/*- * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vmm_lapic.h" #include "vmm_host.h" #include "vmm_ioport.h" #include "vmm_ktr.h" #include "vmm_stat.h" #include "vatpic.h" #include "vlapic.h" #include "vlapic_priv.h" #include "ept.h" #include "vmx_cpufunc.h" #include "vmx.h" #include "vmx_msr.h" #include "x86.h" #include "vmx_controls.h" #define PINBASED_CTLS_ONE_SETTING \ (PINBASED_EXTINT_EXITING | \ PINBASED_NMI_EXITING | \ PINBASED_VIRTUAL_NMI) #define PINBASED_CTLS_ZERO_SETTING 0 #define PROCBASED_CTLS_WINDOW_SETTING \ (PROCBASED_INT_WINDOW_EXITING | \ PROCBASED_NMI_WINDOW_EXITING) #define PROCBASED_CTLS_ONE_SETTING \ (PROCBASED_SECONDARY_CONTROLS | \ PROCBASED_MWAIT_EXITING | \ PROCBASED_MONITOR_EXITING | \ PROCBASED_IO_EXITING | \ PROCBASED_MSR_BITMAPS | \ PROCBASED_CTLS_WINDOW_SETTING | \ PROCBASED_CR8_LOAD_EXITING | \ PROCBASED_CR8_STORE_EXITING) #define PROCBASED_CTLS_ZERO_SETTING \ (PROCBASED_CR3_LOAD_EXITING | \ PROCBASED_CR3_STORE_EXITING | \ PROCBASED_IO_BITMAPS) #define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT #define PROCBASED_CTLS2_ZERO_SETTING 0 #define VM_EXIT_CTLS_ONE_SETTING \ (VM_EXIT_HOST_LMA | \ VM_EXIT_SAVE_EFER | \ VM_EXIT_LOAD_EFER | \ VM_EXIT_ACKNOWLEDGE_INTERRUPT) #define VM_EXIT_CTLS_ZERO_SETTING VM_EXIT_SAVE_DEBUG_CONTROLS #define VM_ENTRY_CTLS_ONE_SETTING (VM_ENTRY_LOAD_EFER) #define VM_ENTRY_CTLS_ZERO_SETTING \ (VM_ENTRY_LOAD_DEBUG_CONTROLS | \ VM_ENTRY_INTO_SMM | \ VM_ENTRY_DEACTIVATE_DUAL_MONITOR) #define HANDLED 1 #define UNHANDLED 0 static MALLOC_DEFINE(M_VMX, "vmx", "vmx"); static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic"); SYSCTL_DECL(_hw_vmm); SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL); int vmxon_enabled[MAXCPU]; static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2; static uint32_t exit_ctls, entry_ctls; static uint64_t cr0_ones_mask, cr0_zeros_mask; SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD, &cr0_ones_mask, 0, NULL); SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD, &cr0_zeros_mask, 0, NULL); static uint64_t cr4_ones_mask, cr4_zeros_mask; SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD, &cr4_ones_mask, 0, NULL); SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD, &cr4_zeros_mask, 0, NULL); static int vmx_initialized; SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD, &vmx_initialized, 0, "Intel VMX initialized"); /* * Optional capabilities */ static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL); static int cap_halt_exit; SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0, "HLT triggers a VM-exit"); static int cap_pause_exit; SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit, 0, "PAUSE triggers a VM-exit"); static int cap_unrestricted_guest; SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD, &cap_unrestricted_guest, 0, "Unrestricted guests"); static int cap_monitor_trap; SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD, &cap_monitor_trap, 0, "Monitor trap flag"); static int cap_invpcid; SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid, 0, "Guests are allowed to use INVPCID"); static int virtual_interrupt_delivery; SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD, &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support"); static int posted_interrupts; SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD, &posted_interrupts, 0, "APICv posted interrupt support"); static int pirvec = -1; SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD, &pirvec, 0, "APICv posted interrupt vector"); static struct unrhdr *vpid_unr; static u_int vpid_alloc_failed; SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD, &vpid_alloc_failed, 0, NULL); /* * Use the last page below 4GB as the APIC access address. This address is * occupied by the boot firmware so it is guaranteed that it will not conflict * with a page in system memory. */ #define APIC_ACCESS_ADDRESS 0xFFFFF000 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc); static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval); static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val); static void vmx_inject_pir(struct vlapic *vlapic); #ifdef KTR static const char * exit_reason_to_str(int reason) { static char reasonbuf[32]; switch (reason) { case EXIT_REASON_EXCEPTION: return "exception"; case EXIT_REASON_EXT_INTR: return "extint"; case EXIT_REASON_TRIPLE_FAULT: return "triplefault"; case EXIT_REASON_INIT: return "init"; case EXIT_REASON_SIPI: return "sipi"; case EXIT_REASON_IO_SMI: return "iosmi"; case EXIT_REASON_SMI: return "smi"; case EXIT_REASON_INTR_WINDOW: return "intrwindow"; case EXIT_REASON_NMI_WINDOW: return "nmiwindow"; case EXIT_REASON_TASK_SWITCH: return "taskswitch"; case EXIT_REASON_CPUID: return "cpuid"; case EXIT_REASON_GETSEC: return "getsec"; case EXIT_REASON_HLT: return "hlt"; case EXIT_REASON_INVD: return "invd"; case EXIT_REASON_INVLPG: return "invlpg"; case EXIT_REASON_RDPMC: return "rdpmc"; case EXIT_REASON_RDTSC: return "rdtsc"; case EXIT_REASON_RSM: return "rsm"; case EXIT_REASON_VMCALL: return "vmcall"; case EXIT_REASON_VMCLEAR: return "vmclear"; case EXIT_REASON_VMLAUNCH: return "vmlaunch"; case EXIT_REASON_VMPTRLD: return "vmptrld"; case EXIT_REASON_VMPTRST: return "vmptrst"; case EXIT_REASON_VMREAD: return "vmread"; case EXIT_REASON_VMRESUME: return "vmresume"; case EXIT_REASON_VMWRITE: return "vmwrite"; case EXIT_REASON_VMXOFF: return "vmxoff"; case EXIT_REASON_VMXON: return "vmxon"; case EXIT_REASON_CR_ACCESS: return "craccess"; case EXIT_REASON_DR_ACCESS: return "draccess"; case EXIT_REASON_INOUT: return "inout"; case EXIT_REASON_RDMSR: return "rdmsr"; case EXIT_REASON_WRMSR: return "wrmsr"; case EXIT_REASON_INVAL_VMCS: return "invalvmcs"; case EXIT_REASON_INVAL_MSR: return "invalmsr"; case EXIT_REASON_MWAIT: return "mwait"; case EXIT_REASON_MTF: return "mtf"; case EXIT_REASON_MONITOR: return "monitor"; case EXIT_REASON_PAUSE: return "pause"; case EXIT_REASON_MCE_DURING_ENTRY: return "mce-during-entry"; case EXIT_REASON_TPR: return "tpr"; case EXIT_REASON_APIC_ACCESS: return "apic-access"; case EXIT_REASON_GDTR_IDTR: return "gdtridtr"; case EXIT_REASON_LDTR_TR: return "ldtrtr"; case EXIT_REASON_EPT_FAULT: return "eptfault"; case EXIT_REASON_EPT_MISCONFIG: return "eptmisconfig"; case EXIT_REASON_INVEPT: return "invept"; case EXIT_REASON_RDTSCP: return "rdtscp"; case EXIT_REASON_VMX_PREEMPT: return "vmxpreempt"; case EXIT_REASON_INVVPID: return "invvpid"; case EXIT_REASON_WBINVD: return "wbinvd"; case EXIT_REASON_XSETBV: return "xsetbv"; case EXIT_REASON_APIC_WRITE: return "apic-write"; default: snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason); return (reasonbuf); } } #endif /* KTR */ static int vmx_allow_x2apic_msrs(struct vmx *vmx) { int i, error; error = 0; /* * Allow readonly access to the following x2APIC MSRs from the guest. */ error += guest_msr_ro(vmx, MSR_APIC_ID); error += guest_msr_ro(vmx, MSR_APIC_VERSION); error += guest_msr_ro(vmx, MSR_APIC_LDR); error += guest_msr_ro(vmx, MSR_APIC_SVR); for (i = 0; i < 8; i++) error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i); for (i = 0; i < 8; i++) error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i); for (i = 0; i < 8; i++) error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i); error += guest_msr_ro(vmx, MSR_APIC_ESR); error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER); error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL); error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT); error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0); error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1); error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR); error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER); error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER); error += guest_msr_ro(vmx, MSR_APIC_ICR); /* * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest. * * These registers get special treatment described in the section * "Virtualizing MSR-Based APIC Accesses". */ error += guest_msr_rw(vmx, MSR_APIC_TPR); error += guest_msr_rw(vmx, MSR_APIC_EOI); error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI); return (error); } u_long vmx_fix_cr0(u_long cr0) { return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask); } u_long vmx_fix_cr4(u_long cr4) { return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask); } static