/* * Common functions for CAM "type" (peripheral) drivers. * * Copyright (c) 1997, 1998 Justin T. Gibbs. * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static u_int camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired); static u_int camperiphunit(struct periph_driver *p_drv, path_id_t path_id_t, target_id_t target, lun_id_t lun); static void camperiphdone(struct cam_periph *periph, union ccb *done_ccb); static void camperiphfree(struct cam_periph *periph); cam_status cam_periph_alloc(periph_ctor_t *periph_ctor, periph_oninv_t *periph_oninvalidate, periph_dtor_t *periph_dtor, periph_start_t *periph_start, char *name, cam_periph_type type, struct cam_path *path, ac_callback_t *ac_callback, ac_code code, void *arg) { struct periph_driver **p_drv; struct cam_periph *periph; struct cam_periph *cur_periph; path_id_t path_id; target_id_t target_id; lun_id_t lun_id; cam_status status; u_int init_level; int s; init_level = 0; /* * Handle Hot-Plug scenarios. If there is already a peripheral * of our type assigned to this path, we are likely waiting for * final close on an old, invalidated, peripheral. If this is * the case, queue up a deferred call to the peripheral's async * handler. If it looks like a mistaken re-alloation, complain. */ if ((periph = cam_periph_find(path, name)) != NULL) { if ((periph->flags & CAM_PERIPH_INVALID) != 0 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; periph->deferred_callback = ac_callback; periph->deferred_ac = code; return (CAM_REQ_INPROG); } else { printf("cam_periph_alloc: attempt to re-allocate " "valid device %s%d rejected\n", periph->periph_name, periph->unit_number); } return (CAM_REQ_INVALID); } periph = (struct cam_periph *)malloc(sizeof(*periph), M_DEVBUF, M_NOWAIT); if (periph == NULL) return (CAM_RESRC_UNAVAIL); init_level++; for (p_drv = (struct periph_driver **)periphdriver_set.ls_items; *p_drv != NULL; p_drv++) { if (strcmp((*p_drv)->driver_name, name) == 0) break; } path_id = xpt_path_path_id(path); target_id = xpt_path_target_id(path); lun_id = xpt_path_lun_id(path); bzero(periph, sizeof(*periph)); cam_init_pinfo(&periph->pinfo); periph->periph_start = periph_start; periph->periph_dtor = periph_dtor; periph->periph_oninval = periph_oninvalidate; periph->type = type; periph->periph_name = name; periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); periph->immediate_priority = CAM_PRIORITY_NONE; periph->refcount = 0; SLIST_INIT(&periph->ccb_list); status = xpt_create_path(&path, periph, path_id, target_id, lun_id); if (status != CAM_REQ_CMP) goto failure; periph->path = path; init_level++; status = xpt_add_periph(periph); if (status != CAM_REQ_CMP) goto failure; s = splsoftcam(); cur_periph = TAILQ_FIRST(&(*p_drv)->units); while (cur_periph != NULL && cur_periph->unit_number < periph->unit_number) cur_periph = TAILQ_NEXT(cur_periph, unit_links); if (cur_periph != NULL) TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); else { TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); (*p_drv)->generation++; } splx(s); init_level++; status = periph_ctor(periph, arg); if (status == CAM_REQ_CMP) init_level++; failure: switch (init_level) { case 4: /* Initialized successfully */ break; case 3: s = splsoftcam(); TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); splx(s); xpt_remove_periph(periph); case 2: xpt_free_path(periph->path); case 1: free(periph, M_DEVBUF); case 0: /* No cleanup to perform. */ break; default: panic("cam_periph_alloc: Unkown init level"); } return(status); } /* * Find a peripheral structure with the specified path, target, lun, * and (optionally) type. If the name is NULL, this function will return * the first peripheral driver that matches the specified path. */ struct cam_periph * cam_periph_find(struct cam_path *path, char *name) { struct periph_driver **p_drv; struct cam_periph *periph; int s; for (p_drv = (struct periph_driver **)periphdriver_set.ls_items; *p_drv != NULL; p_drv++) { if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) continue; s = splsoftcam(); for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; periph = TAILQ_NEXT(periph, unit_links)) { if (xpt_path_comp(periph->path, path) == 0) { splx(s); return(periph); } } splx(s); if (name != NULL) return(NULL); } return(NULL); } cam_status cam_periph_acquire(struct cam_periph *periph) { int s; if (periph == NULL) return(CAM_REQ_CMP_ERR); s = splsoftcam(); periph->refcount++; splx(s); return(CAM_REQ_CMP); } void cam_periph_release(struct cam_periph *periph) { int s; if (periph == NULL) return; s = splsoftcam(); if ((--periph->refcount == 0) && (periph->flags & CAM_PERIPH_INVALID)) { camperiphfree(periph); } splx(s); } /* * Look for the next unit number that is not currently in use for this * peripheral type starting at "newunit". Also exclude unit numbers that * are reserved by for future "hardwiring" unless we already know that this * is a potential wired device. Only assume that the device is "wired" the * first time through the loop since after that we'll be looking at unit * numbers that did not match a wiring entry. */ static u_int camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired) { struct cam_periph *periph; struct cam_periph_config *periph_conf; char *periph_name; int s; s = splsoftcam(); periph_name = p_drv->driver_name; for (;;newunit++) { for (periph = TAILQ_FIRST(&p_drv->units); periph != NULL && periph->unit_number != newunit; periph = TAILQ_NEXT(periph, unit_links)) ; if (periph != NULL && periph->unit_number == newunit) { if (wired != 0) { xpt_print_path(periph->path); printf("Duplicate Wired Device entry!\n"); xpt_print_path(periph->path); printf("Second device will not be wired\n"); wired = 0; } continue; } for (periph_conf = cam_pinit; wired == 0 && periph_conf->periph_name != NULL; periph_conf++) { /* * Don't match entries like "da 4" as a wired down * device, but do match entries like "da 4 target 5" * or even "da 4 scbus 1". */ if (IS_SPECIFIED(periph_conf->periph_unit) && (!strcmp(periph_name, periph_conf->periph_name)) && (IS_SPECIFIED(periph_conf->target) || IS_SPECIFIED(periph_conf->pathid)) && (newunit == periph_conf->periph_unit)) break; } if (wired != 0 || periph_conf->periph_name == NULL) break; } splx(s); return (newunit); } static u_int camperiphunit(struct periph_driver *p_drv, path_id_t pathid, target_id_t target, lun_id_t lun) { struct cam_periph_config *periph_conf; u_int unit; int hit; unit = 0; hit = 0; for (periph_conf = cam_pinit; periph_conf->periph_name != NULL; periph_conf++, hit = 0) { if (!strcmp(p_drv->driver_name, periph_conf->periph_name) && IS_SPECIFIED(periph_conf->periph_unit)) { if (IS_SPECIFIED(periph_conf->pathid)) { if (pathid != periph_conf->pathid) continue; hit++; } if (IS_SPECIFIED(periph_conf->target)) { if (target != periph_conf->target) continue; hit++; } if (IS_SPECIFIED(periph_conf->lun)) { if (lun != periph_conf->lun) continue; hit++; } if (hit != 0) { unit = periph_conf->periph_unit; break; } } } /* * Either start from 0 looking for the next unit or from * the unit number given in the periph_conf. This way, * if we have wildcard matches, we don't return the same * unit number twice. */ unit = camperiphnextunit(p_drv, unit, /*wired*/hit); return (unit); } void cam_periph_invalidate(struct cam_periph *periph) { int s; s = splsoftcam(); /* * We only call this routine the first time a peripheral is * invalidated. The oninvalidate() routine is always called at * splsoftcam(). */ if (((periph->flags & CAM_PERIPH_INVALID) == 0) && (periph->periph_oninval != NULL)) periph->periph_oninval(periph); periph->flags |= CAM_PERIPH_INVALID; periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; if (periph->refcount == 0) camperiphfree(periph); else if (periph->refcount < 0) printf("cam_invalidate_periph: refcount < 0!!\n"); splx(s); } static void camperiphfree(struct cam_periph *periph) { int s; struct periph_driver **p_drv; for (p_drv = (struct periph_driver **)periphdriver_set.ls_items; *p_drv != NULL; p_drv++) { if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) break; } if (periph->periph_dtor != NULL) periph->periph_dtor(periph); s = splsoftcam(); TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); (*p_drv)->generation++; splx(s); xpt_remove_periph(periph); if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { union ccb ccb; void *arg; switch (periph->deferred_ac) { case AC_FOUND_DEVICE: ccb.ccb_h.func_code = XPT_GDEV_TYPE; xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1); xpt_action(&ccb); arg = &ccb; break; case AC_PATH_REGISTERED: ccb.ccb_h.func_code = XPT_PATH_INQ; xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1); xpt_action(&ccb); arg = &ccb; break; default: arg = NULL; break; } periph->deferred_callback(NULL, periph->deferred_ac, periph->path, arg); } xpt_free_path(periph->path); free(periph, M_DEVBUF); } /* * Wait interruptibly for an exclusive lock. */ int cam_periph_lock(struct cam_periph *periph, int priority) { int error; while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { periph->flags |= CAM_PERIPH_LOCK_WANTED; if ((error = tsleep(periph, priority, "caplck", 0)) != 0) return error; } if (cam_periph_acquire(periph) != CAM_REQ_CMP) return(ENXIO); periph->flags |= CAM_PERIPH_LOCKED; return 0; } /* * Unlock and wake up any waiters. */ void cam_periph_unlock(struct cam_periph *periph) { periph->flags &= ~CAM_PERIPH_LOCKED; if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { periph->flags &= ~CAM_PERIPH_LOCK_WANTED; wakeup(periph); } cam_periph_release(periph); } /* * Map user virtual pointers into kernel virtual address space, so we can * access the memory. This won't work on physical pointers, for now it's * up to the caller to check for that. (XXX KDM -- should we do that here * instead?) This also only works for up to MAXPHYS memory. Since we use * buffers to map stuff in and out, we're limited to the buffer size. */ int cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) { int numbufs, i; int flags[CAM_PERIPH_MAXMAPS]; u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; u_int32_t lengths[CAM_PERIPH_MAXMAPS]; u_int32_t dirs[CAM_PERIPH_MAXMAPS]; switch(ccb->ccb_h.func_code) { case XPT_DEV_MATCH: if (ccb->cdm.match_buf_len == 0) { printf("cam_periph_mapmem: invalid match buffer " "length 0\n"); return(EINVAL); } if (ccb->cdm.pattern_buf_len > 0) { data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; lengths[0] = ccb->cdm.pattern_buf_len; dirs[0] = CAM_DIR_OUT; data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; lengths[1] = ccb->cdm.match_buf_len; dirs[1] = CAM_DIR_IN; numbufs = 2; } else { data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; lengths[0] = ccb->cdm.match_buf_len; dirs[0] = CAM_DIR_IN; numbufs = 1; } break; case XPT_SCSI_IO: case XPT_CONT_TARGET_IO: if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) return(0); data_ptrs[0] = &ccb->csio.data_ptr; lengths[0] = ccb->csio.dxfer_len; dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; numbufs = 1; break; default: return(EINVAL); break; /* NOTREACHED */ } /* * Check the transfer length and permissions first, so we don't * have to unmap any previously mapped buffers. */ for (i = 0; i < numbufs; i++) { flags[i] = 0; /* * The userland data pointer passed in may not be page * aligned. vmapbuf() truncates the address to a page * boundary, so if the address isn't page aligned, we'll * need enough space for the given transfer length, plus * whatever extra space is necessary to make it to the page * boundary. */ if ((lengths[i] + (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > DFLTPHYS){ printf("cam_periph_mapmem: attempt to map %lu bytes, " "which is greater than DFLTPHYS(%d)\n", (long)(lengths[i] + (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), DFLTPHYS); return(E2BIG); } if (dirs[i] & CAM_DIR_OUT) { flags[i] = B_READ; if (useracc(*data_ptrs[i], lengths[i], B_READ) == 0){ printf("cam_periph_mapmem: error, " "address %p, length %lu isn't " "user accessible for READ\n", (void *)*data_ptrs[i], (u_long)lengths[i]); return(EACCES); } } /* * XXX this check is really bogus, since B_WRITE currently * is all 0's, and so it is "set" all the time. */ if (dirs[i] & CAM_DIR_IN) { flags[i] |= B_WRITE; if (useracc(*data_ptrs[i], lengths[i], B_WRITE) == 0){ printf("cam_periph_mapmem: error, " "address %p, length %lu isn't " "user accessible for WRITE\n", (void *)*data_ptrs[i], (u_long)lengths[i]); return(EACCES); } } } /* this keeps the current process from getting swapped */ /* * XXX KDM should I use P_NOSWAP instead? */ PHOLD(curproc); for (i = 0; i < numbufs; i++) { /* * Get the buffer. */ mapinfo->bp[i] = getpbuf(NULL); /* save the buffer's data address */ mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data; /* put our pointer in the data slot */ mapinfo->bp[i]->b_data = *data_ptrs[i]; /* set the transfer length, we know it's < DFLTPHYS */ mapinfo->bp[i]->b_bufsize = lengths[i]; /* set the flags */ mapinfo->bp[i]->b_flags = flags[i] | B_PHYS; /* map the buffer into kernel memory */ vmapbuf(mapinfo->bp[i]); /* set our