/***********************license start*************** * Copyright (c) 2003-2010 Cavium Inc. (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Inc. nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * @file * Functions for accessing memory and CSRs on Octeon when we are compiling * natively. * *
$Revision: 38306 $
*/ #ifndef __CVMX_ACCESS_NATIVE_H__ #define __CVMX_ACCESS_NATIVE_H__ #ifdef __cplusplus extern "C" { #endif /** * Returns the Octeon processor ID. * * @return Octeon processor ID from COP0 */ static inline uint32_t cvmx_get_proc_id(void) { #ifdef CVMX_BUILD_FOR_LINUX_USER extern uint32_t cvmx_app_init_processor_id; return cvmx_app_init_processor_id; #else uint32_t id; asm ("mfc0 %0, $15,0" : "=r" (id)); return id; #endif } /** * Convert a memory pointer (void*) into a hardware compatable * memory address (uint64_t). Octeon hardware widgets don't * understand logical addresses. * * @param ptr C style memory pointer * @return Hardware physical address */ static inline uint64_t cvmx_ptr_to_phys(void *ptr) { if (CVMX_ENABLE_PARAMETER_CHECKING) cvmx_warn_if(ptr==NULL, "cvmx_ptr_to_phys() passed a NULL pointer\n"); #ifdef CVMX_BUILD_FOR_UBOOT uint64_t uboot_tlb_ptr_to_phys(void *ptr); if (((uint32_t)ptr) < 0x80000000) { /* Handle useg (unmapped due to ERL) here*/ return(CAST64(ptr) & 0x7FFFFFFF); } else if (((uint32_t)ptr) < 0xC0000000) { /* Here we handle KSEG0/KSEG1 _pointers_. We know we are dealing ** with 32 bit only values, so we treat them that way. Note that ** a cvmx_phys_to_ptr(cvmx_ptr_to_phys(X)) will not return X in this case, ** but the physical address of the KSEG0/KSEG1 address. */ return(CAST64(ptr) & 0x1FFFFFFF); } else return(uboot_tlb_ptr_to_phys(ptr)); /* Should not get get here in !TLB case */ #endif #ifdef __linux__ if (sizeof(void*) == 8) { /* We're running in 64 bit mode. Normally this means that we can use 40 bits of address space (the hardware limit). Unfortunately there is one case were we need to limit this to 30 bits, sign extended 32 bit. Although these are 64 bits wide, only 30 bits can be used */ if ((CAST64(ptr) >> 62) == 3) return CAST64(ptr) & cvmx_build_mask(30); else return CAST64(ptr) & cvmx_build_mask(40); } else { #ifdef __KERNEL__ return (long)(ptr) & 0x1fffffff; #else extern uint64_t linux_mem32_offset; if (cvmx_likely(ptr)) return CAST64(ptr) - linux_mem32_offset; else return 0; #endif } #elif defined(_WRS_KERNEL) return (long)(ptr) & 0x7fffffff; #elif defined(VXWORKS_USER_MAPPINGS) /* This mapping mode is used in vxWorks 5.5 to support 2GB of ram. The 2nd 256MB is mapped at 0x10000000 and the rest of memory is 1:1 */ uint64_t address = (long)ptr; if (address & 0x80000000) return address & 0x1fffffff; /* KSEG pointers directly map the lower 256MB and bootbus */ else if ((address >= 0x10000000) && (address < 0x20000000)) return address + 0x400000000ull; /* 256MB-512MB is a virtual mapping for the 2nd 256MB */ else return address; /* Looks to be a 1:1 mapped userspace pointer */ #elif defined(__FreeBSD__) && defined(_KERNEL) return (pmap_kextract((vm_offset_t)ptr)); #else #if CVMX_USE_1_TO_1_TLB_MAPPINGS /* We are assumung we're running the Simple Executive standalone. In this mode the TLB is setup to perform 1:1 mapping and 32 bit sign extended addresses are never used. Since we know all this, save the masking cycles and do nothing */ return CAST64(ptr); #else if (sizeof(void*) == 8) { /* We're running in 64 bit mode. Normally this means that we can use 40 bits of address space (the hardware limit). Unfortunately there is one case were we need to limit this to 30 bits, sign extended 32 bit. Although these are 64 bits wide, only 30 bits can be used */ if ((CAST64(ptr) >> 62) == 3) return