void vpid_free(int vpid) { if (vpid < 0 || vpid > 0xffff) panic("vpid_free: invalid vpid %d", vpid); /* * VPIDs [0,VM_MAXCPU] are special and are not allocated from * the unit number allocator. */ if (vpid > VM_MAXCPU) free_unr(vpid_unr, vpid); } static void vpid_alloc(uint16_t *vpid, int num) { int i, x; if (num <= 0 || num > VM_MAXCPU) panic("invalid number of vpids requested: %d", num); /* * If the "enable vpid" execution control is not enabled then the * VPID is required to be 0 for all vcpus. */ if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) { for (i = 0; i < num; i++) vpid[i] = 0; return; } /* * Allocate a unique VPID for each vcpu from the unit number allocator. */ for (i = 0; i < num; i++) { x = alloc_unr(vpid_unr); if (x == -1) break; else vpid[i] = x; } if (i < num) { atomic_add_int(&vpid_alloc_failed, 1); /* * If the unit number allocator does not have enough unique * VPIDs then we need to allocate from the [1,VM_MAXCPU] range. * * These VPIDs are not be unique across VMs but this does not * affect correctness because the combined mappings are also * tagged with the EP4TA which is unique for each VM. * * It is still sub-optimal because the invvpid will invalidate * combined mappings for a particular VPID across all EP4TAs. */ while (i-- > 0) vpid_free(vpid[i]); for (i = 0; i < num; i++) vpid[i] = i + 1; } } static void vpid_init(void) { /* * VPID 0 is required when the "enable VPID" execution control is * disabled. * * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the * unit number allocator does not have sufficient unique VPIDs to * satisfy the allocation. * * The remaining VPIDs are managed by the unit number allocator. */ vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL); } static void vmx_disable(void *arg __unused) { struct invvpid_desc invvpid_desc = { 0 }; struct invept_desc invept_desc = { 0 }; if (vmxon_enabled[curcpu]) { /* * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b. * * VMXON or VMXOFF are not required to invalidate any TLB * caching structures. This prevents potential retention of * cached information in the TLB between distinct VMX episodes. */ invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc); invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc); vmxoff(); } load_cr4(rcr4() & ~CR4_VMXE); } static int vmx_cleanup(void) { if (pirvec >= 0) lapic_ipi_free(pirvec); if (vpid_unr != NULL) { delete_unrhdr(vpid_unr); vpid_unr = NULL; } smp_rendezvous(NULL, vmx_disable, NULL, NULL); return (0); } static void vmx_enable(void *arg __unused) { int error; uint64_t feature_control; feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 || (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { wrmsr(MSR_IA32_FEATURE_CONTROL, feature_control | IA32_FEATURE_CONTROL_VMX_EN | IA32_FEATURE_CONTROL_LOCK); } load_cr4(rcr4() | CR4_VMXE); *(uint32_t *)vmxon_region[curcpu] = vmx_revision(); error = vmxon(vmxon_region[curcpu]); if (error == 0) vmxon_enabled[curcpu] = 1; } static void vmx_restore(void) { if (vmxon_enabled[curcpu]) vmxon(vmxon_region[curcpu]); } static int vmx_init(int ipinum) { int error, use_tpr_shadow; uint64_t basic, fixed0, fixed1, feature_control; uint32_t tmp, procbased2_vid_bits; /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */ if (!(cpu_feature2 & CPUID2_VMX)) { printf("vmx_init: processor does not support VMX operation\n"); return (ENXIO); } /* * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits * are set (bits 0 and 2 respectively). */ feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 && (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { printf("vmx_init: VMX operation disabled by BIOS\n"); return (ENXIO); } /* * Verify capabilities MSR_VMX_BASIC: * - bit 54 indicates support for INS/OUTS decoding */ basic = rdmsr(MSR_VMX_BASIC); if ((basic & (1UL << 54)) == 0) { printf("vmx_init: processor does not support desired basic " "capabilities\n"); return (EINVAL); } /* Check support for primary processor-based VM-execution controls */ error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_CTLS_ONE_SETTING, PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls); if (error) { printf("vmx_init: processor does not support desired primary " "processor-based controls\n"); return (error); } /* Clear the processor-based ctl bits that are set on demand */ procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING; /* Check support for secondary processor-based VM-execution controls */ error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, PROCBASED_CTLS2_ONE_SETTING, PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2); if (error) { printf("vmx_init: processor does not support desired secondary " "processor-based controls\n"); return (error); } /* Check support for VPID */ error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_VPID, 0, &tmp); if (error == 0) procbased_ctls2 |= PROCBASED2_ENABLE_VPID; /* Check support for pin-based VM-execution controls */ error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_CTLS_ONE_SETTING, PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls); if (error) { printf("vmx_init: processor does not support desired " "pin-based controls\n"); return (error); } /* Check support for VM-exit controls */ error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS, VM_EXIT_CTLS_ONE_SETTING, VM_EXIT_CTLS_ZERO_SETTING, &exit_ctls); if (error) { printf("vmx_init: processor does not support desired " "exit controls\n"); return (error); } /* Check support for VM-entry controls */ error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS, VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING, &entry_ctls); if (error) { printf("vmx_init: processor does not support desired " "entry controls\n"); return (error); } /* * Check support for optional features by testing them * as individual bits */ cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_HLT_EXITING, 0, &tmp) == 0); cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_PROCBASED_CTLS, PROCBASED_MTF, 0, &tmp) == 0); cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_PAUSE_EXITING, 0, &tmp) == 0); cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, PROCBASED2_UNRESTRICTED_GUEST, 0, &tmp) == 0); cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0, &tmp) == 0); /* * Check support for virtual interrupt delivery. */ procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES | PROCBASED2_VIRTUALIZE_X2APIC_MODE | PROCBASED2_APIC_REGISTER_VIRTUALIZATION | PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY); use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0, &tmp) == 0); error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, procbased2_vid_bits, 0, &tmp); if (error == 0 && use_tpr_shadow) { virtual_interrupt_delivery = 1; TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid", &virtual_interrupt_delivery); } if (virtual_interrupt_delivery) { procbased_ctls |= PROCBASED_USE_TPR_SHADOW; procbased_ctls2 |= procbased2_vid_bits; procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE; /* * No need to emulate accesses to %CR8 if virtual * interrupt delivery is enabled. */ procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING; procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING; /* * Check for Posted Interrupts only if Virtual Interrupt * Delivery is enabled. */ error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0, &tmp); if (error == 0) { pirvec = lapic_ipi_alloc(&IDTVEC(justreturn)); if (pirvec < 0) { if (bootverbose) { printf("vmx_init: unable to allocate " "posted interrupt vector\n"); } } else { posted_interrupts = 1; TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir", &posted_interrupts); } } } if (posted_interrupts) pinbased_ctls |= PINBASED_POSTED_INTERRUPT; /* Initialize EPT */ error = ept_init(ipinum); if (error) { printf("vmx_init: ept initialization failed (%d)\n", error); return (error); } /* * Stash the cr0 and cr4 bits that must be fixed to 0 or 1 */ fixed0 = rdmsr(MSR_VMX_CR0_FIXED0); fixed1 = rdmsr(MSR_VMX_CR0_FIXED1); cr0_ones_mask = fixed0 & fixed1; cr0_zeros_mask = ~fixed0 & ~fixed1; /* * CR0_PE and CR0_PG can be set to zero in VMX non-root operation * if unrestricted guest execution is allowed. */ if (cap_unrestricted_guest) cr0_ones_mask &= ~(CR0_PG | CR0_PE); /* * Do not allow the guest to set CR0_NW or CR0_CD. */ cr0_zeros_mask |= (CR0_NW | CR0_CD); fixed0 = rdmsr(MSR_VMX_CR4_FIXED0); fixed1 = rdmsr(MSR_VMX_CR4_FIXED1); cr4_ones_mask = fixed0 & fixed1; cr4_zeros_mask = ~fixed0 & ~fixed1; vpid_init(); vmx_msr_init(); /* enable VMX operation */ smp_rendezvous(NULL, vmx_enable, NULL, NULL); vmx_initialized = 1; return (0); } static void vmx_trigger_hostintr(int vector) { uintptr_t func; struct gate_descriptor *gd; gd = &idt[vector]; KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: " "invalid vector %d", vector)); KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present", vector)); KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d " "has invalid type %d", vector, gd->gd_type)); KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d " "has invalid dpl %d", vector, gd->gd_dpl)); KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor " "for vector %d has invalid selector %d", vector, gd->gd_selector)); KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid " "IST %d", vector, gd->gd_ist)); func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset); vmx_call_isr(func); } static int vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial) { int error, mask_ident, shadow_ident; uint64_t mask_value; if (which != 0 && which != 4) panic("vmx_setup_cr_shadow: unknown cr%d", which); if (which == 0) { mask_ident = VMCS_CR0_MASK; mask_value = cr0_ones_mask | cr0_zeros_mask; shadow_ident = VMCS_CR0_SHADOW; } else { mask_ident = VMCS_CR4_MASK; mask_value = cr4_ones_mask | cr4_zeros_mask; shadow_ident = VMCS_CR4_SHADOW; } error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value); if (error) return (error); error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial); if (error) return (error); return (0); } #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init)) #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init)) static void * vmx_vminit(struct vm *vm, pmap_t pmap) { uint16_t vpid[VM_MAXCPU]; int i, error; struct vmx *vmx; struct vmcs *vmcs; uint32_t exc_bitmap; vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO); if ((uintptr_t)vmx & PAGE_MASK) { panic("malloc of struct vmx not aligned on %d byte boundary", PAGE_SIZE); } vmx->vm = vm; vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4)); /* * Clean up EPTP-tagged guest physical and combined mappings * * VMX transitions are not required to invalidate any guest physical * mappings. So, it may be possible for stale guest physical mappings * to be present in the processor TLBs. * * Combined mappings for this EP4TA are also invalidated for all VPIDs. */ ept_invalidate_mappings(vmx->eptp); msr_bitmap_initialize(vmx->msr_bitmap); /* * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE. * The guest FSBASE and GSBASE are saved and restored during * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are * always restored from the vmcs host state area on vm-exit. * * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in * how they are saved/restored so can be directly accessed by the * guest. * * MSR_EFER is saved and restored in the guest VMCS area on a * VM exit and entry respectively. It is also restored from the * host VMCS area on a VM exit. * * The TSC MSR is exposed read-only. Writes are disallowed as * that will impact the host TSC. If the guest does a write * the "use TSC offsetting" execution control is enabled and the * difference between the host TSC and the guest TSC is written * into the TSC offset in the VMCS. */ if (guest_msr_rw(vmx, MSR_GSBASE) || guest_msr_rw(vmx, MSR_FSBASE) || guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) || guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) || guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) || guest_msr_rw(vmx, MSR_EFER) || guest_msr_ro(vmx, MSR_TSC)) panic("vmx_vminit: error setting guest msr access"); vpid_alloc(vpid, VM_MAXCPU); if (virtual_interrupt_delivery) { error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE, APIC_ACCESS_ADDRESS); /* XXX this should really return an error to the caller */ KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error)); } for (i = 0; i < VM_MAXCPU; i++) { vmcs = &vmx->vmcs[i]; vmcs->identifier = vmx_revision(); error = vmclear(vmcs); if (error != 0) { panic("vmx_vminit: vmclear error %d on vcpu %d\n", error, i); } vmx_msr_guest_init(vmx, i); error = vmcs_init(vmcs); KASSERT(error == 0, ("vmcs_init error %d", error)); VMPTRLD(vmcs); error = 0; error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]); error += vmwrite(VMCS_EPTP, vmx->eptp); error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls); error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls); error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2); error += vmwrite(VMCS_EXIT_CTLS, exit_ctls); error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls); error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap)); error += vmwrite(VMCS_VPID, vpid[i]); /* exception bitmap */ if (vcpu_trace_exceptions(vm, i)) exc_bitmap = 0xffffffff; else exc_bitmap = 1 << IDT_MC; error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap); if (virtual_interrupt_delivery) { error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS); error += vmwrite(VMCS_VIRTUAL_APIC, vtophys(&vmx->apic_page[i])); error += vmwrite(VMCS_EOI_EXIT0, 0); error += vmwrite(VMCS_EOI_EXIT1, 0); error += vmwrite(VMCS_EOI_EXIT2, 0); error += vmwrite(VMCS_EOI_EXIT3, 0); } if (posted_interrupts) { error += vmwrite(VMCS_PIR_VECTOR, pirvec); error += vmwrite(VMCS_PIR_DESC, vtophys(&vmx->pir_desc[i])); } VMCLEAR(vmcs); KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs")); vmx->cap[i].set = 0; vmx->cap[i].proc_ctls = procbased_ctls; vmx->cap[i].proc_ctls2 = procbased_ctls2; vmx->state[i].nextrip = ~0; vmx->state[i].lastcpu = NOCPU; vmx->state[i].vpid = vpid[i]; /* * Set up the CR0/4 shadows, and init the read shadow * to the power-on register value from the Intel Sys Arch. * CR0 - 0x60000010 * CR4 - 0 */ error = vmx_setup_cr0_shadow(vmcs, 0x60000010); if (error != 0) panic("vmx_setup_cr0_shadow %d", error); error = vmx_setup_cr4_shadow(vmcs, 0); if (error != 0) panic("vmx_setup_cr4_shadow %d", error); vmx->ctx[i].pmap = pmap; } return (vmx); } static int vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx) { int handled, func; func = vmxctx->guest_rax; handled = x86_emulate_cpuid(vm, vcpu, (uint32_t*)(&vmxctx->guest_rax), (uint32_t*)(&vmxctx->guest_rbx), (uint32_t*)(&vmxctx->guest_rcx), (uint32_t*)(&vmxctx->guest_rdx)); return (handled); } static __inline void vmx_run_trace(struct vmx *vmx, int vcpu) { #ifdef KTR VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip()); #endif } static __inline void vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason, int handled) { #ifdef KTR VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx", handled ? "handled" : "unhandled", exit_reason_to_str(exit_reason), rip); #endif } static __inline void vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip) { #ifdef KTR VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip); #endif } static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved"); static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done"); /* * Invalidate guest mappings identified by its vpid from the TLB. */ static __inline void vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running) { struct vmxstate *vmxstate; struct invvpid_desc invvpid_desc; vmxstate = &vmx->state[vcpu]; if (vmxstate->vpid == 0) return; if (!running) { /* * Set the 'lastcpu' to an invalid host cpu. * * This will invalidate TLB entries tagged with the vcpu's * vpid the next time it runs via vmx_set_pcpu_defaults(). */ vmxstate->lastcpu = NOCPU; return; } KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside " "critical section", __func__, vcpu)); /* * Invalidate all mappings tagged with 'vpid' * * We do this because this vcpu was executing on a different host * cpu when it last ran. We do not track whether it invalidated * mappings associated with its 'vpid' during that run. So we must * assume that the mappings associated with 'vpid' on 'curcpu' are * stale and invalidate them. * * Note that we incur this penalty only when the scheduler chooses to * move the thread associated with this vcpu between host cpus. * * Note also that this will invalidate mappings tagged with 'vpid' * for "all" EP4TAs. */ if (pmap->pm_eptgen == vmx->eptgen[curcpu]) { invvpid_desc._res1 = 0; invvpid_desc._res2 = 0; invvpid_desc.vpid = vmxstate->vpid; invvpid_desc.linear_addr = 0; invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc); vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1); } else { /* * The invvpid can be skipped if an invept is going to * be performed before entering the guest. The invept * will invalidate combined mappings tagged with * 'vmx->eptp' for all vpids. */ vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1); } } static void vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap) { struct vmxstate *vmxstate; vmxstate = &vmx->state[vcpu]; if (vmxstate->lastcpu == curcpu) return; vmxstate->lastcpu = curcpu; vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1); vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase()); vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase()); vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase()); vmx_invvpid(vmx, vcpu, pmap, 1); } /* * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set. */ CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0); static void __inline vmx_set_int_window_exiting(struct vmx *vmx, int vcpu) { if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) { vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING; vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting"); } } static void __inline vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu) { KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0, ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls)); vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING; vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting"); } static void __inline vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu) { if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) { vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING; vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting"); } } static void __inline vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu) { KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0, ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls)); vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING; vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting"); } int vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset) { int error; if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) { vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET; vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting"); } error = vmwrite(VMCS_TSC_OFFSET, offset); return (error); } #define NMI_BLOCKING (VMCS_INTERRUPTIBILITY_NMI_BLOCKING | \ VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING | \ VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) static void vmx_inject_nmi(struct vmx *vmx, int vcpu) { uint32_t gi, info; gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest " "interruptibility-state %#x", gi)); info = vmcs_read(VMCS_ENTRY_INTR_INFO); KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid " "VM-entry interruption information %#x", info)); /* * Inject the virtual NMI. The vector must be the NMI IDT entry * or the VMCS entry check will fail. */ info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID; vmcs_write(VMCS_ENTRY_INTR_INFO, info); VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI"); /* Clear the request */ vm_nmi_clear(vmx->vm, vcpu); } static void vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic, uint64_t guestrip) { int vector, need_nmi_exiting, extint_pending; uint64_t rflags, entryinfo; uint32_t gi, info; if (vmx->state[vcpu].nextrip != guestrip) { gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); if (gi & HWINTR_BLOCKING) { VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking " "cleared due to rip change: %#lx/%#lx", vmx->state[vcpu].nextrip, guestrip); gi &= ~HWINTR_BLOCKING; vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); } } if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) { KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry " "intinfo is not valid: %#lx", __func__, entryinfo)); info = vmcs_read(VMCS_ENTRY_INTR_INFO); KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject " "pending exception: %#lx/%#x", __func__, entryinfo, info)); info = entryinfo; vector = info & 0xff; if (vector == IDT_BP || vector == IDT_OF) { /* * VT-x requires #BP and #OF to be injected as software * exceptions. */ info &= ~VMCS_INTR_T_MASK; info |= VMCS_INTR_T_SWEXCEPTION; } if (info & VMCS_INTR_DEL_ERRCODE) vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32); vmcs_write(VMCS_ENTRY_INTR_INFO, info); } if (vm_nmi_pending(vmx->vm, vcpu)) { /* * If there are no conditions blocking NMI injection then * inject it directly here otherwise enable "NMI window * exiting" to inject it as soon as we can. * * We also check for STI_BLOCKING because some implementations * don't allow NMI injection in this case. If we are running * on a processor that doesn't have this restriction it will * immediately exit and the NMI will be injected in the * "NMI window exiting" handler. */ need_nmi_exiting = 1; gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) { info = vmcs_read(VMCS_ENTRY_INTR_INFO); if ((info & VMCS_INTR_VALID) == 0) { vmx_inject_nmi(vmx, vcpu); need_nmi_exiting = 0; } else { VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI " "due to VM-entry intr info %#x", info); } } else { VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to " "Guest Interruptibility-state %#x", gi); } if (need_nmi_exiting) vmx_set_nmi_window_exiting(vmx, vcpu); } extint_pending = vm_extint_pending(vmx->vm, vcpu); if (!extint_pending && virtual_interrupt_delivery) { vmx_inject_pir(vlapic); return; } /* * If interrupt-window exiting is already in effect then don't bother * checking for pending interrupts. This is just an optimization and * not needed for correctness. */ if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) { VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to " "pending int_window_exiting"); return; } if (!extint_pending) { /* Ask the local apic for a vector to inject */ if (!vlapic_pending_intr(vlapic, &vector)) return; /* * From the Intel SDM, Volume 3, Section "Maskable * Hardware Interrupts": * - maskable interrupt vectors [16,255] can be delivered * through the local APIC. */ KASSERT(vector >= 16 && vector <= 255, ("invalid vector %d from local APIC", vector)); } else { /* Ask the legacy pic for a vector to inject */ vatpic_pending_intr(vmx->vm, &vector); /* * From the Intel SDM, Volume 3, Section "Maskable * Hardware Interrupts": * - maskable interrupt vectors [0,255] can be delivered * through the INTR pin. */ KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR", vector)); } /* Check RFLAGS.IF and the interruptibility state of the guest */ rflags = vmcs_read(VMCS_GUEST_RFLAGS); if ((rflags & PSL_I) == 0) { VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " "rflags %#lx", vector, rflags); goto cantinject; } gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); if (gi & HWINTR_BLOCKING) { VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " "Guest Interruptibility-state %#x", vector, gi); goto cantinject; } info = vmcs_read(VMCS_ENTRY_INTR_INFO); if (info & VMCS_INTR_VALID) { /* * This is expected and could happen for multiple reasons: * - A vectoring VM-entry was aborted due to astpending * - A VM-exit happened during event injection. * - An exception was injected above. * - An NMI was injected above or after "NMI window exiting" */ VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " "VM-entry intr info %#x", vector, info); goto cantinject; } /* Inject the interrupt */ info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID; info |= vector; vmcs_write(VMCS_ENTRY_INTR_INFO, info); if (!extint_pending) { /* Update the Local APIC ISR */ vlapic_intr_accepted(vlapic, vector); } else { vm_extint_clear(vmx->vm, vcpu); vatpic_intr_accepted(vmx->vm, vector); /* * After we accepted the current ExtINT the PIC may * have posted another one. If that is the case, set * the Interrupt Window Exiting execution control so * we can inject that one too. * * Also, interrupt window exiting allows us to inject any * pending APIC vector that was preempted by the ExtINT * as soon as possible. This applies both for the software * emulated vlapic and the hardware assisted