pointer to the new mapped area */ *data_ptrs[i] = mapinfo->bp[i]->b_data; mapinfo->num_bufs_used++; } return(0); } /* * Unmap memory segments mapped into kernel virtual address space by * cam_periph_mapmem(). */ void cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) { int numbufs, i; u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; if (mapinfo->num_bufs_used <= 0) { /* allow ourselves to be swapped once again */ PRELE(curproc); return; } switch (ccb->ccb_h.func_code) { case XPT_DEV_MATCH: numbufs = min(mapinfo->num_bufs_used, 2); if (numbufs == 1) { data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; } else { data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; } break; case XPT_SCSI_IO: case XPT_CONT_TARGET_IO: data_ptrs[0] = &ccb->csio.data_ptr; numbufs = min(mapinfo->num_bufs_used, 1); break; default: /* allow ourselves to be swapped once again */ PRELE(curproc); return; break; /* NOTREACHED */ } for (i = 0; i < numbufs; i++) { /* Set the user's pointer back to the original value */ *data_ptrs[i] = mapinfo->bp[i]->b_saveaddr; /* unmap the buffer */ vunmapbuf(mapinfo->bp[i]); /* clear the flags we set above */ mapinfo->bp[i]->b_flags &= ~B_PHYS; /* release the buffer */ relpbuf(mapinfo->bp[i], NULL); } /* allow ourselves to be swapped once again */ PRELE(curproc); } union ccb * cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) { struct ccb_hdr *ccb_h; int s; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n")); s = splsoftcam(); while (periph->ccb_list.slh_first == NULL) { if (periph->immediate_priority > priority) periph->immediate_priority = priority; xpt_schedule(periph, priority); if ((periph->ccb_list.slh_first != NULL) && (periph->ccb_list.slh_first->pinfo.priority == priority)) break; tsleep(&periph->ccb_list, PRIBIO, "cgticb", 0); } ccb_h = periph->ccb_list.slh_first; SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); splx(s); return ((union ccb *)ccb_h); } void cam_periph_ccbwait(union ccb *ccb) { int s; s = splsoftcam(); if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX) || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) tsleep(&ccb->ccb_h.cbfcnp, PRIBIO, "cbwait", 0); splx(s); } int cam_periph_ioctl(struct cam_periph *periph, int cmd, caddr_t addr, int (*error_routine)(union ccb *ccb, cam_flags camflags, u_int32_t sense_flags)) { union ccb *ccb; int error; int found; error = found = 0; switch(cmd){ case CAMGETPASSTHRU: ccb = cam_periph_getccb(periph, /* priority */ 1); xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, /*priority*/1); ccb->ccb_h.func_code = XPT_GDEVLIST; /* * Basically, the point of this is that we go through * getting the list of devices, until we find a passthrough * device. In the current version of the CAM code, the * only way to determine what type of device we're dealing * with is by its name. */ while (found == 0) { ccb->cgdl.index = 0; ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { /* we want the next device in the list */ xpt_action(ccb); if (strncmp(ccb->cgdl.periph_name, "pass", 4) == 0){ found = 1; break; } } if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && (found == 0)) { ccb->cgdl.periph_name[0] = '\0'; ccb->cgdl.unit_number = 0; break; } } /* copy the result back out */ bcopy(ccb, addr, sizeof(union ccb)); /* and release the ccb */ xpt_release_ccb(ccb); break; default: error = ENOTTY; break; } return(error); } int cam_periph_runccb(union ccb *ccb, int (*error_routine)(union ccb *ccb, cam_flags camflags, u_int32_t sense_flags), cam_flags camflags, u_int32_t sense_flags, struct devstat *ds) { int error; error = 0; /* * If the user has supplied a stats structure, and if we understand * this particular type of ccb, record the transaction start. */ if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO)) devstat_start_transaction(ds); xpt_action(ccb); do { cam_periph_ccbwait(ccb); if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) error = 0; else if (error_routine != NULL) error = (*error_routine)(ccb, camflags, sense_flags); else error = 0; } while (error == ERESTART); if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(ccb->ccb_h.path, /* relsim_flags */0, /* openings */0, /* timeout */0, /* getcount_only */ FALSE); if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO)) devstat_end_transaction(ds, ccb->csio.dxfer_len, ccb->csio.tag_action & 0xf, ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? DEVSTAT_WRITE : DEVSTAT_READ); return(error); } void cam_freeze_devq(struct cam_path *path) { struct ccb_hdr ccb_h; xpt_setup_ccb(&ccb_h, path, /*priority*/1); ccb_h.func_code = XPT_NOOP; ccb_h.flags = CAM_DEV_QFREEZE; xpt_action((union ccb *)&ccb_h); } u_int32_t cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, u_int32_t openings, u_int32_t timeout, int getcount_only) { struct ccb_relsim crs; xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); crs.ccb_h.func_code = XPT_REL_SIMQ; crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; crs.release_flags = relsim_flags; crs.openings = openings; crs.release_timeout = timeout; xpt_action((union ccb *)&crs); return (crs.qfrozen_cnt); } #define saved_ccb_ptr ppriv_ptr0 static void camperiphdone(struct cam_periph *periph, union ccb *done_ccb) { cam_status status; int frozen; int sense; struct scsi_start_stop_unit *scsi_cmd; u_int32_t relsim_flags, timeout; u_int32_t qfrozen_cnt; status = done_ccb->ccb_h.status; frozen = (status & CAM_DEV_QFRZN) != 0; sense = (status & CAM_AUTOSNS_VALID) != 0; status &= CAM_STATUS_MASK; timeout = 0; relsim_flags = 0; /* * Unfreeze the queue once if it is already frozen.. */ if (frozen != 0) { qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*openings*/0, /*timeout*/0, /*getcount_only*/0); } switch (status) { case CAM_REQ_CMP: /* * If we have successfully taken a device from the not * ready to ready state, re-scan the device and re-get the * inquiry information. Many devices (mostly disks) don't * properly report their inquiry information unless they * are spun up. */ if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) { scsi_cmd = (struct scsi_start_stop_unit *) &done_ccb->csio.cdb_io.cdb_bytes; if (scsi_cmd->opcode == START_STOP_UNIT) xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); } bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb, sizeof(union ccb)); periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; xpt_action(done_ccb); break; case CAM_SCSI_STATUS_ERROR: scsi_cmd = (struct scsi_start_stop_unit *) &done_ccb->csio.cdb_io.cdb_bytes; if (sense != 0) { struct scsi_sense_data *sense; int error_code, sense_key, asc, ascq; sense = &done_ccb->csio.sense_data; scsi_extract_sense(sense, &error_code, &sense_key, &asc, &ascq); /* * If the error is "invalid field in CDB", * and the load/eject flag is set, turn the * flag off and try again. This is just in * case the drive in question barfs on the * load eject flag. The CAM code should set * the load/eject flag by default for * removable media. */ /* XXX KDM * Should we check to see what the specific * scsi status is?? Or does it not matter * since we already know that there was an * error, and we know what the specific * error code was, and we know what the * opcode is.. */ if ((scsi_cmd->opcode == START_STOP_UNIT) && ((scsi_cmd->how & SSS_LOEJ) != 0) && (asc == 0x24) && (ascq == 0x00) && (done_ccb->ccb_h.retry_count > 0)) { scsi_cmd->how &= ~SSS_LOEJ; xpt_action(done_ccb); } else if (done_ccb->ccb_h.retry_count > 0) { /* * In this case, the error recovery * command failed, but we've got * some retries left on it. Give * it another try. */ /* set the timeout to .5 sec */ relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; timeout = 500; xpt_action(done_ccb); break; } else { /* * Copy the original CCB back and * send it back to the caller. */ bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb, sizeof(union ccb)); periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; xpt_action(done_ccb); } } else { /* * Eh?? The command failed, but we don't * have any sense. What's up with that? * Fire the CCB again to return it to the * caller. */ bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb, sizeof(union ccb)); periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; xpt_action(done_ccb); } break; default: bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb, sizeof(union ccb)); periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; xpt_action(done_ccb); break; } /* decrement the retry count */ if (done_ccb->ccb_h.retry_count > 0) done_ccb->ccb_h.retry_count--; qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/relsim_flags, /*openings*/0, /*timeout*/timeout, /*getcount_only*/0); } /* * Generic Async Event handler. Peripheral