/*- * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: FreeBSD: //depot/projects/arm/src/sys/arm/at91/kb920x_machdep.c, rev 45 */ #include "opt_ddb.h" #include "opt_platform.h" #include __FBSDID("$FreeBSD$"); #define _ARM32_BUS_DMA_PRIVATE #include #include #include #include #include #include #include /* For trapframe_t, used in */ #include #include #include /* XXX */ #include /* XXX eventually this should be eliminated */ #include #include static int platform_mpp_init(void); #define MPP_PIN_MAX 68 #define MPP_PIN_CELLS 2 #define MPP_PINS_PER_REG 8 #define MPP_SEL(pin,func) (((func) & 0xf) << \ (((pin) % MPP_PINS_PER_REG) * 4)) static int platform_mpp_init(void) { pcell_t pinmap[MPP_PIN_MAX * MPP_PIN_CELLS]; int mpp[MPP_PIN_MAX]; uint32_t ctrl_val, ctrl_offset; pcell_t reg[4]; u_long start, size; phandle_t node; pcell_t pin_cells, *pinmap_ptr, pin_count; ssize_t len; int par_addr_cells, par_size_cells; int tuple_size, tuples, rv, pins, i, j; int mpp_pin, mpp_function; /* * Try to access the MPP node directly i.e. through /aliases/mpp. */ if ((node = OF_finddevice("mpp")) != -1) if (fdt_is_compatible(node, "mrvl,mpp")) goto moveon; /* * Find the node the long way. */ if ((node = OF_finddevice("/")) == -1) return (ENXIO); if ((node = fdt_find_compatible(node, "simple-bus", 0)) == 0) return (ENXIO); if ((node = fdt_find_compatible(node, "mrvl,mpp", 0)) == 0) /* * No MPP node. Fall back to how MPP got set by the * first-stage loader and try to continue booting. */ return (0); moveon: /* * Process 'reg' prop. */ if ((rv = fdt_addrsize_cells(OF_parent(node), &par_addr_cells, &par_size_cells)) != 0) return(ENXIO); tuple_size = sizeof(pcell_t) * (par_addr_cells + par_size_cells); len = OF_getprop(node, "reg", reg, sizeof(reg)); tuples = len / tuple_size; if (tuple_size <= 0) return (EINVAL); /* * Get address/size. XXX we assume only the first 'reg' tuple is used. */ rv = fdt_data_to_res(reg, par_addr_cells, par_size_cells, &start, &size); if (rv != 0) return (rv); start += fdt_immr_va; /* * Process 'pin-count' and 'pin-map' props. */ if (OF_getprop(node, "pin-count", &pin_count, sizeof(pin_count)) <= 0) return (ENXIO); pin_count = fdt32_to_cpu(pin_count); if (pin_count > MPP_PIN_MAX) return (ERANGE); if (OF_getprop(node, "#pin-cells", &pin_cells, sizeof(pin_cells)) <= 0) pin_cells = MPP_PIN_CELLS; pin_cells = fdt32_to_cpu(pin_cells); if (pin_cells > MPP_PIN_CELLS) return (ERANGE); tuple_size = sizeof(pcell_t) * pin_cells; bzero(pinmap, sizeof(pinmap)); len = OF_getprop(node, "pin-map", pinmap, sizeof(pinmap)); if (len <= 0) return (ERANGE); if (len % tuple_size) return (ERANGE); pins = len / tuple_size; if (pins > pin_count) return (ERANGE); /* * Fill out a "mpp[pin] => function" table. All pins unspecified in * the 'pin-map' property are defaulted to 0 function i.e. GPIO. */ bzero(mpp, sizeof(mpp)); pinmap_ptr = pinmap; for (i = 0; i < pins; i++) { mpp_pin = fdt32_to_cpu(*pinmap_ptr); mpp_function = fdt32_to_cpu(*(pinmap_ptr + 1)); mpp[mpp_pin] = mpp_function; pinmap_ptr += pin_cells; } /* * Prepare and program MPP control register values. */ ctrl_offset = 0; for (i = 0; i < pin_count;) { ctrl_val = 0; for (j = 0; j < MPP_PINS_PER_REG; j++) { if (i + j == pin_count - 1) break; ctrl_val |= MPP_SEL(i + j, mpp[i + j]); } i += MPP_PINS_PER_REG; bus_space_write_4(fdtbus_bs_tag, start, ctrl_offset, ctrl_val); #if defined(SOC_MV_ORION) /* * Third MPP reg on Orion SoC is placed * non-linearly (with different offset). */ if (i == (2 * MPP_PINS_PER_REG)) ctrl_offset = 0x50; else #endif ctrl_offset += 4; } return (0); } vm_offset_t initarm_lastaddr(void) { if (fdt_immr_addr(MV_BASE) != 0) while (1); /* Platform-specific initialisation */ return (fdt_immr_va - ARM_NOCACHE_KVA_SIZE); } void initarm_gpio_init(void) { /* * Re-initialise MPP. It is important to call this prior to using * console as the physical connection can be routed via MPP. */ if (platform_mpp_init() != 0) while (1); } void initarm_late_init(void) { /* * Re-initialise decode windows */ #if !defined(SOC_MV_FREY) if (soc_decode_win() != 0) printf("WARNING: could not re-initialise decode windows! " "Running with existing settings...\n"); #else /* Disable watchdog and timers */ write_cpu_ctrl(CPU_TIMERS_BASE + CPU_TIMER_CONTROL, 0); #endif } #define FDT_DEVMAP_MAX (MV_WIN_CPU_MAX + 2) static struct pmap_devmap fdt_devmap[FDT_DEVMAP_MAX] = { { 0, 0, 0, 0, 0, } }; static int platform_sram_devmap(struct pmap_devmap *map) { #if !defined(SOC_MV_ARMADAXP) phandle_t child, root; u_long base, size; /* * SRAM range. */ if ((child = OF_finddevice("/sram")) != 0) if (fdt_is_compatible(child, "mrvl,cesa-sram") || fdt_is_compatible(child, "mrvl,scratchpad")) goto moveon; if ((root = OF_finddevice("/")) == 0) return (ENXIO); if ((child = fdt_find_compatible(root, "mrvl,cesa-sram", 0)) == 0 && (child = fdt_find_compatible(root, "mrvl,scratchpad", 0)) == 0) goto out; moveon: if (fdt_regsize(child, &base, &size) != 0) return (EINVAL); map->pd_va = MV_CESA_SRAM_BASE; /* XXX */ map->pd_pa = base; map->pd_size = size; map->pd_prot = VM_PROT_READ | VM_PROT_WRITE; map->pd_cache = PTE_NOCACHE; return (0); out: #endif return (ENOENT); } /* * XXX: When device entry in devmap has pd_size smaller than section size, * system will freeze during initialization */ /* * Construct pmap_devmap[] with DT-derived config data. */ int platform_devmap_init(void) { phandle_t root, child; pcell_t bank_count; u_long base, size; int i, num_mapped; i = 0; pmap_devmap_bootstrap_table = &fdt_devmap[0]; /* * IMMR range. */ fdt_devmap[i].pd_va = fdt_immr_va; fdt_devmap[i].pd_pa = fdt_immr_pa; fdt_devmap[i].pd_size = fdt_immr_size; fdt_devmap[i].pd_prot = VM_PROT_READ | VM_PROT_WRITE; fdt_devmap[i].pd_cache = PTE_NOCACHE; i++; /* * SRAM range. */ if (i < FDT_DEVMAP_MAX) if (platform_sram_devmap(&fdt_devmap[i]) == 0) i++; /* * PCI range(s). * PCI range(s) and localbus. */ if ((root = OF_finddevice("/")) == -1) return (ENXIO); for (child = OF_child(root); child != 0; child = OF_peer(child)) { if (fdt_is_type(child, "pci") || fdt_is_type(child, "pciep")) { /* * Check space: each PCI node will consume 2 devmap * entries. */ if (i + 1 >= FDT_DEVMAP_MAX) return (ENOMEM); /* * XXX this should account for PCI and multiple ranges * of a given kind. */ if (fdt_pci_devmap(child, &fdt_devmap[i], MV_PCI_VA_IO_BASE, MV_PCI_VA_MEM_BASE) != 0) return (ENXIO); i += 2; } if (fdt_is_compatible(child, "mrvl,lbc")) { /* Check available space */ if (OF_getprop(child, "bank-count", (void *)&bank_count, sizeof(bank_count)) <= 0) /* If no property, use default value */ bank_count = 1; else bank_count = fdt32_to_cpu(bank_count); if ((i + bank_count) >= FDT_DEVMAP_MAX) return (ENOMEM); /* Add all localbus ranges to device map */ num_mapped = 0; if (fdt_localbus_devmap(child, &fdt_devmap[i], (int)bank_count, &num_mapped) != 0) return (ENXIO); i += num_mapped; } } /* * CESA SRAM range. */ if ((child = OF_finddevice("sram")) != -1) if (fdt_is_compatible(child, "mrvl,cesa-sram")) goto moveon; if ((child = fdt_find_compatible(root, "mrvl,cesa-sram", 0)) == 0) /* No CESA SRAM node. */ return (0); moveon: if (i >= FDT_DEVMAP_MAX) return (ENOMEM); if (fdt_regsize(child, &base, &size) != 0) return (EINVAL); fdt_devmap[i].pd_va = MV_CESA_SRAM_BASE; /* XXX */ fdt_devmap[i].pd_pa = base; fdt_devmap[i].pd_size = size; fdt_devmap[i].pd_prot = VM_PROT_READ | VM_PROT_WRITE; fdt_devmap[i].pd_cache = PTE_NOCACHE; return (0); } struct arm32_dma_range * bus_dma_get_range(void) { return (NULL); } int bus_dma_get_range_nb(void) { return (0); } #if defined(CPU_MV_PJ4B) #ifdef DDB #include DB_SHOW_COMMAND(cp15, db_show_cp15) { u_int reg; __asm __volatile("mrc p15, 0, %0, c0, c0, 0" : "=r" (reg)); db_printf("Cpu ID: 0x%08x\n", reg); __asm __volatile("mrc p15, 0, %0, c0, c0, 1" : "=r" (reg)); db_printf("Current Cache Lvl ID: 0x%08x\n",reg); __asm __volatile("mrc p15, 0, %0, c1, c0, 0" : "=r" (reg)); db_printf("Ctrl: 0x%08x\n",reg); __asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (reg)); db_printf("Aux Ctrl: 0x%08x\n",reg); __asm __volatile("mrc p15, 0, %0, c0, c1, 0" : "=r" (reg)); db_printf("Processor Feat 0: 0x%08x\n", reg); __asm __volatile("mrc p15, 0, %0, c0, c1, 1" : "=r" (reg)); db_printf("Processor Feat 1: 0x%08x\n", reg); __asm __volatile("mrc p15, 0, %0, c0, c1, 2" : "=r" (reg)); db_printf("Debug Feat 0: 0x%08x\n", reg); __asm __volatile("mrc p15, 0, %0, c0, c1, 3" : "=r" (reg)); db_printf("Auxiliary Feat 0: 0x%08x\n", reg); __asm __volatile("mrc p15, 0, %0, c0, c1, 4" : "=r" (reg)); db_printf("Memory Model Feat 0: 0x%08x\n", reg); __asm __volatile("mrc p15, 0, %0, c0, c1, 5" : "=r" (reg)); db_printf("Memory Model Feat 1: 0x%08x\n", reg); __asm __volatile("mrc p15, 0, %0, c0, c1, 6" : "=r" (reg)); db_printf("Memory Model Feat 2: 0x%08x\n", reg); __asm __volatile("mrc p15, 0, %0, c0, c1, 7" : "=r" (reg)); db_printf("Memory Model Feat 3: 0x%08x\n", reg); __asm __volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (reg)); db_printf("Aux Func Modes Ctrl 0: 0x%08x\n",reg); __asm __volatile("mrc p15, 1, %0, c15, c2, 1" : "=r" (reg)); db_printf("Aux Func Modes Ctrl 1: 0x%08x\n",reg); __asm __volatile("mrc p15, 1, %0, c15, c12, 0" : "=r" (reg)); db_printf("CPU ID code extension: 0x%08x\n",reg); } DB_SHOW_COMMAND(vtop, db_show_vtop) { u_int reg; if (have_addr) { __asm __volatile("mcr p15, 0, %0, c7, c8, 0" : : "r" (addr)); __asm __volatile("mrc p15, 0, %0, c7, c4, 0" : "=r" (reg)); db_printf("Physical address reg: 0x%08x\n",reg); } else db_printf("show vtop \n"); } #endif /* DDB */ #endif /* CPU_MV_PJ4B */