1; /**< Disable GWE automatic, proportional weight-increase mechanism and use SSO_QOSX_RND values as-is. For diagnostic use only. */ uint64_t gwe_poe : 1; /**< Pause GWE on extracts For diagnostic use only. */ uint64_t gwe_fpor : 1; /**< Flush GWE pipeline when restarting GWE. For diagnostic use only. */ uint64_t gwe_rah : 1; /**< Begin at head of input queues when restarting GWE. For diagnostic use only. */ uint64_t gwe_dis : 1; /**< Disable Get-Work Examiner */ #else uint64_t gwe_dis : 1; uint64_t gwe_rah : 1; uint64_t gwe_fpor : 1; uint64_t gwe_poe : 1; uint64_t gwe_hvy_dis : 1; uint64_t reserved_5_7 : 3; uint64_t odu_bmp_dis : 1; uint64_t odu_prf_dis : 1; uint64_t gwe_rfpgw_dis : 1; uint64_t odu_ffpgw_dis : 1; uint64_t reserved_12_63 : 52; #endif } s; struct cvmx_sso_gwe_cfg_s cn68xx; struct cvmx_sso_gwe_cfg_cn68xxp1 { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_4_63 : 60; uint64_t gwe_poe : 1; /**< Pause GWE on extracts For diagnostic use only. */ uint64_t gwe_fpor : 1; /**< Flush GWE pipeline when restarting GWE. For diagnostic use only. */ uint64_t gwe_rah : 1; /**< Begin at head of input queues when restarting GWE. For diagnostic use only. */ uint64_t gwe_dis : 1; /**< Disable Get-Work Examiner */ #else uint64_t gwe_dis : 1; uint64_t gwe_rah : 1; uint64_t gwe_fpor : 1; uint64_t gwe_poe : 1; uint64_t reserved_4_63 : 60; #endif } cn68xxp1; }; typedef union cvmx_sso_gwe_cfg cvmx_sso_gwe_cfg_t; /** * cvmx_sso_idx_ecc_ctl * * SSO_IDX_ECC_CTL = SSO IDX ECC Control * */ union cvmx_sso_idx_ecc_ctl { uint64_t u64; struct cvmx_sso_idx_ecc_ctl_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_3_63 : 61; uint64_t flip_synd : 2; /**< Testing feature. Flip Syndrom to generate single or double bit error for the IDX RAM. */ uint64_t ecc_ena : 1; /**< ECC Enable: When set will enable the 5 bit ECC correct logic for the IDX RAM. */ #else uint64_t ecc_ena : 1; uint64_t flip_synd : 2; uint64_t reserved_3_63 : 61; #endif } s; struct cvmx_sso_idx_ecc_ctl_s cn68xx; struct cvmx_sso_idx_ecc_ctl_s cn68xxp1; }; typedef union cvmx_sso_idx_ecc_ctl cvmx_sso_idx_ecc_ctl_t; /** * cvmx_sso_idx_ecc_st * * SSO_IDX_ECC_ST = SSO IDX ECC Status * */ union cvmx_sso_idx_ecc_st { uint64_t u64; struct cvmx_sso_idx_ecc_st_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_27_63 : 37; uint64_t addr : 11; /**< Latch the address for latest sde/dbe occured for the IDX RAM */ uint64_t reserved_9_15 : 7; uint64_t syndrom : 5; /**< Report the latest error syndrom for the IDX RAM */ uint64_t reserved_0_3 : 4; #else uint64_t reserved_0_3 : 4; uint64_t syndrom : 5; uint64_t reserved_9_15 : 7; uint64_t addr : 11; uint64_t reserved_27_63 : 37; #endif } s; struct cvmx_sso_idx_ecc_st_s cn68xx; struct cvmx_sso_idx_ecc_st_s cn68xxp1; }; typedef union cvmx_sso_idx_ecc_st cvmx_sso_idx_ecc_st_t; /** * cvmx_sso_iq_cnt# * * CSR reserved addresses: (64): 0x8200..0x83f8 * CSR align addresses: =========================================================================================================== * SSO_IQ_CNTX = SSO Input Queue Count Register * (one per QOS level) * * Contains a read-only count of the number of work queue entries for each QOS * level. Counts both in-unit and in-memory entries. */ union cvmx_sso_iq_cntx { uint64_t u64; struct cvmx_sso_iq_cntx_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_32_63 : 32; uint64_t iq_cnt : 32; /**< Input queue count for QOS level X */ #else uint64_t iq_cnt : 32; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_sso_iq_cntx_s cn68xx; struct cvmx_sso_iq_cntx_s cn68xxp1; }; typedef union cvmx_sso_iq_cntx cvmx_sso_iq_cntx_t; /** * cvmx_sso_iq_com_cnt * * SSO_IQ_COM_CNT = SSO Input Queue Combined Count Register * * Contains a read-only count of the total number of work queue entries in all * QOS levels. Counts both in-unit and in-memory entries. */ union cvmx_sso_iq_com_cnt { uint64_t u64; struct cvmx_sso_iq_com_cnt_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_32_63 : 32; uint64_t iq_cnt : 32; /**< Input queue combined count */ #else uint64_t iq_cnt : 32; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_sso_iq_com_cnt_s cn68xx; struct cvmx_sso_iq_com_cnt_s cn68xxp1; }; typedef union cvmx_sso_iq_com_cnt cvmx_sso_iq_com_cnt_t; /** * cvmx_sso_iq_int * * SSO_IQ_INT = SSO Input Queue Interrupt Register * * Contains the bits (one per QOS level) that can trigger the input queue * interrupt. An IQ_INT bit will be set if SSO_IQ_CNT#QOS# changes and the * resulting value is equal to SSO_IQ_THR#QOS#. */ union cvmx_sso_iq_int { uint64_t u64; struct cvmx_sso_iq_int_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_8_63 : 56; uint64_t iq_int : 8; /**< Input queue interrupt bits */ #else uint64_t iq_int : 8; uint64_t reserved_8_63 : 56; #endif } s; struct cvmx_sso_iq_int_s cn68xx; struct cvmx_sso_iq_int_s cn68xxp1; }; typedef union cvmx_sso_iq_int cvmx_sso_iq_int_t; /** * cvmx_sso_iq_int_en * * SSO_IQ_INT_EN = SSO Input Queue Interrupt Enable Register * * Contains the bits (one per QOS level) that enable the input queue interrupt. */ union cvmx_sso_iq_int_en { uint64_t u64; struct cvmx_sso_iq_int_en_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_8_63 : 56; uint64_t int_en : 8; /**< Input queue interrupt enable bits */ #else uint64_t int_en : 8; uint64_t reserved_8_63 : 56; #endif } s; struct cvmx_sso_iq_int_en_s cn68xx; struct cvmx_sso_iq_int_en_s cn68xxp1; }; typedef union cvmx_sso_iq_int_en cvmx_sso_iq_int_en_t; /** * cvmx_sso_iq_thr# * * CSR reserved addresses: (24): 0x9040..0x90f8 * CSR align addresses: =========================================================================================================== * SSO_IQ_THRX = SSO Input Queue Threshold Register * (one per QOS level) * * Threshold value for triggering input queue interrupts. */ union cvmx_sso_iq_thrx { uint64_t u64; struct cvmx_sso_iq_thrx_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_32_63 : 32; uint64_t iq_thr : 32; /**< Input queue threshold for QOS level X */ #else uint64_t iq_thr : 32; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_sso_iq_thrx_s cn68xx; struct cvmx_sso_iq_thrx_s cn68xxp1; }; typedef union cvmx_sso_iq_thrx cvmx_sso_iq_thrx_t; /** * cvmx_sso_nos_cnt * * SSO_NOS_CNT = SSO No-schedule Count Register * * Contains the number of work queue entries on the no-schedule list. */ union cvmx_sso_nos_cnt { uint64_t u64; struct cvmx_sso_nos_cnt_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_12_63 : 52; uint64_t nos_cnt : 12; /**< Number of work queue entries on the no-schedule list */ #else uint64_t nos_cnt : 12; uint64_t reserved_12_63 : 52; #endif } s; struct cvmx_sso_nos_cnt_s cn68xx; struct cvmx_sso_nos_cnt_s cn68xxp1; }; typedef union cvmx_sso_nos_cnt cvmx_sso_nos_cnt_t; /** * cvmx_sso_nw_tim * * SSO_NW_TIM = SSO New Work Timer Period Register * * Sets the minimum period for a new work request timeout. Period is specified * in n-1 notation where the increment value is 1024 clock cycles. Thus, a * value of 0x0 in this register translates to 1024 cycles, 0x1 translates to * 2048 cycles, 0x2 translates to 3072 cycles, etc... Note: the maximum period * for a new work request timeout is 2 times the minimum period. Note: the new * work request timeout counter is reset when this register is written. * * There are two new work request timeout cases: * * - WAIT bit clear. The new work request can timeout if the timer expires * before the pre-fetch engine has reached the end of all work queues. This * can occur if the executable work queue entry is deep in the queue and the * pre-fetch engine is subject to many resets (i.e. high switch, de-schedule, * or new work load from other PP's). Thus, it is possible for a PP to * receive a work response with the NO_WORK bit set even though there was at * least one executable entry in the work queues. The other (and typical) * scenario for receiving a NO_WORK response with the WAIT bit clear is that * the pre-fetch engine has reached the end of all work queues without * finding executable work. * * - WAIT bit set. The new work request can timeout if the timer expires * before the pre-fetch engine has found executable work. In this case, the * only scenario where the PP will receive a work response with the NO_WORK * bit set is if the timer expires. Note: it is still possible for a PP to * receive a NO_WORK response even though there was at least one executable * entry in the work queues. * * In either case, it's important to note that switches and de-schedules are * higher priority operations that can cause the pre-fetch engine to reset. * Thus in a system with many switches or de-schedules occurring, it's possible * for the new work timer to expire (resulting in NO_WORK responses) before the * pre-fetch engine is able to get very deep into the work queues. */ union cvmx_sso_nw_tim { uint64_t u64; struct cvmx_sso_nw_tim_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_10_63 : 54; uint64_t nw_tim : 10; /**< New work timer period */ #else uint64_t nw_tim : 10; uint64_t reserved_10_63 : 54; #endif } s; struct cvmx_sso_nw_tim_s cn68xx; struct cvmx_sso_nw_tim_s cn68xxp1; }; typedef union cvmx_sso_nw_tim cvmx_sso_nw_tim_t; /** * cvmx_sso_oth_ecc_ctl * * SSO_OTH_ECC_CTL = SSO OTH ECC Control * */ union cvmx_sso_oth_ecc_ctl { uint64_t u64; struct cvmx_sso_oth_ecc_ctl_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_6_63 : 58; uint64_t flip_synd1 : 2; /**< Testing feature. Flip Syndrom to generate single or double bit error for the odd OTH RAM. */ uint64_t ecc_ena1 : 1; /**< ECC Enable: When set will enable the 7 bit ECC correct logic for the odd OTH RAM. */ uint64_t flip_synd0 : 2; /**< Testing feature. Flip Syndrom to generate single or double bit error for the even OTH RAM. */ uint64_t ecc_ena0 : 1; /**< ECC Enable: When set will enable the 7 bit ECC correct logic for the even OTH RAM. */ #else uint64_t ecc_ena0 : 1; uint64_t flip_synd0 : 2; uint64_t ecc_ena1 : 1; uint64_t flip_synd1 : 2; uint64_t reserved_6_63 : 58; #endif } s; struct cvmx_sso_oth_ecc_ctl_s cn68xx; struct cvmx_sso_oth_ecc_ctl_s cn68xxp1; }; typedef union cvmx_sso_oth_ecc_ctl cvmx_sso_oth_ecc_ctl_t; /** * cvmx_sso_oth_ecc_st * * SSO_OTH_ECC_ST = SSO OTH ECC Status * */ union cvmx_sso_oth_ecc_st { uint64_t u64; struct cvmx_sso_oth_ecc_st_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_59_63 : 5; uint64_t addr1 : 11; /**< Latch the address for latest sde/dbe occured for the odd OTH RAM */ uint64_t reserved_43_47 : 5; uint64_t syndrom1 : 7; /**< Report the latest error syndrom for the odd OTH RAM */ uint64_t reserved_27_35 : 9; uint64_t addr0 : 11; /**< Latch the address for latest sde/dbe occured for the even OTH RAM */ uint64_t reserved_11_15 : 5; uint64_t syndrom0 : 7; /**< Report the latest error syndrom for the even OTH RAM */ uint64_t reserved_0_3 : 4; #else uint64_t reserved_0_3 : 4; uint64_t syndrom0 : 7; uint64_t reserved_11_15 : 5; uint64_t addr0 : 11; uint64_t reserved_27_35 : 9; uint64_t syndrom1 : 7; uint64_t reserved_43_47 : 5; uint64_t addr1 : 11; uint64_t reserved_59_63 : 5; #endif } s; struct cvmx_sso_oth_ecc_st_s cn68xx; struct cvmx_sso_oth_ecc_st_s cn68xxp1; }; typedef union cvmx_sso_oth_ecc_st cvmx_sso_oth_ecc_st_t; /** * cvmx_sso_pnd_ecc_ctl * * SSO_PND_ECC_CTL = SSO PND ECC Control * */ union cvmx_sso_pnd_ecc_ctl { uint64_t u64; struct cvmx_sso_pnd_ecc_ctl_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_6_63 : 58; uint64_t flip_synd1 : 2; /**< Testing feature. Flip Syndrom to generate single or double bit error for the odd PND RAM. */ uint64_t ecc_ena1 : 1; /**< ECC Enable: When set will enable the 7 bit ECC correct logic for the odd PND RAM. */ uint64_t flip_synd0 : 2; /**< Testing feature. Flip Syndrom to generate single or double bit error for the even PND RAM. */ uint64_t ecc_ena0 : 1; /**< ECC Enable: When set will enable the 7 bit ECC correct logic for the even PND RAM. */ #else uint64_t ecc_ena0 : 1; uint64_t flip_synd0 : 2; uint64_t ecc_ena1 : 1; uint64_t flip_synd1 : 2; uint64_t reserved_6_63 : 58; #endif } s; struct cvmx_sso_pnd_ecc_ctl_s cn68xx; struct cvmx_sso_pnd_ecc_ctl_s cn68xxp1; }; typedef union cvmx_sso_pnd_ecc_ctl cvmx_sso_pnd_ecc_ctl_t; /** * cvmx_sso_pnd_ecc_st * * SSO_PND_ECC_ST = SSO PND ECC Status * */ union cvmx_sso_pnd_ecc_st { uint64_t u64; struct cvmx_sso_pnd_ecc_st_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_59_63 : 5; uint64_t addr1 : 11; /**< Latch the address for latest sde/dbe occured for the odd PND RAM */ uint64_t reserved_43_47 : 5; uint64_t syndrom1 : 7; /**< Report the latest error syndrom for the odd PND RAM */ uint64_t reserved_27_35 : 9; uint64_t addr0 : 11; /**< Latch the address for latest sde/dbe occured for the even PND RAM */ uint64_t reserved_11_15 : 5; uint64_t syndrom0 : 7; /**< Report the latest error syndrom for the even PND RAM */ uint64_t reserved_0_3 : 4; #else uint64_t reserved_0_3 : 4; uint64_t syndrom0 : 7; uint64_t reserved_11_15 : 5; uint64_t addr0 : 11; uint64_t reserved_27_35 : 9; uint64_t syndrom1 : 7; uint64_t reserved_43_47 : 5; uint64_t addr1 : 11; uint64_t reserved_59_63 : 5; #endif } s; struct cvmx_sso_pnd_ecc_st_s cn68xx; struct cvmx_sso_pnd_ecc_st_s cn68xxp1; }; typedef union cvmx_sso_pnd_ecc_st cvmx_sso_pnd_ecc_st_t; /** * cvmx_sso_pp#_grp_msk * * CSR reserved addresses: (24): 0x5040..0x50f8 * CSR align addresses: =========================================================================================================== * SSO_PPX_GRP_MSK = SSO PP Group Mask Register * (one bit per group per PP) * * Selects which group(s) a PP belongs to. A '1' in any bit position sets the * PP's membership in the corresponding group. A value of 0x0 will prevent the * PP from receiving new work. * * Note that these do not contain QOS level priorities for each PP. This is