drivers usually * filter out the events that require personal attention, * and leave the rest to this function. */ void cam_periph_async(struct cam_periph *periph, u_int32_t code, struct cam_path *path, void *arg) { switch (code) { case AC_LOST_DEVICE: cam_periph_invalidate(periph); break; case AC_SENT_BDR: case AC_BUS_RESET: { cam_periph_bus_settle(periph, SCSI_DELAY); break; } default: break; } } void cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) { struct ccb_getdevstats cgds; xpt_setup_ccb(&cgds.ccb_h, periph->path, /*priority*/1); cgds.ccb_h.func_code = XPT_GDEV_STATS; xpt_action((union ccb *)&cgds); cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); } void cam_periph_freeze_after_event(struct cam_periph *periph, struct timeval* event_time, u_int duration_ms) { struct timeval delta; struct timeval duration_tv; int s; s = splclock(); microtime(&delta); splx(s); timevalsub(&delta, event_time); duration_tv.tv_sec = duration_ms / 1000; duration_tv.tv_usec = (duration_ms % 1000) * 1000; if (timevalcmp(&delta, &duration_tv, <)) { timevalsub(&duration_tv, &delta); duration_ms = duration_tv.tv_sec * 1000; duration_ms += duration_tv.tv_usec / 1000; cam_freeze_devq(periph->path); cam_release_devq(periph->path, RELSIM_RELEASE_AFTER_TIMEOUT, /*reduction*/0, /*timeout*/duration_ms, /*getcount_only*/0); } } /* * Generic error handler. Peripheral drivers usually filter * out the errors that they handle in a unique mannor, then * call this function. */ int cam_periph_error(union ccb *ccb, cam_flags camflags, u_int32_t sense_flags, union ccb *save_ccb) { cam_status status; int frozen; int sense; int error; int openings; int retry; u_int32_t relsim_flags; u_int32_t timeout; status = ccb->ccb_h.status; frozen = (status & CAM_DEV_QFRZN) != 0; sense = (status & CAM_AUTOSNS_VALID) != 0; status &= CAM_STATUS_MASK; relsim_flags = 0; switch (status) { case CAM_REQ_CMP: /* decrement the number of retries */ retry = ccb->ccb_h.retry_count > 0; if (retry) ccb->ccb_h.retry_count--; error = 0; break; case CAM_AUTOSENSE_FAIL: case CAM_SCSI_STATUS_ERROR: switch (ccb->csio.scsi_status) { case SCSI_STATUS_OK: case SCSI_STATUS_COND_MET: case SCSI_STATUS_INTERMED: case SCSI_STATUS_INTERMED_COND_MET: error = 0; break; case SCSI_STATUS_CMD_TERMINATED: case SCSI_STATUS_CHECK_COND: if (sense != 0) { struct scsi_sense_data *sense; int error_code, sense_key, asc, ascq; struct cam_periph *periph; scsi_sense_action err_action; struct ccb_getdev cgd; sense = &ccb->csio.sense_data; scsi_extract_sense(sense, &error_code, &sense_key, &asc, &ascq); periph = xpt_path_periph(ccb->ccb_h.path); /* * Grab the inquiry data for this device. */ xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, /*priority*/ 1); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); err_action = scsi_error_action(asc, ascq, &cgd.inq_data); /* * Send a Test Unit Ready to the device. * If the 'many' flag is set, we send 120 * test unit ready commands, one every half * second. Otherwise, we just send one TUR. * We only want to do this if the retry * count has not been exhausted. */ if (((err_action & SS_MASK) == SS_TUR) && save_ccb != NULL && ccb->ccb_h.retry_count > 0) { /* * Since error recovery is already * in progress, don't attempt to * process this error. It is probably * related to the error that caused * the currently active error recovery * action. Also, we only have * space for one saved CCB, so if we * had two concurrent error recovery * actions, we would end up * over-writing one error recovery * CCB with another one. */ if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) { error = ERESTART; break; } periph->flags |= CAM_PERIPH_RECOVERY_INPROG; /* decrement the number of retries */ if ((err_action & SSQ_DECREMENT_COUNT) != 0) { retry = 1; ccb->ccb_h.retry_count--; } bcopy(ccb, save_ccb, sizeof(*save_ccb)); /* * We retry this one every half * second for a minute. If the * device hasn't become ready in a * minute's time, it's unlikely to * ever become ready. If the table * doesn't specify SSQ_MANY, we can * only try this once. Oh well. */ if ((err_action & SSQ_MANY) != 0) scsi_test_unit_ready(&ccb->csio, /*retries*/120, camperiphdone, MSG_SIMPLE_Q_TAG, SSD_FULL_SIZE, /*timeout*/5000); else scsi_test_unit_ready(&ccb->csio, /*retries*/1, camperiphdone, MSG_SIMPLE_Q_TAG, SSD_FULL_SIZE, /*timeout*/5000); /* release