CAST64(ptr) & cvmx_build_mask(30); else return CAST64(ptr) & cvmx_build_mask(40); } else return (long)(ptr) & 0x7fffffff; #endif #endif } /** * Convert a hardware physical address (uint64_t) into a * memory pointer (void *). * * @param physical_address * Hardware physical address to memory * @return Pointer to memory */ static inline void *cvmx_phys_to_ptr(uint64_t physical_address) { if (CVMX_ENABLE_PARAMETER_CHECKING) cvmx_warn_if(physical_address==0, "cvmx_phys_to_ptr() passed a zero address\n"); #ifdef CVMX_BUILD_FOR_UBOOT /* U-boot is a special case, as it is running in 32 bit mode, using the TLB to map code/data ** which can have a physical address above the 32 bit address space. 1-1 mappings are used ** to allow the low 2 GBytes to be accessed as in error level. ** ** NOTE: This conversion can cause problems in u-boot, as users may want to enter addresses ** like 0xBFC00000 (kseg1 boot bus address), which is a valid 64 bit physical address, ** but is likely intended to be a boot bus address. */ if (physical_address < 0x80000000) { /* Handle useg here. ERL is set, so useg is unmapped. This is the only physical ** address range that is directly addressable by u-boot. */ return CASTPTR(void, physical_address); } else { DECLARE_GLOBAL_DATA_PTR; extern char uboot_start; /* Above 0x80000000 we can only support one case - a physical address ** that is mapped for u-boot code/data. We check against the u-boot mem range, ** and return NULL if it is out of this range. */ if (physical_address >= gd->bd->bi_uboot_ram_addr && physical_address < gd->bd->bi_uboot_ram_addr + gd->bd->bi_uboot_ram_used_size) { return ((char *)&uboot_start + (physical_address - gd->bd->bi_uboot_ram_addr)); } else return(NULL); } if (physical_address >= 0x80000000) return NULL; else #endif #ifdef __linux__ if (sizeof(void*) == 8) { /* Just set the top bit, avoiding any TLB uglyness */ return CASTPTR(void, CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, physical_address)); } else { #ifdef __KERNEL__ return CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0, physical_address)); #else extern uint64_t linux_mem32_offset; if (cvmx_likely(physical_address)) return CASTPTR(void, physical_address + linux_mem32_offset); else return NULL; #endif } #elif defined(_WRS_KERNEL) return CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0, physical_address)); #elif defined(VXWORKS_USER_MAPPINGS) /* This mapping mode is used in vxWorks 5.5 to support 2GB of ram. The 2nd 256MB is mapped at 0x10000000 and the rest of memory is 1:1 */ if ((physical_address >= 0x10000000) && (physical_address < 0x20000000)) return CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0, physical_address)); else if ((OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX)) && (physical_address >= 0x410000000ull) && (physical_address < 0x420000000ull)) return CASTPTR(void, physical_address - 0x400000000ull); else return CASTPTR(void, physical_address); #elif defined(__FreeBSD__) && defined(_KERNEL) #if defined(__mips_n64) return CASTPTR(void, CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, physical_address)); #else if (physical_address < 0x20000000) return CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0, physical_address)); else panic("%s: mapping high address (%#jx) not yet supported.