virtual APIC. */ vmx_set_int_window_exiting(vmx, vcpu); } VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector); return; cantinject: /* * Set the Interrupt Window Exiting execution control so we can inject * the interrupt as soon as blocking condition goes away. */ vmx_set_int_window_exiting(vmx, vcpu); } /* * If the Virtual NMIs execution control is '1' then the logical processor * tracks virtual-NMI blocking in the Guest Interruptibility-state field of * the VMCS. An IRET instruction in VMX non-root operation will remove any * virtual-NMI blocking. * * This unblocking occurs even if the IRET causes a fault. In this case the * hypervisor needs to restore virtual-NMI blocking before resuming the guest. */ static void vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid) { uint32_t gi; VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking"); gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING; vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); } static void vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid) { uint32_t gi; VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking"); gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING; vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); } static void vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid) { uint32_t gi; gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING, ("NMI blocking is not in effect %#x", gi)); } static int vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) { struct vmxctx *vmxctx; uint64_t xcrval; const struct xsave_limits *limits; vmxctx = &vmx->ctx[vcpu]; limits = vmm_get_xsave_limits(); /* * Note that the processor raises a GP# fault on its own if * xsetbv is executed for CPL != 0, so we do not have to * emulate that fault here. */ /* Only xcr0 is supported. */ if (vmxctx->guest_rcx != 0) { vm_inject_gp(vmx->vm, vcpu); return (HANDLED); } /* We only handle xcr0 if both the host and guest have XSAVE enabled. */ if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) { vm_inject_ud(vmx->vm, vcpu); return (HANDLED); } xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff); if ((xcrval & ~limits->xcr0_allowed) != 0) { vm_inject_gp(vmx->vm, vcpu); return (HANDLED); } if (!(xcrval & XFEATURE_ENABLED_X87)) { vm_inject_gp(vmx->vm, vcpu); return (HANDLED); } /* AVX (YMM_Hi128) requires SSE. */ if (xcrval & XFEATURE_ENABLED_AVX && (xcrval & XFEATURE_AVX) != XFEATURE_AVX) { vm_inject_gp(vmx->vm, vcpu); return (HANDLED); } /* * AVX512 requires base AVX (YMM_Hi128) as well as OpMask, * ZMM_Hi256, and Hi16_ZMM. */ if (xcrval & XFEATURE_AVX512 && (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) != (XFEATURE_AVX512 | XFEATURE_AVX)) { vm_inject_gp(vmx->vm, vcpu); return (HANDLED); } /* * Intel MPX requires both bound register state flags to be * set. */ if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) != ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) { vm_inject_gp(vmx->vm, vcpu); return (HANDLED); } /* * This runs "inside" vmrun() with the guest's FPU state, so * modifying xcr0 directly modifies the guest's xcr0, not the * host's. */ load_xcr(0, xcrval); return (HANDLED); } static uint64_t vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident) { const struct vmxctx *vmxctx; vmxctx = &vmx->ctx[vcpu]; switch (ident) { case 0: return (vmxctx->guest_rax); case 1: return (vmxctx->guest_rcx); case 2: return (vmxctx->guest_rdx); case 3: return (vmxctx->guest_rbx); case 4: return (vmcs_read(VMCS_GUEST_RSP)); case 5: return (vmxctx->guest_rbp); case 6: return (vmxctx->guest_rsi); case 7: return (vmxctx->guest_rdi); case 8: return (vmxctx->guest_r8); case 9: return (vmxctx->guest_r9); case 10: return (vmxctx->guest_r10); case 11: return (vmxctx->guest_r11); case 12: return (vmxctx->guest_r12); case 13: return (vmxctx->guest_r13); case 14: return (vmxctx->guest_r14); case 15: return (vmxctx->guest_r15); default: panic("invalid vmx register %d", ident); } } static void vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval) { struct vmxctx *vmxctx; vmxctx = &vmx->ctx[vcpu]; switch (ident) { case 0: vmxctx->guest_rax = regval; break; case 1: vmxctx->guest_rcx = regval; break; case 2: vmxctx->guest_rdx = regval; break; case 3: vmxctx->guest_rbx = regval; break; case 4: vmcs_write(VMCS_GUEST_RSP, regval); break; case 5: vmxctx->guest_rbp = regval; break; case 6: vmxctx->guest_rsi = regval; break; case 7: vmxctx->guest_rdi = regval; break; case 8: vmxctx->guest_r8 = regval; break; case 9: vmxctx->guest_r9 = regval; break; case 10: vmxctx->guest_r10 = regval; break; case 11: vmxctx->guest_r11 = regval; break; case 12: vmxctx->guest_r12 = regval; break; case 13: vmxctx->guest_r13 = regval; break; case 14: vmxctx->guest_r14 = regval; break; case 15: vmxctx->guest_r15 = regval; break; default: panic("invalid vmx register %d", ident); } } static int vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual) { uint64_t crval, regval; /* We only handle mov to %cr0 at this time */ if ((exitqual & 0xf0) != 0x00) return (UNHANDLED); regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf); vmcs_write(VMCS_CR0_SHADOW, regval); crval = regval | cr0_ones_mask; crval &= ~cr0_zeros_mask; vmcs_write(VMCS_GUEST_CR0, crval); if (regval & CR0_PG) { uint64_t efer, entry_ctls; /* * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and * the "IA-32e mode guest" bit in VM-entry control must be * equal. */ efer = vmcs_read(VMCS_GUEST_IA32_EFER); if (efer & EFER_LME) { efer |= EFER_LMA; vmcs_write(VMCS_GUEST_IA32_EFER, efer); entry_ctls = vmcs_read(VMCS_ENTRY_CTLS); entry_ctls |= VM_ENTRY_GUEST_LMA; vmcs_write(VMCS_ENTRY_CTLS, entry_ctls); } } return (HANDLED); } static int vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual) { uint64_t crval, regval; /* We only handle mov to %cr4 at this time */ if ((exitqual & 0xf0) != 0x00) return (UNHANDLED); regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf); vmcs_write(VMCS_CR4_SHADOW, regval); crval = regval | cr4_ones_mask; crval &= ~cr4_zeros_mask; vmcs_write(VMCS_GUEST_CR4, crval); return (HANDLED); } static int vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual) { struct vlapic *vlapic; uint64_t cr8; int regnum; /* We only handle mov %cr8 to/from a register at this time. */ if ((exitqual & 0xe0) != 0x00) { return (UNHANDLED); } vlapic = vm_lapic(vmx->vm, vcpu); regnum = (exitqual >> 8) & 0xf; if (exitqual & 0x10) { cr8 = vlapic_get_cr8(vlapic); vmx_set_guest_reg(vmx, vcpu, regnum, cr8); } else { cr8 = vmx_get_guest_reg(vmx, vcpu, regnum); vlapic_set_cr8(vlapic, cr8); } return (HANDLED); } /* * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL */ static int vmx_cpl(void) { uint32_t ssar; ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS); return ((ssar >> 5) & 0x3); } static enum vm_cpu_mode vmx_cpu_mode(void) { uint32_t csar; if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) { csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); if (csar & 0x2000) return (CPU_MODE_64BIT); /* CS.L = 1 */ else return (CPU_MODE_COMPATIBILITY); } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) { return (CPU_MODE_PROTECTED); } else { return (CPU_MODE_REAL); } } static enum vm_paging_mode vmx_paging_mode(void) { if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG)) return (PAGING_MODE_FLAT); if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE)) return (PAGING_MODE_32); if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) return (PAGING_MODE_64); else return (PAGING_MODE_PAE); } static uint64_t inout_str_index(struct vmx *vmx, int vcpuid, int in) { uint64_t val; int error; enum vm_reg_name reg; reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI; error = vmx_getreg(vmx, vcpuid, reg, &val); KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error)); return (val); } static uint64_t inout_str_count(struct vmx *vmx, int vcpuid, int rep) { uint64_t val; int error; if (rep) { error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val); KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error)); } else { val = 1; } return (val); } static int inout_str_addrsize(uint32_t inst_info) { uint32_t size; size = (inst_info >> 7) & 0x7; switch (size) { case 0: return (2); /* 16 bit */ case 1: return (4); /* 32 bit */ case 2: return (8); /* 64 bit */ default: panic("%s: invalid size encoding %d", __func__, size); } } static void inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in, struct vm_inout_str *vis) { int error, s; if (in) { vis->seg_name = VM_REG_GUEST_ES; } else { s = (inst_info >> 15) & 0x7; vis->seg_name = vm_segment_name(s); } error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc); KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error)); } static void vmx_paging_info(struct vm_guest_paging *paging) { paging->cr3 = vmcs_guest_cr3(); paging->cpl = vmx_cpl(); paging->cpu_mode = vmx_cpu_mode(); paging->paging_mode = vmx_paging_mode(); } static void vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla) { struct vm_guest_paging *paging; uint32_t csar; paging = &vmexit->u.inst_emul.paging; vmexit->exitcode = VM_EXITCODE_INST_EMUL; vmexit->inst_length = 0; vmexit->u.inst_emul.gpa = gpa; vmexit->u.inst_emul.gla = gla; vmx_paging_info(paging); switch (paging->cpu_mode) { case CPU_MODE_REAL: vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE); vmexit->u.inst_emul.cs_d = 0; break; case CPU_MODE_PROTECTED: case CPU_MODE_COMPATIBILITY: vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE); csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar); break; default: vmexit->u.inst_emul.cs_base = 0; vmexit->u.inst_emul.cs_d = 0; break; } vie_init(&vmexit->u.inst_emul.vie, NULL, 0); } static int ept_fault_type(uint64_t ept_qual) { int fault_type; if (ept_qual & EPT_VIOLATION_DATA_WRITE) fault_type = VM_PROT_WRITE; else if (ept_qual & EPT_VIOLATION_INST_FETCH) fault_type = VM_PROT_EXECUTE; else fault_type= VM_PROT_READ; return (fault_type); } static boolean_t ept_emulation_fault(uint64_t ept_qual) { int read, write; /* EPT fault on an instruction fetch doesn't make sense here */ if (ept_qual & EPT_VIOLATION_INST_FETCH) return (FALSE); /* EPT fault must be a read fault or a write fault */ read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; if ((read | write) == 0) return (FALSE); /* * The EPT violation must have been caused by accessing a * guest-physical address that is a translation of a guest-linear * address. */ if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { return (FALSE); } return (TRUE); } static __inline int apic_access_virtualization(struct vmx *vmx, int vcpuid) { uint32_t proc_ctls2; proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0); } static __inline int x2apic_virtualization(struct vmx *vmx, int vcpuid) { uint32_t proc_ctls2; proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0); } static int vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic, uint64_t qual) { int error, handled, offset; uint32_t *apic_regs, vector; bool retu; handled = HANDLED; offset = APIC_WRITE_OFFSET(qual); if (!apic_access_virtualization(vmx, vcpuid)) { /* * In general there should not be any APIC write VM-exits * unless APIC-access virtualization is enabled. * * However self-IPI virtualization can legitimately trigger * an APIC-write VM-exit so treat it specially. */ if (x2apic_virtualization(vmx, vcpuid) && offset == APIC_OFFSET_SELF_IPI) { apic_regs = (uint32_t *)(vlapic->apic_page); vector = apic_regs[APIC_OFFSET_SELF_IPI / 4]; vlapic_self_ipi_handler(vlapic, vector); return (HANDLED); } else return (UNHANDLED); } switch (offset) { case APIC_OFFSET_ID: vlapic_id_write_handler(vlapic); break; case APIC_OFFSET_LDR: vlapic_ldr_write_handler(vlapic); break; case APIC_OFFSET_DFR: vlapic_dfr_write_handler(vlapic); break; case APIC_OFFSET_SVR: vlapic_svr_write_handler(vlapic); break; case APIC_OFFSET_ESR: vlapic_esr_write_handler(vlapic); break; case APIC_OFFSET_ICR_LOW: retu = false; error = vlapic_icrlo_write_handler(vlapic, &retu); if (error != 0 || retu) handled = UNHANDLED; break; case APIC_OFFSET_CMCI_LVT: case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT: vlapic_lvt_write_handler(vlapic, offset); break; case APIC_OFFSET_TIMER_ICR: vlapic_icrtmr_write_handler(vlapic); break; case APIC_OFFSET_TIMER_DCR: vlapic_dcr_write_handler(vlapic); break; default: handled = UNHANDLED; break; } return (handled); } static bool apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa) { if (apic_access_virtualization(vmx, vcpuid) && (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE)) return (true); else return (false); } static int vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) { uint64_t qual; int access_type, offset, allowed; if (!apic_access_virtualization(vmx, vcpuid)) return (UNHANDLED); qual = vmexit->u.vmx.exit_qualification; access_type = APIC_ACCESS_TYPE(qual); offset = APIC_ACCESS_OFFSET(qual); allowed = 0; if (access_type == 0) { /* * Read data access to the following registers is expected. */ switch (offset) { case APIC_OFFSET_APR: case APIC_OFFSET_PPR: case APIC_OFFSET_RRR: case APIC_OFFSET_CMCI_LVT: case APIC_OFFSET_TIMER_CCR: allowed = 1; break; default: break; } } else if (access_type == 1) { /* * Write data access to the following registers is expected. */ switch (offset) { case APIC_OFFSET_VER: case APIC_OFFSET_APR: case APIC_OFFSET_PPR: case APIC_OFFSET_RRR: case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7: case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7: case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7: case APIC_OFFSET_CMCI_LVT: case APIC_OFFSET_TIMER_CCR: allowed = 1; break; default: break; } } if (allowed) { vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset, VIE_INVALID_GLA); } /* * Regardless of whether the APIC-access is allowed this handler * always returns UNHANDLED: * - if the access is allowed then it is handled by emulating the * instruction that caused the VM-exit (outside the critical section) * - if the access is not allowed then it will be converted to an * exitcode of VM_EXITCODE_VMX and will be dealt with in userland. */ return (UNHANDLED); } static enum task_switch_reason vmx_task_switch_reason(uint64_t qual) { int reason; reason = (qual >> 30) & 0x3; switch (reason) { case 0: return (TSR_CALL); case 1: return (TSR_IRET); case 2: return (TSR_JMP); case 3: return (TSR_IDT_GATE); default: panic("%s: invalid reason %d", __func__, reason); } } static int emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu) { int error; if (lapic_msr(num)) error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu); else error = vmx_wrmsr(vmx, vcpuid, num, val, retu); return (error); } static int emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu) { struct vmxctx *vmxctx; uint64_t result; uint32_t eax, edx; int error; if (lapic_msr(num)) error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu); else error = vmx_rdmsr(vmx, vcpuid, num, &result, retu); if (error == 0) { eax = result; vmxctx = &vmx->ctx[vcpuid]; error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax); KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error)); edx = result >> 32; error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx); KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error)); } return (error); } static int vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) { int error, errcode, errcode_valid, handled, in; struct vmxctx *vmxctx; struct vlapic *vlapic; struct vm_inout_str *vis; struct vm_task_switch *ts; uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info; uint32_t intr_type, intr_vec, reason; uint64_t exitintinfo, qual, gpa; bool retu; CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0); CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0); handled = UNHANDLED; vmxctx = &vmx->ctx[vcpu]; qual = vmexit->u.vmx.exit_qualification; reason = vmexit->u.vmx.exit_reason; vmexit->exitcode = VM_EXITCODE_BOGUS; vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1); /* * VM-entry failures during or after loading guest state. * * These VM-exits are uncommon but must be handled specially * as most VM-exit fields are not populated as usual. */ if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) { VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry"); __asm __volatile("int $18"); return (1); } /* * VM exits that can be triggered during event delivery need to * be handled specially by re-injecting the event if the IDT * vectoring information field's valid bit is set. * * See "Information for VM Exits During Event Delivery" in Intel SDM * for details. */ idtvec_info = vmcs_idt_vectoring_info(); if (idtvec_info & VMCS_IDT_VEC_VALID) { idtvec_info &= ~(1 << 12); /* clear undefined bit */ exitintinfo = idtvec_info; if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { idtvec_err = vmcs_idt_vectoring_err(); exitintinfo |= (uint64_t)idtvec_err << 32; } error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo); KASSERT(error == 0, ("%s: vm_set_intinfo error %d", __func__, error)); /* * If 'virtual NMIs' are being used and the VM-exit * happened while injecting an NMI during the previous * VM-entry, then clear "blocking by NMI" in the * Guest Interruptibility-State so the NMI can be * reinjected on the subsequent VM-entry. * * However, if the NMI was being delivered through a task * gate, then the new task must start execution with NMIs * blocked so don't clear NMI blocking in this case. */ intr_type = idtvec_info & VMCS_INTR_T_MASK; if (intr_type == VMCS_INTR_T_NMI) { if (reason != EXIT_REASON_TASK_SWITCH) vmx_clear_nmi_blocking(vmx, vcpu); else vmx_assert_nmi_blocking(vmx, vcpu); } /* * Update VM-entry instruction length if the event being * delivered was a software interrupt or software exception. */ if (intr_type == VMCS_INTR_T_SWINTR || intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION || intr_type == VMCS_INTR_T_SWEXCEPTION) { vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); } } switch (reason) { case EXIT_REASON_TASK_SWITCH: ts = &vmexit->u.task_switch; ts->tsssel = qual & 0xffff; ts->reason = vmx_task_switch_reason(qual); ts->ext = 0; ts->errcode_valid = 0; vmx_paging_info(&ts->paging); /* * If the task switch was due to a CALL, JMP, IRET, software * interrupt (INT n) or software exception (INT3, INTO), * then the saved %rip references the instruction that caused * the task switch. The instruction length field in the VMCS * is valid in this case. * * In all other cases (e.g., NMI, hardware exception) the * saved %rip is one that would have been saved in the old TSS * had the task switch completed normally so the instruction * length field is not needed in this case and is explicitly * set to 0. */ if (ts->reason == TSR_IDT_GATE) { KASSERT(idtvec_info & VMCS_IDT_VEC_VALID, ("invalid idtvec_info %#x for IDT task switch", idtvec_info)); intr_type = idtvec_info & VMCS_INTR_T_MASK; if (intr_type != VMCS_INTR_T_SWINTR && intr_type != VMCS_INTR_T_SWEXCEPTION && intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) { /* Task switch triggered by external event */ ts->ext = 1; vmexit->inst_length = 0; if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { ts->errcode_valid = 1; ts->errcode = vmcs_idt_vectoring_err(); } } } vmexit->exitcode = VM_EXITCODE_TASK_SWITCH; VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, " "%s errcode 0x%016lx", ts->reason, ts->tsssel, ts->ext ? "external" : "internal", ((uint64_t)ts->errcode << 32) | ts->errcode_valid); break; case EXIT_REASON_CR_ACCESS: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1); switch (qual & 0xf) { case 0: handled = vmx_emulate_cr0_access(vmx, vcpu, qual); break; case 4: handled = vmx_emulate_cr4_access(vmx, vcpu, qual); break; case 8: handled = vmx_emulate_cr8_access(vmx, vcpu, qual); break; } break; case EXIT_REASON_RDMSR: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1); retu = false; ecx = vmxctx->guest_rcx; VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx); error = emulate_rdmsr(vmx, vcpu, ecx, &retu); if (error) { vmexit->exitcode = VM_EXITCODE_RDMSR; vmexit->u.msr.code = ecx; } else if (!retu) { handled = HANDLED; } else { /* Return to userspace with a valid exitcode */ KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, ("emulate_rdmsr retu with bogus exitcode")); } break; case EXIT_REASON_WRMSR: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1); retu = false; eax = vmxctx->guest_rax; ecx = vmxctx->guest_rcx; edx = vmxctx->guest_rdx; VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx", ecx, (uint64_t)edx << 32 | eax); error = emulate_wrmsr(vmx, vcpu, ecx, (uint64_t)edx << 32 | eax, &retu); if (error) { vmexit->exitcode = VM_EXITCODE_WRMSR; vmexit->u.msr.code = ecx; vmexit->u.msr.wval = (uint64_t)edx << 32 | eax; } else if (!retu) { handled = HANDLED; } else { /* Return to userspace with a valid exitcode */ KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, ("emulate_wrmsr retu with bogus exitcode")); } break; case EXIT_REASON_HLT: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1); vmexit->exitcode = VM_EXITCODE_HLT; vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS); break; case EXIT_REASON_MTF: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1); vmexit->exitcode = VM_EXITCODE_MTRAP; vmexit->inst_length = 0; break; case EXIT_REASON_PAUSE: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1); vmexit->exitcode = VM_EXITCODE_PAUSE; break; case EXIT_REASON_INTR_WINDOW: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1); vmx_clear_int_window_exiting(vmx, vcpu); return (1); case EXIT_REASON_EXT_INTR: /* * External interrupts serve only to cause VM exits and allow * the host interrupt handler to run. * * If this external interrupt triggers a virtual interrupt * to a VM, then that state will be recorded by the * host interrupt handler in the VM's softc. We will inject * this virtual interrupt during the subsequent VM enter. */ intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); /* * XXX: Ignore this exit if VMCS_INTR_VALID is not set. * This appears to be a bug in VMware Fusion? */ if (!(intr_info & VMCS_INTR_VALID)) return (1); KASSERT((intr_info & VMCS_INTR_VALID) != 0 && (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR, ("VM exit interruption info invalid: %#x", intr_info)); vmx_trigger_hostintr(intr_info & 0xff); /* * This is special. We want to treat this as an 'handled' * VM-exit but not increment the instruction pointer. */ vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1); return (1); case EXIT_REASON_NMI_WINDOW: /* Exit to allow the pending virtual NMI to be injected */ if (vm_nmi_pending(vmx->vm, vcpu)) vmx_inject_nmi(vmx, vcpu); vmx_clear_nmi_window_exiting(vmx, vcpu); vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1); return (1); case EXIT_REASON_INOUT: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1); vmexit->exitcode = VM_EXITCODE_INOUT; vmexit->u.inout.bytes = (qual & 0x7) + 1; vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0; vmexit->u.inout.string = (qual & 0x10) ? 1 : 0; vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0; vmexit->u.inout.port = (uint16_t)(qual >> 16); vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax); if (vmexit->u.inout.string) { inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO); vmexit->exitcode = VM_EXITCODE_INOUT_STR; vis = &vmexit->u.inout_str; vmx_paging_info(&vis->paging); vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS); vis->cr0 = vmcs_read(VMCS_GUEST_CR0); vis->index = inout_str_index(vmx, vcpu, in); vis->count = inout_str_count(vmx, vcpu, vis->inout.rep); vis->addrsize = inout_str_addrsize(inst_info); inout_str_seginfo(vmx, vcpu, inst_info, in, vis); } break; case EXIT_REASON_CPUID: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1); handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx); break; case EXIT_REASON_EXCEPTION: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1); intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); KASSERT((intr_info & VMCS_INTR_VALID) != 0, ("VM exit interruption info invalid: %#x", intr_info)); intr_vec = intr_info & 0xff; intr_type = intr_info & VMCS_INTR_T_MASK; /* * If Virtual NMIs control is 1 and the VM-exit is due to a * fault encountered during the execution of IRET then we must * restore the state of "virtual-NMI blocking" before resuming * the guest. * * See "Resuming Guest Software after Handling an Exception". * See "Information for VM Exits Due to Vectored Events". */ if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && (intr_vec != IDT_DF) && (intr_info & EXIT_QUAL_NMIUDTI) != 0) vmx_restore_nmi_blocking(vmx, vcpu); /* * The NMI has already been handled in vmx_exit_handle_nmi(). */ if (intr_type == VMCS_INTR_T_NMI) return (1); /* * Call the machine check handler by hand. Also don't reflect * the machine check back into the guest. */ if (intr_vec == IDT_MC) { VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler"); __asm __volatile("int $18"); return (1); } if (intr_vec == IDT_PF) { error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual); KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d", __func__, error)); } /* * Software