the queue after .5 sec. */ relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; timeout = 500; /* * Drop the priority to 0 so that * we are the first to execute. Also * freeze the queue after this command * is sent so that we can restore the * old csio and have it queued in the * proper order before we let normal * transactions go to the drive. */ ccb->ccb_h.pinfo.priority = 0; ccb->ccb_h.flags |= CAM_DEV_QFREEZE; /* * Save a pointer to the original * CCB in the new CCB. */ ccb->ccb_h.saved_ccb_ptr = save_ccb; error = ERESTART; } /* * Send a start unit command to the device, * and then retry the command. We only * want to do this if the retry count has * not been exhausted. If the user * specified 0 retries, then we follow * their request and do not retry. */ else if (((err_action & SS_MASK) == SS_START) && save_ccb != NULL && ccb->ccb_h.retry_count > 0) { int le; /* * Only one error recovery action * at a time. See above. */ if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) { error = ERESTART; break; } periph->flags |= CAM_PERIPH_RECOVERY_INPROG; /* decrement the number of retries */ retry = 1; ccb->ccb_h.retry_count--; /* * Check for removable media and * set load/eject flag * appropriately. */ if (SID_IS_REMOVABLE(&cgd.inq_data)) le = TRUE; else le = FALSE; /* * Attempt to start the drive up. * * Save the current ccb so it can * be restored and retried once the * drive is started up. */ bcopy(ccb, save_ccb, sizeof(*save_ccb)); scsi_start_stop(&ccb->csio, /*retries*/1, camperiphdone, MSG_SIMPLE_Q_TAG, /*start*/TRUE, /*load/eject*/le, /*immediate*/FALSE, SSD_FULL_SIZE, /*timeout*/50000); /* * Drop the priority to 0 so that * we are the first to execute. Also * freeze the queue after this command * is sent so that we can restore the * old csio and have it queued in the * proper order before we let normal * transactions go to the drive. */ ccb->ccb_h.pinfo.priority = 0; ccb->ccb_h.flags |= CAM_DEV_QFREEZE; /* * Save a pointer to the original * CCB in the new CCB. */ ccb->ccb_h.saved_ccb_ptr = save_ccb; error = ERESTART; } else if ((sense_flags & SF_RETRY_UA) != 0) { /* * XXX KDM this is a *horrible* * hack. */ error = scsi_interpret_sense(ccb, sense_flags, &relsim_flags, &openings, &timeout, err_action); } /* * Theoretically, this code should send a * test unit ready to the given device, and * if it returns and error, send a start * unit command. Since we don't yet have * the capability to do two-command error * recovery, just send a start unit. * XXX KDM fix this! */ else if (((err_action & SS_MASK) == SS_TURSTART) && save_ccb != NULL && ccb->ccb_h.retry_count > 0) { int le; /* * Only one error recovery action * at a time. See above. */ if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) { error = ERESTART; break; } periph->flags |= CAM_PERIPH_RECOVERY_INPROG; /* decrement the number of retries */ retry = 1; ccb->ccb_h.retry_count--; /* * Check for removable media and * set load/eject flag * appropriately. */ if (SID_IS_REMOVABLE(&cgd.inq_data)) le = TRUE; else le = FALSE; /* * Attempt to start the drive up. * * Save the current ccb so it can * be restored and retried once the * drive is started up. */ bcopy(ccb, save_ccb, sizeof(*save_ccb)); scsi_start_stop(&ccb->csio, /*retries*/1, camperiphdone, MSG_SIMPLE_Q_TAG, /*start*/TRUE, /*load/eject*/le, /*immediate*/FALSE, SSD_FULL_SIZE, /*timeout*/50000); /* release the queue after .5 sec. */ relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; timeout = 500; /* * Drop the priority to 0 so that * we are the first to execute. Also * freeze the queue after this command * is sent so that we can restore the * old csio and have it queued in the * proper order before we let normal * transactions go to the drive. */ ccb->ccb_h.pinfo.priority = 0; ccb->ccb_h.flags |= CAM_DEV_QFREEZE; /* * Save a pointer to the original * CCB in the new CCB. */ ccb->ccb_h.saved_ccb_ptr = save_ccb; error = ERESTART; } else { error = scsi_interpret_sense(ccb, sense_flags, &relsim_flags, &openings, &timeout, err_action); } } else if (ccb->csio.scsi_status == SCSI_STATUS_CHECK_COND && status != CAM_AUTOSENSE_FAIL) { /* no point in decrementing the retry count */ panic("cam_periph_error: scsi status of " "CHECK COND returned but no sense " "information is availible. " "Controller should have returned " "CAM_AUTOSENSE_FAILED"); /* NOTREACHED */ error = EIO; } else if (ccb->ccb_h.retry_count > 0) { /* * XXX KDM shouldn't there be a better * argument to return?? */ error = EIO; } else { /* decrement the number of retries */ retry = ccb->ccb_h.retry_count > 0; if (retry) ccb->ccb_h.retry_count--; /* * If it was aborted with no * clue as to the reason, just * retry it again. */ error = ERESTART; } break; case SCSI_STATUS_QUEUE_FULL: { /* no decrement */ struct ccb_getdevstats cgds; /* * First off, find out what the current * transaction counts are. */ xpt_setup_ccb(&cgds.ccb_h, ccb->ccb_h.path, /*priority*/1); cgds.ccb_h.func_code = XPT_GDEV_STATS; xpt_action((union ccb *)&cgds); /* * If we were the only transaction active, treat * the QUEUE FULL as if it were a BUSY condition. */ if (cgds.dev_active != 0) { int total_openings; /* * Reduce the number of openings to * be 1 less than the amount it took * to get a queue full bounded by the * minimum allowed tag count for this * device. */ total_openings = cgds.dev_active+cgds.dev_openings; openings = cgds.dev_active; if (openings < cgds.mintags) openings = cgds.mintags; if (openings < total_openings) relsim_flags = RELSIM_ADJUST_OPENINGS; else { /* * Some devices report queue full for * temporary resource shortages. For * this reason, we allow a minimum * tag count to be entered via a * quirk entry to prevent the queue * count on these devices from falling * to a pessimisticly low value. We * still wait for the next successful * completion, however, before queueing * more transactions to the device. */ relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; } timeout = 0; error = ERESTART; break; } /* FALLTHROUGH */ } case SCSI_STATUS_BUSY: /* * Restart the queue after either another * command completes or a 1 second timeout. * If we have any retries left, that is. */ retry = ccb->ccb_h.retry_count > 0; if (retry) { ccb->ccb_h.retry_count--; error = ERESTART; relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT | RELSIM_RELEASE_AFTER_CMDCMPLT; timeout = 1000; } else { error = EIO; } break; case SCSI_STATUS_RESERV_CONFLICT: error = EIO; break; default: error = EIO; break; } break; case CAM_REQ_CMP_ERR: case CAM_CMD_TIMEOUT: case CAM_UNEXP_BUSFREE: case CAM_UNCOR_PARITY: case CAM_DATA_RUN_ERR: /* decrement the number of retries */ retry = ccb->ccb_h.retry_count > 0; if (retry) { ccb->ccb_h.retry_count--; error = ERESTART; } else { error = EIO; } break; case CAM_UA_ABORT: case CAM_UA_TERMIO: case CAM_MSG_REJECT_REC: /* XXX Don't know that these are correct */ error = EIO; break; case CAM_SEL_TIMEOUT: { /* * XXX * A single selection timeout should not be enough * to invalidate a device. We should retry for multiple * seconds assuming this isn't a probe. We'll probably * need a special flag for that. */ #if 0 struct cam_path *newpath; /* Should we do more if we can't create the path?? */ if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path), xpt_path_path_id(ccb->ccb_h.path), xpt_path_target_id(ccb->ccb_h.path), CAM_LUN_WILDCARD) != CAM_REQ_CMP) break; /* * Let peripheral drivers know that this device has gone * away. */ xpt_async(AC_LOST_DEVICE, newpath, NULL); xpt_free_path(newpath); #endif if ((sense_flags & SF_RETRY_SELTO) != 0) { retry = ccb->ccb_h.retry_count > 0; if (retry) { ccb->ccb_h.retry_count--; error = ERESTART; /* * Wait half a second to give the device * time to recover before we try again. */ relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; timeout = 500; } else { error = ENXIO; } } else { error = ENXIO; } break; } case CAM_REQ_INVALID: case CAM_PATH_INVALID: case CAM_DEV_NOT_THERE: case CAM_NO_HBA: case CAM_PROVIDE_FAIL: case CAM_REQ_TOO_BIG: error = EINVAL; break; case CAM_SCSI_BUS_RESET: case CAM_BDR_SENT: case CAM_REQUEUE_REQ: /* Unconditional requeue, dammit */ error = ERESTART; break; case CAM_RESRC_UNAVAIL: case CAM_BUSY: /* timeout??? */ default: /* decrement the number of retries */ retry = ccb->ccb_h.retry_count > 0; if (retry) { ccb->ccb_h.retry_count--; error = ERESTART; } else { /* Check the sense codes */ error = EIO; } break; } /* Attempt a retry */ if (error == ERESTART || error == 0) { if (frozen != 0) ccb->ccb_h.status &= ~CAM_DEV_QFRZN; if (error == ERESTART) xpt_action(ccb); if (frozen != 0) { cam_release_devq(ccb->ccb_h.path, relsim_flags, openings, timeout, /*getcount_only*/0); } } return (error); }