a * change from previous POW designs. */ union cvmx_sso_ppx_grp_msk { uint64_t u64; struct cvmx_sso_ppx_grp_msk_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t grp_msk : 64; /**< PPX group mask */ #else uint64_t grp_msk : 64; #endif } s; struct cvmx_sso_ppx_grp_msk_s cn68xx; struct cvmx_sso_ppx_grp_msk_s cn68xxp1; }; typedef union cvmx_sso_ppx_grp_msk cvmx_sso_ppx_grp_msk_t; /** * cvmx_sso_pp#_qos_pri * * CSR reserved addresses: (56): 0x2040..0x21f8 * CSR align addresses: =========================================================================================================== * SSO_PP(0..31)_QOS_PRI = SSO PP QOS Priority Register * (one field per IQ per PP) * * Contains the QOS level priorities for each PP. * 0x0 is the highest priority * 0x7 is the lowest priority * 0xf prevents the PP from receiving work from that QOS level * 0x8-0xe Reserved * * For a given PP, priorities should begin at 0x0, and remain contiguous * throughout the range. Failure to do so may result in severe * performance degradation. * * * Priorities for IQs 0..7 */ union cvmx_sso_ppx_qos_pri { uint64_t u64; struct cvmx_sso_ppx_qos_pri_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_60_63 : 4; uint64_t qos7_pri : 4; /**< QOS7 priority for PPX */ uint64_t reserved_52_55 : 4; uint64_t qos6_pri : 4; /**< QOS6 priority for PPX */ uint64_t reserved_44_47 : 4; uint64_t qos5_pri : 4; /**< QOS5 priority for PPX */ uint64_t reserved_36_39 : 4; uint64_t qos4_pri : 4; /**< QOS4 priority for PPX */ uint64_t reserved_28_31 : 4; uint64_t qos3_pri : 4; /**< QOS3 priority for PPX */ uint64_t reserved_20_23 : 4; uint64_t qos2_pri : 4; /**< QOS2 priority for PPX */ uint64_t reserved_12_15 : 4; uint64_t qos1_pri : 4; /**< QOS1 priority for PPX */ uint64_t reserved_4_7 : 4; uint64_t qos0_pri : 4; /**< QOS0 priority for PPX */ #else uint64_t qos0_pri : 4; uint64_t reserved_4_7 : 4; uint64_t qos1_pri : 4; uint64_t reserved_12_15 : 4; uint64_t qos2_pri : 4; uint64_t reserved_20_23 : 4; uint64_t qos3_pri : 4; uint64_t reserved_28_31 : 4; uint64_t qos4_pri : 4; uint64_t reserved_36_39 : 4; uint64_t qos5_pri : 4; uint64_t reserved_44_47 : 4; uint64_t qos6_pri : 4; uint64_t reserved_52_55 : 4; uint64_t qos7_pri : 4; uint64_t reserved_60_63 : 4; #endif } s; struct cvmx_sso_ppx_qos_pri_s cn68xx; struct cvmx_sso_ppx_qos_pri_s cn68xxp1; }; typedef union cvmx_sso_ppx_qos_pri cvmx_sso_ppx_qos_pri_t; /** * cvmx_sso_pp_strict * * SSO_PP_STRICT = SSO Strict Priority * * This register controls getting work from the input queues. If the bit * corresponding to a PP is set, that PP will not take work off the input * queues until it is known that there is no higher-priority work available. * * Setting SSO_PP_STRICT may incur a performance penalty if highest-priority * work is not found early. * * It is possible to starve a PP of work with SSO_PP_STRICT. If the * SSO_PPX_GRP_MSK for a PP masks-out much of the work added to the input * queues that are higher-priority for that PP, and if there is a constant * stream of work through one or more of those higher-priority input queues, * then that PP may not accept work from lower-priority input queues. This can * be alleviated by ensuring that most or all the work added to the * higher-priority input queues for a PP with SSO_PP_STRICT set are in a group * acceptable to that PP. * * It is also possible to neglect work in an input queue if SSO_PP_STRICT is * used. If an input queue is a lower-priority queue for all PPs, and if all * the PPs have their corresponding bit in SSO_PP_STRICT set, then work may * never be taken (or be seldom taken) from that queue. This can be alleviated * by ensuring that work in all input queues can be serviced by one or more PPs * that do not have SSO_PP_STRICT set, or that the input queue is the * highest-priority input queue for one or more PPs that do have SSO_PP_STRICT * set. */ union cvmx_sso_pp_strict { uint64_t u64; struct cvmx_sso_pp_strict_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_32_63 : 32; uint64_t pp_strict : 32; /**< Corresponding PP operates in strict mode. */ #else uint64_t pp_strict : 32; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_sso_pp_strict_s cn68xx; struct cvmx_sso_pp_strict_s cn68xxp1; }; typedef union cvmx_sso_pp_strict cvmx_sso_pp_strict_t; /** * cvmx_sso_qos#_rnd * * CSR align addresses: =========================================================================================================== * SSO_QOS(0..7)_RND = SSO QOS Issue Round Register * (one per IQ) * * The number of arbitration rounds each QOS level participates in. */ union