\n", __func__, (uintmax_t)physical_address); #endif #else #if CVMX_USE_1_TO_1_TLB_MAPPINGS /* We are assumung we're running the Simple Executive standalone. In this mode the TLB is setup to perform 1:1 mapping and 32 bit sign extended addresses are never used. Since we know all this, save bit insert cycles and do nothing */ return CASTPTR(void, physical_address); #else /* Set the XKPHYS/KSEG0 bit as appropriate based on ABI */ if (sizeof(void*) == 8) return CASTPTR(void, CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, physical_address)); else return CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0, physical_address)); #endif #endif } /* The following #if controls the definition of the macro CVMX_BUILD_WRITE64. This macro is used to build a store operation to a full 64bit address. With a 64bit ABI, this can be done with a simple pointer access. 32bit ABIs require more complicated assembly */ #if defined(CVMX_ABI_N64) || defined(CVMX_ABI_EABI) /* We have a full 64bit ABI. Writing to a 64bit address can be done with a simple volatile pointer */ #define CVMX_BUILD_WRITE64(TYPE, ST) \ static inline void cvmx_write64_##TYPE(uint64_t addr, TYPE##_t val) \ { \ *CASTPTR(volatile TYPE##_t, addr) = val; \ } #elif defined(CVMX_ABI_N32) /* The N32 ABI passes all 64bit quantities in a single register, so it is possible to use the arguments directly. We have to use inline assembly for the actual store since a pointer would truncate the address */ #define CVMX_BUILD_WRITE64(TYPE, ST) \ static inline void cvmx_write64_##TYPE(uint64_t addr, TYPE##_t val) \ { \ asm volatile (ST " %[v], 0(%[c])" ::[v] "r" (val), [c] "r" (addr)); \ } #elif defined(CVMX_ABI_O32) #ifdef __KERNEL__ #define CVMX_BUILD_WRITE64(TYPE, LT) extern void cvmx_write64_##TYPE(uint64_t csr_addr, TYPE##_t val); #else /* Ok, now the ugly stuff starts. O32 splits 64bit quantities into two separate registers. Assembly must be used to put them back together before they're used. What should be a simple store becomes a convoluted mess of shifts and ors */ #define CVMX_BUILD_WRITE64(TYPE, ST) \ static inline void cvmx_write64_##TYPE(uint64_t csr_addr, TYPE##_t val) \ { \ if (sizeof(TYPE##_t) == 8) \ { \ uint32_t csr_addrh = csr_addr>>32; \ uint32_t csr_addrl = csr_addr; \ uint32_t valh = (uint64_t)val>>32; \ uint32_t vall = val; \ uint32_t tmp1; \ uint32_t tmp2; \ uint32_t tmp3; \ \ asm volatile ( \ ".set push\n" \ ".set mips64\n" \ "dsll %[tmp1], %[valh], 32\n" \ "dsll %[tmp2], %[csrh], 32\n" \ "dsll %[tmp3], %[vall], 32\n" \ "dsrl %[tmp3], %[tmp3], 32\n" \ "or %[tmp1], %[tmp1], %[tmp3]\n" \ "dsll %[tmp3], %[csrl], 32\n" \ "dsrl %[tmp3], %[tmp3], 32\n" \ "or %[tmp2], %[tmp2], %[tmp3]\n" \ ST " %[tmp1], 0(%[tmp2])\n" \ ".set pop\n" \ : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [tmp3] "=&r" (tmp3)\ : [valh] "r" (valh), [vall] "r" (vall), \ [csrh] "r" (csr_addrh), [csrl] "r" (csr_addrl) \ ); \ } \ else \ { \ uint32_t csr_addrh = csr_addr>>32; \ uint32_t csr_addrl = csr_addr; \ uint32_t tmp1; \ uint32_t tmp2; \ \ asm volatile ( \ ".set push\n" \ ".set mips64\n" \ "dsll %[tmp1], %[csrh], 32\n" \ "dsll %[tmp2], %[csrl], 32\n" \ "dsrl %[tmp2], %[tmp2], 32\n" \ "or %[tmp1], %[tmp1], %[tmp2]\n" \ ST " %[val], 0(%[tmp1])\n" \ ".set pop\n" \ : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2) \ : [val] "r" (val), [csrh] "r" (csr_addrh), \ [csrl] "r" (csr_addrl) \ ); \ } \ } #endif #else /* cvmx-abi.h didn't recognize the ABI. Force the compile to fail. */ #error: Unsupported ABI #endif /* The following #if controls the definition of the macro CVMX_BUILD_READ64. This macro is used to build a load operation from a full 64bit address. With a 64bit ABI, this can be done with a simple pointer access. 