/* $NetBSD: hpc_machdep.c,v 1.70 2003/09/16 08:18:22 agc Exp $ */ /* * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * machdep.c * * Machine dependant functions for kernel setup * * This file needs a lot of work. * * Created : 17/09/94 */ #include "opt_msgbuf.h" #include __FBSDID("$FreeBSD$"); #define _ARM32_BUS_DMA_PRIVATE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ #define KERNEL_PT_KERNEL_NUM 4 /* L2 table for mapping i80321 */ #define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) #define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1) #define KERNEL_PT_VMDATA_NUM 10 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) /* Define various stack sizes in pages */ #define IRQ_STACK_SIZE 1 #define ABT_STACK_SIZE 1 #ifdef IPKDB #define UND_STACK_SIZE 2 #else #define UND_STACK_SIZE 1 #endif extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; struct pv_addr kernel_pt_table[NUM_KERNEL_PTS]; extern void *_end; extern vm_offset_t sa1_cache_clean_addr; extern int *end; struct pcpu __pcpu; struct pcpu *pcpup = &__pcpu; /* Physical and virtual addresses for some global pages */ vm_paddr_t phys_avail[10]; vm_paddr_t physical_start; vm_paddr_t physical_end; vm_offset_t physical_pages; vm_offset_t clean_sva, clean_eva; struct pv_addr systempage; struct pv_addr msgbufpv; struct pv_addr irqstack; struct pv_addr undstack; struct pv_addr abtstack; struct pv_addr kernelstack; struct pv_addr minidataclean; void enable_mmu(vm_offset_t); static struct trapframe proc0_tf; #define IQ80321_OBIO_BASE 0xfe800000UL #define IQ80321_OBIO_SIZE 0x00100000UL /* Static device mappings. */ static const struct pmap_devmap iq80321_devmap[] = { /* * Map the on-board devices VA == PA so that we can access them * with the MMU on or off. */ { IQ80321_OBIO_BASE, IQ80321_OBIO_BASE, IQ80321_OBIO_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { IQ80321_IOW_VBASE, VERDE_OUT_XLATE_IO_WIN0_BASE, VERDE_OUT_XLATE_IO_WIN_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { IQ80321_80321_VBASE, VERDE_PMMR_BASE, VERDE_PMMR_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { 0, 0, 0, 0, 0, } }; #define SDRAM_START 0xa0000000 extern vm_offset_t xscale_cache_clean_addr; void * initarm(void *arg, void *arg2) { struct pv_addr kernel_l1pt; int loop; u_int kerneldatasize, symbolsize; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t freemem_pt; vm_offset_t afterkern; vm_offset_t freemem_after; int i = 0; uint32_t fake_preload[35]; uint32_t memsize, memstart; i80321_calibrate_delay(); cninit(); i = 0; set_cpufuncs(); /* * Fetch the SDRAM start/size from the i80321 SDRAM configration * registers. */ i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE, &memstart, &memsize); fake_preload[i++] = MODINFO_NAME; fake_preload[i++] = strlen("elf kernel") + 1; strcpy((char*)&fake_preload[i++], "elf kernel"); i += 2; fake_preload[i++] = MODINFO_TYPE; fake_preload[i++] = strlen("elf kernel") + 1; strcpy((char*)&fake_preload[i++], "elf kernel"); i += 2; fake_preload[i++] = MODINFO_ADDR; fake_preload[i++] = sizeof(vm_offset_t); fake_preload[i++] = KERNBASE + 0x00200000; fake_preload[i++] = MODINFO_SIZE; fake_preload[i++] = sizeof(uint32_t); fake_preload[i++] = (uint32_t)&end - KERNBASE - 0x00200000; fake_preload[i++] = 0; fake_preload[i] = 0; preload_metadata = (void *)fake_preload; physmem = memsize / PAGE_SIZE; pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); physical_start = (vm_offset_t) SDRAM_START; physical_end = (vm_offset_t) &end + SDRAM_START - 0xc0000000; #define KERNEL_TEXT_BASE (KERNBASE + 0x00200000) kerneldatasize = (u_int32_t)&end - (u_int32_t)KERNEL_TEXT_BASE; symbolsize = 0; freemempos = 0xa0200000; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = (var).pv_pa + 0x20000000; #define alloc_pages(var, np) \ freemempos -= (np * PAGE_SIZE); \ (var) = freemempos; \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos -= PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_pa = freemempos - (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_va = kernel_pt_table[loop].pv_pa + 0x20000000; } i++; } freemempos -= 2 * PAGE_SIZE; freemem_pt = freemempos; freemempos = 0xa0100000; /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); valloc_pages(minidataclean, 1); valloc_pages(msgbufpv, round_page(MSGBUF_SIZE) / PAGE_SIZE); /* * Allocate memory for the l1 and l2 page tables. The scheme to avoid * wasting memory by allocating the l1pt on the first 16k memory was * taken from NetBSD rpc_machdep.c. NKPT should be greater than 12 for * this to work (which is supposed to be the case). */ /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); for (i = 0; i < KERNEL_PT_KERNEL_NUM; i++) { pmap_link_l2pt(l1pagetable, KERNBASE + i * 0x00100000, &kernel_pt_table[KERNEL_PT_KERNEL + i]); } for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) pmap_link_l2pt(l1pagetable, KERNBASE + (i + loop) * 0x00100000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); pmap_link_l2pt(l1pagetable, IQ80321_IOPXS_VBASE, &kernel_pt_table[KERNEL_PT_IOPXS]); pmap_map_chunk(l1pagetable, KERNBASE, SDRAM_START, freemempos - 0xa0000000 + 0x1000, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, SDRAM_START + 0x100000, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, KERNBASE + 0x200000, SDRAM_START + 0x200000, (((uint32_t)(&end) - KERNBASE - 0x200000) + L1_S_SIZE) & ~(L1_S_SIZE - 1), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); freemem_after = ((int)&end + PAGE_SIZE) & ~(PAGE_SIZE - 1); afterkern = round_page(((vm_offset_t)&end + L1_S_SIZE) & ~(L1_S_SIZE - 1)); /* Map the stack pages */ #define alloc_afterkern(va, pa, size) \ va = freemem_after; \ pa = freemem_after - 0x20000000;\ freemem_after += size; if (freemem_after + KSTACK_PAGES * PAGE_SIZE < afterkern) { alloc_afterkern(kernelstack.pv_va, kernelstack.pv_pa, KSTACK_PAGES * PAGE_SIZE); } else { pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } if (freemem_after + IRQ_STACK_SIZE * PAGE_SIZE < afterkern) { alloc_afterkern(irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE); } else pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); if (freemem_after + ABT_STACK_SIZE * PAGE_SIZE < afterkern) { alloc_afterkern(abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE); } else pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); if (freemem_after + UND_STACK_SIZE * PAGE_SIZE < afterkern) { alloc_afterkern(undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE); } else pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); if (freemem_after + KSTACK_PAGES * PAGE_SIZE < afterkern) { alloc_afterkern(kernelstack.pv_va, kernelstack.pv_pa, KSTACK_PAGES * PAGE_SIZE); } else pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); if (freemem_after + MSGBUF_SIZE < afterkern) { alloc_afterkern(msgbufpv.pv_va, msgbufpv.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE); } else pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa, MSGBUF_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa); /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_devmap_bootstrap(l1pagetable, iq80321_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross reloations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); /* Set stack for exception handlers */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); proc_linkup(&proc0, &ksegrp0, &thread0); thread0.td_kstack = kernelstack.pv_va; thread0.td_pcb = (struct pcb *) (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; thread0.td_pcb->pcb_flags = 0; thread0.td_frame = &proc0_tf; pcpup->pc_curpcb = thread0.td_pcb; /* Enable MMU, I-cache, D-cache, write buffer. */ arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); pmap_curmaxkvaddr = afterkern; pmap_bootstrap(pmap_curmaxkvaddr, 0xd0000000, &kernel_l1pt); msgbufp = (void*)msgbufpv.pv_va; msgbufinit(msgbufp, MSGBUF_SIZE); mutex_init(); freemempos &= ~(PAGE_SIZE - 1); phys_avail[0] = SDRAM_START; phys_avail[1] = freemempos; phys_avail[0] = round_page(virtual_avail - KERNBASE + SDRAM_START); phys_avail[1] = trunc_page(0xa0000000 + memsize - 1); phys_avail[2] = 0; phys_avail[3] = 0; /* Do basic tuning, hz etc */ init_param1(); init_param2(physmem); avail_end = 0xa0000000 + memsize - 1; kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); }