cvmx_sso_qosx_rnd { uint64_t u64; struct cvmx_sso_qosx_rnd_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_8_63 : 56; uint64_t rnds_qos : 8; /**< Number of rounds to participate in for IQ(X). */ #else uint64_t rnds_qos : 8; uint64_t reserved_8_63 : 56; #endif } s; struct cvmx_sso_qosx_rnd_s cn68xx; struct cvmx_sso_qosx_rnd_s cn68xxp1; }; typedef union cvmx_sso_qosx_rnd cvmx_sso_qosx_rnd_t; /** * cvmx_sso_qos_thr# * * CSR reserved addresses: (24): 0xa040..0xa0f8 * CSR align addresses: =========================================================================================================== * SSO_QOS_THRX = SSO QOS Threshold Register * (one per QOS level) * * Contains the thresholds for allocating SSO internal storage buffers. If the * number of remaining free buffers drops below the minimum threshold (MIN_THR) * or the number of allocated buffers for this QOS level rises above the * maximum threshold (MAX_THR), future incoming work queue entries will be * buffered externally rather than internally. This register also contains the * number of internal buffers currently allocated to this QOS level (BUF_CNT). */ union cvmx_sso_qos_thrx { uint64_t u64; struct cvmx_sso_qos_thrx_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_40_63 : 24; uint64_t buf_cnt : 12; /**< # of internal buffers allocated to QOS level X */ uint64_t reserved_26_27 : 2; uint64_t max_thr : 12; /**< Max threshold for QOS level X For performance reasons, MAX_THR can have a slop of 4 WQE for QOS level X. */ uint64_t reserved_12_13 : 2; uint64_t min_thr : 12; /**< Min threshold for QOS level X For performance reasons, MIN_THR can have a slop of 4 WQEs for QOS level X. */ #else uint64_t min_thr : 12; uint64_t reserved_12_13 : 2; uint64_t max_thr : 12; uint64_t reserved_26_27 : 2; uint64_t buf_cnt : 12; uint64_t reserved_40_63 : 24; #endif } s; struct cvmx_sso_qos_thrx_s cn68xx; struct cvmx_sso_qos_thrx_s cn68xxp1; }; typedef union cvmx_sso_qos_thrx cvmx_sso_qos_thrx_t; /** * cvmx_sso_qos_we * * SSO_QOS_WE = SSO WE Buffers * * This register contains a read-only count of the current number of free * buffers (FREE_CNT) and the total number of tag chain heads on the de-schedule list * (DES_CNT) (which is not the same as the total number of entries on all of the descheduled * tag chains.) */ union cvmx_sso_qos_we { uint64_t u64; struct cvmx_sso_qos_we_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_26_63 : 38; uint64_t des_cnt : 12; /**< Number of buffers on de-schedule list */ uint64_t reserved_12_13 : 2; uint64_t free_cnt : 12; /**< Number of total free buffers */ #else uint64_t free_cnt : 12; uint64_t reserved_12_13 : 2; uint64_t des_cnt : 12; uint64_t reserved_26_63 : 38; #endif } s; struct cvmx_sso_qos_we_s cn68xx; struct cvmx_sso_qos_we_s cn68xxp1; }; typedef union cvmx_sso_qos_we cvmx_sso_qos_we_t; /** * cvmx_sso_reset * * SSO_RESET = SSO Soft Reset * * Writing a one to SSO_RESET[RESET] will reset the SSO. After receiving a * store to this CSR, the SSO must not be sent any other operations for 2500 * sclk cycles. * * Note that the contents of this register are reset along with the rest of the * SSO. * * IMPLEMENTATION NOTES--NOT FOR SPEC: * The SSO must return the bus credit associated with the CSR store used * to write this register before reseting itself. And the RSL tree * that passes through the SSO must continue to work for RSL operations * that do not target the SSO itself. */ union cvmx_sso_reset { uint64_t u64; struct cvmx_sso_reset_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_1_63 : 63; uint64_t reset : 1; /**< Reset the SSO */ #else uint64_t reset : 1; uint64_t reserved_1_63 : 63; #endif } s; struct cvmx_sso_reset_s cn68xx; }; typedef union cvmx_sso_reset cvmx_sso_reset_t; /** * cvmx_sso_rwq_head_ptr# * * CSR reserved addresses: (24): 0xb040..0xb0f8 * CSR align addresses: =========================================================================================================== * SSO_RWQ_HEAD_PTRX = SSO Remote Queue Head Register * (one per QOS level) * Contains the ptr to the first entry of the remote linked list(s) for a particular * QoS level. SW should initialize the remote linked list(s) by programming * SSO_RWQ_HEAD_PTRX and SSO_RWQ_TAIL_PTRX to identical values. */ union cvmx_sso_rwq_head_ptrx { uint64_t u64; struct cvmx_sso_rwq_head_ptrx_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_38_63 : 26; uint64_t ptr : 31; /**< Head Pointer */ uint64_t reserved_5_6 : 2; uint64_t rctr : 5; /**< Index of next WQE entry in fill packet to be processed (inbound queues) */ #else uint64_t rctr : 