32bit ABIs require more complicated assembly */ #if defined(CVMX_ABI_N64) || defined(CVMX_ABI_EABI) /* We have a full 64bit ABI. Writing to a 64bit address can be done with a simple volatile pointer */ #define CVMX_BUILD_READ64(TYPE, LT) \ static inline TYPE##_t cvmx_read64_##TYPE(uint64_t addr) \ { \ return *CASTPTR(volatile TYPE##_t, addr); \ } #elif defined(CVMX_ABI_N32) /* The N32 ABI passes all 64bit quantities in a single register, so it is possible to use the arguments directly. We have to use inline assembly for the actual store since a pointer would truncate the address */ #define CVMX_BUILD_READ64(TYPE, LT) \ static inline TYPE##_t cvmx_read64_##TYPE(uint64_t addr) \ { \ TYPE##_t val; \ asm volatile (LT " %[v], 0(%[c])": [v] "=r" (val) : [c] "r" (addr));\ return val; \ } #elif defined(CVMX_ABI_O32) #ifdef __KERNEL__ #define CVMX_BUILD_READ64(TYPE, LT) extern TYPE##_t cvmx_read64_##TYPE(uint64_t csr_addr); #else /* Ok, now the ugly stuff starts. O32 splits 64bit quantities into two separate registers. Assembly must be used to put them back together before they're used. What should be a simple load becomes a convoluted mess of shifts and ors */ #define CVMX_BUILD_READ64(TYPE, LT) \ static inline TYPE##_t cvmx_read64_##TYPE(uint64_t csr_addr) \ { \ if (sizeof(TYPE##_t) == 8) \ { \ uint32_t csr_addrh = csr_addr>>32; \ uint32_t csr_addrl = csr_addr; \ uint32_t valh; \ uint32_t vall; \ \ asm volatile ( \ ".set push\n" \ ".set mips64\n" \ "dsll %[valh], %[csrh], 32\n" \ "dsll %[vall], %[csrl], 32\n" \ "dsrl %[vall], %[vall], 32\n" \ "or %[valh], %[valh], %[vall]\n" \ LT " %[vall], 0(%[valh])\n" \ "dsrl %[valh], %[vall], 32\n" \ "sll %[vall], 0\n" \ "sll %[valh], 0\n" \ ".set pop\n" \ : [valh] "=&r" (valh), [vall] "=&r" (vall) \ : [csrh] "r" (csr_addrh), [csrl] "r" (csr_addrl) \ ); \ return ((uint64_t)valh<<32) | vall; \ } \ else \ { \ uint32_t csr_addrh = csr_addr>>32; \ uint32_t csr_addrl = csr_addr; \ TYPE##_t val; \ uint32_t tmp; \ \ asm volatile ( \ ".set push\n" \ ".set mips64\n" \ "dsll %[val], %[csrh], 32\n" \ "dsll %[tmp], %[csrl], 32\n" \ "dsrl %[tmp], %[tmp], 32\n" \ "or %[val], %[val], %[tmp]\n" \ LT " %[val], 0(%[val])\n" \ ".set pop\n" \ : [val] "=&r" (val), [tmp] "=&r" (tmp) \ : [csrh] "r" (csr_addrh), [csrl] "r" (csr_addrl) \ ); \ return val; \ } \ } #endif /* __KERNEL__ */ #else /* cvmx-abi.h didn't recognize the ABI. Force the compile to fail. */ #error: Unsupported ABI #endif /* The following defines 8 functions for writing to a 64bit address. Each takes two arguments, the address and the value to write. cvmx_write64_int64 cvmx_write64_uint64 cvmx_write64_int32 cvmx_write64_uint32 cvmx_write64_int16 cvmx_write64_uint16 cvmx_write64_int8 cvmx_write64_uint8 */ CVMX_BUILD_WRITE64(int64, "sd"); CVMX_BUILD_WRITE64(int32, "sw"); CVMX_BUILD_WRITE64(int16, "sh"); CVMX_BUILD_WRITE64(int8, "sb"); CVMX_BUILD_WRITE64(uint64, "sd"); CVMX_BUILD_WRITE64(uint32, "sw"); CVMX_BUILD_WRITE64(uint16, "sh"); CVMX_BUILD_WRITE64(uint8, "sb"); /* The following defines 8 functions for reading from a 64bit address. Each takes the address as the only argument cvmx_read64_int64 cvmx_read64_uint64 cvmx_read64_int32 cvmx_read64_uint32 cvmx_read64_int16 cvmx_read64_uint16 cvmx_read64_int8 cvmx_read64_uint8 */ CVMX_BUILD_READ64(int64, "ld"); CVMX_BUILD_READ64(int32, "lw"); CVMX_BUILD_READ64(int16, "lh"); CVMX_BUILD_READ64(int8, "lb"); CVMX_BUILD_READ64(uint64, "ld"); CVMX_BUILD_READ64(uint32, "lw"); CVMX_BUILD_READ64(uint16, "lhu"); CVMX_BUILD_READ64(uint8, "lbu"); static inline void cvmx_write_csr(uint64_t csr_addr, uint64_t val) { cvmx_write64_uint64(csr_addr, val); /* Perform an immediate read after every write to an RSL register to force the write to complete. It doesn't matter what RSL read we do, so we choose CVMX_MIO_BOOT_BIST_STAT because it is fast and harmless */ if (((csr_addr >> 40) & 0x7ffff) == (0x118)) cvmx_read64_uint64(CVMX_MIO_BOOT_BIST_STAT); } static inline void cvmx_write_io(uint64_t io_addr, uint64_t val) { cvmx_write64_uint64(io_addr, val); } static inline uint64_t cvmx_read_csr(uint64_t csr_addr) { return cvmx_read64_uint64(csr_addr); } static