5; uint64_t reserved_5_6 : 2; uint64_t ptr : 31; uint64_t reserved_38_63 : 26; #endif } s; struct cvmx_sso_rwq_head_ptrx_s cn68xx; struct cvmx_sso_rwq_head_ptrx_s cn68xxp1; }; typedef union cvmx_sso_rwq_head_ptrx cvmx_sso_rwq_head_ptrx_t; /** * cvmx_sso_rwq_pop_fptr * * SSO_RWQ_POP_FPTR = SSO Pop Free Pointer * * This register is used by SW to remove pointers for buffer-reallocation and diagnostics, and * should only be used when SSO is idle. * * To remove ALL pointers, software must insure that there are modulus 16 * pointers in the FPA. To do this, SSO_CFG.RWQ_BYP_DIS must be set, the FPA * pointer count read, and enough fake buffers pushed via SSO_RWQ_PSH_FPTR to * bring the FPA pointer count up to mod 16. */ union cvmx_sso_rwq_pop_fptr { uint64_t u64; struct cvmx_sso_rwq_pop_fptr_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t val : 1; /**< Free Pointer Valid */ uint64_t cnt : 6; /**< fptr_in count */ uint64_t reserved_38_56 : 19; uint64_t fptr : 31; /**< Free Pointer */ uint64_t reserved_0_6 : 7; #else uint64_t reserved_0_6 : 7; uint64_t fptr : 31; uint64_t reserved_38_56 : 19; uint64_t cnt : 6; uint64_t val : 1; #endif } s; struct cvmx_sso_rwq_pop_fptr_s cn68xx; struct cvmx_sso_rwq_pop_fptr_cn68xxp1 { #ifdef __BIG_ENDIAN_BITFIELD uint64_t val : 1; /**< Free Pointer Valid */ uint64_t reserved_38_62 : 25; uint64_t fptr : 31; /**< Free Pointer */ uint64_t reserved_0_6 : 7; #else uint64_t reserved_0_6 : 7; uint64_t fptr : 31; uint64_t reserved_38_62 : 25; uint64_t val : 1; #endif } cn68xxp1; }; typedef union cvmx_sso_rwq_pop_fptr cvmx_sso_rwq_pop_fptr_t; /** * cvmx_sso_rwq_psh_fptr * * CSR reserved addresses: (56): 0xc240..0xc3f8 * SSO_RWQ_PSH_FPTR = SSO Free Pointer FIFO * * This register is used by SW to initialize the SSO with a pool of free * pointers by writing the FPTR field whenever FULL = 0. Free pointers are * fetched/released from/to the pool when accessing WQE entries stored remotely * (in remote linked lists). Free pointers should be 128 byte aligned, each of * 256 bytes. This register should only be used when SSO is idle. * * Software needs to set aside buffering for * 8 + 48 + ROUNDUP(N/26) * * where as many as N DRAM work queue entries may be used. The first 8 buffers * are used to setup the SSO_RWQ_HEAD_PTR and SSO_RWQ_TAIL_PTRs, and the * remainder are pushed via this register. * * IMPLEMENTATION NOTES--NOT FOR SPEC: * 48 avoids false out of buffer error due to (16) FPA and in-sso FPA buffering (32) * 26 is number of WAE's per 256B buffer */ union cvmx_sso_rwq_psh_fptr { uint64_t u64; struct cvmx_sso_rwq_psh_fptr_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t full : 1; /**< FIFO Full. When set, the FPA is busy writing entries and software must wait before adding new entries. */ uint64_t cnt : 4; /**< fptr_out count */ uint64_t reserved_38_58 : 21; uint64_t fptr : 31; /**< Free Pointer */ uint64_t reserved_0_6 : 7; #else uint64_t reserved_0_6 : 7; uint64_t fptr : 31; uint64_t reserved_38_58 : 21; uint64_t cnt : 4; uint64_t full : 1; #endif } s; struct cvmx_sso_rwq_psh_fptr_s cn68xx; struct cvmx_sso_rwq_psh_fptr_cn68xxp1 { #ifdef __BIG_ENDIAN_BITFIELD uint64_t full : 1; /**< FIFO Full. When set, the FPA is busy writing entries and software must wait before adding new entries. */ uint64_t reserved_38_62 : 25; uint64_t fptr : 31; /**< Free Pointer */ uint64_t reserved_0_6 : 7; #else uint64_t reserved_0_6 : 7; uint64_t fptr : 31; uint64_t reserved_38_62 : 25; uint64_t full : 1; #endif } cn68xxp1; }; typedef union cvmx_sso_rwq_psh_fptr cvmx_sso_rwq_psh_fptr_t; /** * cvmx_sso_rwq_tail_ptr# * * CSR reserved addresses: (56): 0xc040..0xc1f8 * SSO_RWQ_TAIL_PTRX = SSO Remote Queue Tail Register * (one per QOS level) * Contains the ptr to the last entry of the remote linked list(s) for a particular * QoS level. SW must initialize the remote linked list(s) by programming * SSO_RWQ_HEAD_PTRX and SSO_RWQ_TAIL_PTRX to identical values. */ union cvmx_sso_rwq_tail_ptrx { uint64_t u64; struct cvmx_sso_rwq_tail_ptrx_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_38_63 : 26; uint64_t ptr : 31; /**< Tail Pointer */ uint64_t reserved_5_6 : 2; uint64_t rctr : 5; /**< Number of entries waiting to be sent out to external RAM (outbound queues) */ #else uint64_t rctr : 5; uint64_t reserved_5_6 : 2; uint64_t ptr : 31; uint64_t reserved_38_63 : 26; #endif } s; struct cvmx_sso_rwq_tail_ptrx_s cn68xx; struct cvmx_sso_rwq_tail_ptrx_s cn68xxp1; }; typedef union cvmx_sso_rwq_tail_ptrx cvmx_sso_rwq_tail_ptrx_t; /** * cvmx_sso_ts_pc * * SSO_TS_PC = SSO Tag Switch Performance Counter * * Counts the number of tag switch requests. * Counter rolls over through zero when max value exceeded. */ union cvmx_sso_ts_pc { uint64_t u64; struct cvmx_sso_ts_pc_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t ts_pc : 64; /**< Tag switch performance counter */ #else uint64_t ts_pc : 64; #endif } s; struct cvmx_sso_ts_pc_s cn68xx; struct cvmx_sso_ts_pc_s cn68xxp1; }; typedef union cvmx_sso_ts_pc cvmx_sso_ts_pc_t; /** * cvmx_sso_wa_com_pc * * SSO_WA_COM_PC = SSO Work Add Combined Performance Counter * * Counts the number of add new work requests for all QOS levels. * Counter rolls over through zero when max value exceeded. */ union cvmx_sso_wa_com_pc { uint64_t u64; struct cvmx_sso_wa_com_pc_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t wa_pc : 64; /**< Work add combined performance counter */ #else uint64_t wa_pc : 64; #endif } s; struct cvmx_sso_wa_com_pc_s cn68xx; struct cvmx_sso_wa_com_pc_s cn68xxp1; }; typedef union cvmx_sso_wa_com_pc cvmx_sso_wa_com_pc_t; /** * cvmx_sso_wa_pc# * * CSR reserved addresses: (64): 0x4200..0x43f8 * CSR align addresses: =========================================================================================================== * SSO_WA_PCX = SSO Work Add Performance Counter * (one per QOS level) * * Counts the number of add new work requests for each QOS level. * Counter rolls over through zero when max value exceeded. */ union cvmx_sso_wa_pcx { uint64_t u64; struct cvmx_sso_wa_pcx_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t wa_pc : 64; /**< Work add performance counter for QOS level X */ #else uint64_t wa_pc : 64; #endif } s; struct cvmx_sso_wa_pcx_s cn68xx; struct cvmx_sso_wa_pcx_s cn68xxp1; }; typedef union cvmx_sso_wa_pcx cvmx_sso_wa_pcx_t; /** * cvmx_sso_wq_int * * Note, the old POW offsets ran from 0x0 to 0x3f8, leaving the next available slot at 0x400. * To ensure no overlap, start on 4k boundary: 0x1000. * SSO_WQ_INT = SSO Work Queue Interrupt Register * * Contains the bits (one per group) that set work queue interrupts and are * used to clear these interrupts. For more information regarding this * register, see the interrupt section of the SSO spec. */ union cvmx_sso_wq_int { uint64_t u64; struct cvmx_sso_wq_int_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t wq_int : 64; /**< Work queue interrupt bits Corresponding WQ_INT bit is set by HW whenever: - SSO_WQ_INT_CNTX[IQ_CNT] >= SSO_WQ_INT_THRX[IQ_THR] and the threshold interrupt is not disabled. SSO_WQ_IQ_DISX[IQ_DIS]==1 disables the interrupt SSO_WQ_INT_THRX[IQ_THR]==0 disables the int. - SSO_WQ_INT_CNTX[DS_CNT] >= SSO_WQ_INT_THRX[DS_THR] and the threshold interrupt is not disabled SSO_WQ_INT_THRX[DS_THR]==0 disables the int. - SSO_WQ_INT_CNTX[TC_CNT]==1 when periodic counter SSO_WQ_INT_PC[PC]==0 and SSO_WQ_INT_THRX[TC_EN]==1 and at least one of: - SSO_WQ_INT_CNTX[IQ_CNT] > 0 - SSO_WQ_INT_CNTX[DS_CNT] > 0 */ #else uint64_t wq_int : 64; #endif } s; struct cvmx_sso_wq_int_s cn68xx; struct cvmx_sso_wq_int_s cn68xxp1; }; typedef union cvmx_sso_wq_int cvmx_sso_wq_int_t; /** * cvmx_sso_wq_int_cnt# * * CSR reserved addresses: (64): 0x7200..0x73f8 * CSR align addresses: =========================================================================================================== * SSO_WQ_INT_CNTX = SSO Work Queue Interrupt Count Register * (one per group) * * Contains a read-only copy of the counts used to trigger work queue * interrupts. For more information regarding this register, see the interrupt * section. */ union cvmx_sso_wq_int_cntx { uint64_t u64; struct cvmx_sso_wq_int_cntx_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_32_63 : 32; uint64_t tc_cnt : 4; /**< Time counter current value for group X HW sets TC_CNT to SSO_WQ_INT_THRX[TC_THR] whenever: - corresponding SSO_WQ_INT_CNTX[IQ_CNT]==0 and corresponding SSO_WQ_INT_CNTX[DS_CNT]==0 - corresponding SSO_WQ_INT[WQ_INT] is written with a 1 by SW - corresponding SSO_WQ_IQ_DIS[IQ_DIS] is written with a 1 by SW - corresponding SSO_WQ_INT_THRX is written by SW - TC_CNT==1 and periodic counter SSO_WQ_INT_PC[PC]==0 Otherwise, HW decrements TC_CNT whenever the periodic counter SSO_WQ_INT_PC[PC]==0. TC_CNT is 0 whenever SSO_WQ_INT_THRX[TC_THR]==0. */ uint64_t reserved_26_27 : 2; uint64_t ds_cnt : 12; /**< De-schedule executable count for group X */ uint64_t reserved_12_13 : 2; uint64_t iq_cnt : 12; /**< Input queue executable count for group X */ #else uint64_t iq_cnt : 12; uint64_t reserved_12_13 : 2; uint64_t ds_cnt : 12; uint64_t reserved_26_27 : 2; uint64_t tc_cnt : 4; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_sso_wq_int_cntx_s