inline void cvmx_send_single(uint64_t data) { const uint64_t CVMX_IOBDMA_SENDSINGLE = 0xffffffffffffa200ull; cvmx_write64_uint64(CVMX_IOBDMA_SENDSINGLE, data); } static inline void cvmx_read_csr_async(uint64_t scraddr, uint64_t csr_addr) { union { uint64_t u64; struct { uint64_t scraddr : 8; uint64_t len : 8; uint64_t addr :48; } s; } addr; addr.u64 = csr_addr; addr.s.scraddr = scraddr >> 3; addr.s.len = 1; cvmx_send_single(addr.u64); } /** * Number of the Core on which the program is currently running. * * @return Number of cores */ static inline unsigned int cvmx_get_core_num(void) { unsigned int core_num; CVMX_RDHWRNV(core_num, 0); return core_num; } /** * Returns the number of bits set in the provided value. * Simple wrapper for POP instruction. * * @param val 32 bit value to count set bits in * * @return Number of bits set */ static inline uint32_t cvmx_pop(uint32_t val) { uint32_t pop; CVMX_POP(pop, val); return pop; } /** * Returns the number of bits set in the provided value. * Simple wrapper for DPOP instruction. * * @param val 64 bit value to count set bits in * * @return Number of bits set */ static inline int cvmx_dpop(uint64_t val) { int pop; CVMX_DPOP(pop, val); return pop; } /** * @deprecated * Provide current cycle counter as a return value. Deprecated, use * cvmx_clock_get_count(CVMX_CLOCK_CORE) to get cycle counter. * * @return current cycle counter */ static inline uint64_t cvmx_get_cycle(void) { return cvmx_clock_get_count(CVMX_CLOCK_CORE); } /** * @deprecated * Reads a chip global cycle counter. This counts SCLK cycles since * chip reset. The counter is 64 bit. This function is deprecated as the rate * of the global cycle counter is different between Octeon+ and Octeon2, use * cvmx_clock_get_count(CVMX_CLOCK_SCLK) instead. For Octeon2, the clock rate * of SCLK may be differnet than the core clock. * * @return Global chip cycle count since chip reset. */ static inline uint64_t cvmx_get_cycle_global(void) { return cvmx_clock_get_count(CVMX_CLOCK_IPD); } /** * Wait for the specified number of core clock cycles * * @param cycles */ static inline void cvmx_wait(uint64_t cycles) { uint64_t done = cvmx_get_cycle() + cycles; while (cvmx_get_cycle() < done) { /* Spin */ } } /** * Wait for the specified number of micro seconds * * @param usec micro seconds to wait */ static inline void cvmx_wait_usec(uint64_t usec) { uint64_t done = cvmx_get_cycle() + usec * cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000000; while (cvmx_get_cycle() < done) { /* Spin */ } } /** * Wait for the specified number of io clock cycles * * @param cycles */ static inline void cvmx_wait_io(uint64_t cycles) { uint64_t done = cvmx_clock_get_count(CVMX_CLOCK_SCLK) + cycles; while (cvmx_clock_get_count(CVMX_CLOCK_SCLK) < done) { /* Spin */ } } /** * Perform a soft reset of Octeon * * @return */ static inline void cvmx_reset_octeon(void) { cvmx_ciu_soft_rst_t ciu_soft_rst; ciu_soft_rst.u64 = 0; ciu_soft_rst.s.soft_rst = 1; cvmx_write_csr(CVMX_CIU_SOFT_RST, ciu_soft_rst.u64); } /** * Read a byte of fuse data * @param byte_addr address to read * * @return fuse value: 0 or 1 */ static inline uint8_t cvmx_fuse_read_byte(int byte_addr) { cvmx_mio_fus_rcmd_t read_cmd; read_cmd.u64 = 0; read_cmd.s.addr = byte_addr; read_cmd.s.pend = 1; cvmx_write_csr(CVMX_MIO_FUS_RCMD, read_cmd.u64); while ((read_cmd.u64 = cvmx_read_csr(CVMX_MIO_FUS_RCMD)) && read_cmd.s.pend) ; return(read_cmd.s.dat); } /** * Read a single fuse bit * * @param fuse Fuse number (0-1024) * * @return fuse value: 0 or 1 */ static inline int cvmx_fuse_read(int fuse) { return((cvmx_fuse_read_byte(fuse >> 3) >> (fuse & 0x7)) & 1); } #ifdef __cplusplus } #endif #endif /* __CVMX_ACCESS_NATIVE_H__ */