cn68xx; struct cvmx_sso_wq_int_cntx_s cn68xxp1; }; typedef union cvmx_sso_wq_int_cntx cvmx_sso_wq_int_cntx_t; /** * cvmx_sso_wq_int_pc * * CSR reserved addresses: (1): 0x1018..0x1018 * SSO_WQ_INT_PC = SSO Work Queue Interrupt Periodic Counter Register * * Contains the threshold value for the work queue interrupt periodic counter * and also a read-only copy of the periodic counter. For more information * regarding this register, see the interrupt section. */ union cvmx_sso_wq_int_pc { uint64_t u64; struct cvmx_sso_wq_int_pc_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_60_63 : 4; uint64_t pc : 28; /**< Work queue interrupt periodic counter */ uint64_t reserved_28_31 : 4; uint64_t pc_thr : 20; /**< Work queue interrupt periodic counter threshold */ uint64_t reserved_0_7 : 8; #else uint64_t reserved_0_7 : 8; uint64_t pc_thr : 20; uint64_t reserved_28_31 : 4; uint64_t pc : 28; uint64_t reserved_60_63 : 4; #endif } s; struct cvmx_sso_wq_int_pc_s cn68xx; struct cvmx_sso_wq_int_pc_s cn68xxp1; }; typedef union cvmx_sso_wq_int_pc cvmx_sso_wq_int_pc_t; /** * cvmx_sso_wq_int_thr# * * CSR reserved addresses: (96): 0x6100..0x63f8 * CSR align addresses: =========================================================================================================== * SSO_WQ_INT_THR(0..63) = SSO Work Queue Interrupt Threshold Registers * (one per group) * * Contains the thresholds for enabling and setting work queue interrupts. For * more information, see the interrupt section. * * Note: Up to 16 of the SSO's internal storage buffers can be allocated * for hardware use and are therefore not available for incoming work queue * entries. Additionally, any WS that is not in the EMPTY state consumes a * buffer. Thus in a 32 PP system, it is not advisable to set either IQ_THR or * DS_THR to greater than 2048 - 16 - 32*2 = 1968. Doing so may prevent the * interrupt from ever triggering. * * Priorities for QOS levels 0..7 */ union cvmx_sso_wq_int_thrx { uint64_t u64; struct cvmx_sso_wq_int_thrx_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t reserved_33_63 : 31; uint64_t tc_en : 1; /**< Time counter interrupt enable for group X TC_EN must be zero when TC_THR==0 */ uint64_t tc_thr : 4; /**< Time counter interrupt threshold for group X When TC_THR==0, SSO_WQ_INT_CNTX[TC_CNT] is zero */ uint64_t reserved_26_27 : 2; uint64_t ds_thr : 12; /**< De-schedule count threshold for group X DS_THR==0 disables the threshold interrupt */ uint64_t reserved_12_13 : 2; uint64_t iq_thr : 12; /**< Input queue count threshold for group X IQ_THR==0 disables the threshold interrupt */ #else uint64_t iq_thr : 12; uint64_t reserved_12_13 : 2; uint64_t ds_thr : 12; uint64_t reserved_26_27 : 2; uint64_t tc_thr : 4; uint64_t tc_en : 1; uint64_t reserved_33_63 : 31; #endif } s; struct cvmx_sso_wq_int_thrx_s cn68xx; struct cvmx_sso_wq_int_thrx_s cn68xxp1; }; typedef union cvmx_sso_wq_int_thrx cvmx_sso_wq_int_thrx_t; /** * cvmx_sso_wq_iq_dis * * CSR reserved addresses: (1): 0x1008..0x1008 * SSO_WQ_IQ_DIS = SSO Input Queue Interrupt Temporary Disable Mask * * Contains the input queue interrupt temporary disable bits (one per group). * For more information regarding this register, see the interrupt section. */ union cvmx_sso_wq_iq_dis { uint64_t u64; struct cvmx_sso_wq_iq_dis_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t iq_dis : 64; /**< Input queue interrupt temporary disable mask Corresponding SSO_WQ_INTX[WQ_INT] bit cannot be set due to IQ_CNT/IQ_THR check when this bit is set. Corresponding IQ_DIS bit is cleared by HW whenever: - SSO_WQ_INT_CNTX[IQ_CNT] is zero, or - SSO_WQ_INT_CNTX[TC_CNT]==1 when periodic counter SSO_WQ_INT_PC[PC]==0 */ #else uint64_t iq_dis : 64; #endif } s; struct cvmx_sso_wq_iq_dis_s cn68xx; struct cvmx_sso_wq_iq_dis_s cn68xxp1; }; typedef union cvmx_sso_wq_iq_dis cvmx_sso_wq_iq_dis_t; /** * cvmx_sso_ws_pc# * * CSR reserved addresses: (225): 0x3100..0x3800 * CSR align addresses: =========================================================================================================== * SSO_WS_PCX = SSO Work Schedule Performance Counter * (one per group) * * Counts the number of work schedules for each group. * Counter rolls over through zero when max value exceeded. */ union cvmx_sso_ws_pcx { uint64_t u64; struct cvmx_sso_ws_pcx_s { #ifdef __BIG_ENDIAN_BITFIELD uint64_t ws_pc : 64; /**< Work schedule performance counter for group X */ #else uint64_t ws_pc : 64; #endif } s; struct cvmx_sso_ws_pcx_s cn68xx; struct cvmx_sso_ws_pcx_s cn68xxp1; }; typedef union cvmx_sso_ws_pcx cvmx_sso_ws_pcx_t; #endif