exceptions exhibit trap-like behavior. This in * turn requires populating the VM-entry instruction length * so that the %rip in the trap frame is past the INT3/INTO * instruction. */ if (intr_type == VMCS_INTR_T_SWEXCEPTION) vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); /* Reflect all other exceptions back into the guest */ errcode_valid = errcode = 0; if (intr_info & VMCS_INTR_DEL_ERRCODE) { errcode_valid = 1; errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE); } VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into " "the guest", intr_vec, errcode); error = vm_inject_exception(vmx->vm, vcpu, intr_vec, errcode_valid, errcode, 0); KASSERT(error == 0, ("%s: vm_inject_exception error %d", __func__, error)); return (1); case EXIT_REASON_EPT_FAULT: /* * If 'gpa' lies within the address space allocated to * memory then this must be a nested page fault otherwise * this must be an instruction that accesses MMIO space. */ gpa = vmcs_gpa(); if (vm_mem_allocated(vmx->vm, vcpu, gpa) || apic_access_fault(vmx, vcpu, gpa)) { vmexit->exitcode = VM_EXITCODE_PAGING; vmexit->inst_length = 0; vmexit->u.paging.gpa = gpa; vmexit->u.paging.fault_type = ept_fault_type(qual); vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1); } else if (ept_emulation_fault(qual)) { vmexit_inst_emul(vmexit, gpa, vmcs_gla()); vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1); } /* * If Virtual NMIs control is 1 and the VM-exit is due to an * EPT fault during the execution of IRET then we must restore * the state of "virtual-NMI blocking" before resuming. * * See description of "NMI unblocking due to IRET" in * "Exit Qualification for EPT Violations". */ if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && (qual & EXIT_QUAL_NMIUDTI) != 0) vmx_restore_nmi_blocking(vmx, vcpu); break; case EXIT_REASON_VIRTUALIZED_EOI: vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI; vmexit->u.ioapic_eoi.vector = qual & 0xFF; vmexit->inst_length = 0; /* trap-like */ break; case EXIT_REASON_APIC_ACCESS: handled = vmx_handle_apic_access(vmx, vcpu, vmexit); break; case EXIT_REASON_APIC_WRITE: /* * APIC-write VM exit is trap-like so the %rip is already * pointing to the next instruction. */ vmexit->inst_length = 0; vlapic = vm_lapic(vmx->vm, vcpu); handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual); break; case EXIT_REASON_XSETBV: handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit); break; case EXIT_REASON_MONITOR: vmexit->exitcode = VM_EXITCODE_MONITOR; break; case EXIT_REASON_MWAIT: vmexit->exitcode = VM_EXITCODE_MWAIT; break; default: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1); break; } if (handled) { /* * It is possible that control is returned to userland * even though we were able to handle the VM exit in the * kernel. * * In such a case we want to make sure that the userland * restarts guest execution at the instruction *after* * the one we just processed. Therefore we update the * guest rip in the VMCS and in 'vmexit'. */ vmexit->rip += vmexit->inst_length; vmexit->inst_length = 0; vmcs_write(VMCS_GUEST_RIP, vmexit->rip); } else { if (vmexit->exitcode == VM_EXITCODE_BOGUS) { /* * If this VM exit was not claimed by anybody then * treat it as a generic VMX exit. */ vmexit->exitcode = VM_EXITCODE_VMX; vmexit->u.vmx.status = VM_SUCCESS; vmexit->u.vmx.inst_type = 0; vmexit->u.vmx.inst_error = 0; } else { /* * The exitcode and collateral have been populated. * The VM exit will be processed further in userland. */ } } return (handled); } static __inline void vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit) { KASSERT(vmxctx->inst_fail_status != VM_SUCCESS, ("vmx_exit_inst_error: invalid inst_fail_status %d", vmxctx->inst_fail_status)); vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_VMX; vmexit->u.vmx.status = vmxctx->inst_fail_status; vmexit->u.vmx.inst_error = vmcs_instruction_error(); vmexit->u.vmx.exit_reason = ~0; vmexit->u.vmx.exit_qualification = ~0; switch (rc) { case VMX_VMRESUME_ERROR: case VMX_VMLAUNCH_ERROR: case VMX_INVEPT_ERROR: vmexit->u.vmx.inst_type = rc; break; default: panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc); } } /* * If the NMI-exiting VM execution control is set to '1' then an NMI in * non-root operation causes a VM-exit. NMI blocking is in effect so it is * sufficient to simply vector to the NMI handler via a software interrupt. * However, this must be done before maskable interrupts are enabled * otherwise the "iret" issued by an interrupt handler will incorrectly * clear NMI blocking. */ static __inline void vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) { uint32_t intr_info; KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled")); if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION) return; intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); KASSERT((intr_info & VMCS_INTR_VALID) != 0, ("VM exit interruption info invalid: %#x", intr_info)); if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) { KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due " "to NMI has invalid vector: %#x", intr_info)); VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler"); __asm __volatile("int $2"); } } static int vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo) { int rc, handled, launched; struct vmx *vmx; struct vm *vm; struct vmxctx *vmxctx; struct vmcs *vmcs; struct vm_exit *vmexit; struct vlapic *vlapic; uint32_t exit_reason; vmx = arg; vm = vmx->vm; vmcs = &vmx->vmcs[vcpu]; vmxctx = &vmx->ctx[vcpu]; vlapic = vm_lapic(vm, vcpu); vmexit = vm_exitinfo(vm, vcpu); launched = 0; KASSERT(vmxctx->pmap == pmap, ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap)); vmx_msr_guest_enter(vmx, vcpu); VMPTRLD(vmcs); /* * XXX * We do this every time because we may setup the virtual machine * from a different process than the one that actually runs it. * * If the life of a virtual machine was spent entirely in the context * of a single process we could do this once in vmx_vminit(). */ vmcs_write(VMCS_HOST_CR3, rcr3()); vmcs_write(VMCS_GUEST_RIP, rip); vmx_set_pcpu_defaults(vmx, vcpu, pmap); do { KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch " "%#lx/%#lx", __func__, vmcs_guest_rip(), rip)); handled = UNHANDLED; /* * Interrupts are disabled from this point on until the * guest starts executing. This is done for the following * reasons: * * If an AST is asserted on this thread after the check below, * then the IPI_AST notification will not be lost, because it * will cause a VM exit due to external interrupt as soon as * the guest state is loaded. * * A posted interrupt after 'vmx_inject_interrupts()' will * not be "lost" because it will be held pending in the host * APIC because interrupts are disabled. The pending interrupt * will be recognized as soon as the guest state is loaded. * * The same reasoning applies to the IPI generated by * pmap_invalidate_ept(). */ disable_intr(); vmx_inject_interrupts(vmx, vcpu, vlapic, rip); /* * Check for vcpu suspension after injecting events because * vmx_inject_interrupts() can suspend the vcpu due to a * triple fault. */ if (vcpu_suspended(evinfo)) { enable_intr(); vm_exit_suspended(vmx->vm, vcpu, rip); break; } if (vcpu_rendezvous_pending(evinfo)) { enable_intr(); vm_exit_rendezvous(vmx->vm, vcpu, rip); break; } if (vcpu_reqidle(evinfo)) { enable_intr(); vm_exit_reqidle(vmx->vm, vcpu, rip); break; } if (vcpu_should_yield(vm, vcpu)) { enable_intr(); vm_exit_astpending(vmx->vm, vcpu, rip); vmx_astpending_trace(vmx, vcpu, rip); handled = HANDLED; break; } vmx_run_trace(vmx, vcpu); rc = vmx_enter_guest(vmxctx, vmx, launched); /* Collect some information for VM exit processing */ vmexit->rip = rip = vmcs_guest_rip(); vmexit->inst_length = vmexit_instruction_length(); vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason(); vmexit->u.vmx.exit_qualification = vmcs_exit_qualification(); /* Update 'nextrip' */ vmx->state[vcpu].nextrip = rip; if (rc == VMX_GUEST_VMEXIT) { vmx_exit_handle_nmi(vmx, vcpu, vmexit); enable_intr(); handled = vmx_exit_process(vmx, vcpu, vmexit); } else { enable_intr(); vmx_exit_inst_error(vmxctx, rc, vmexit); } launched = 1; vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled); rip = vmexit->rip; } while (handled); /* * If a VM exit has been handled then the exitcode must be BOGUS * If a VM exit is not handled then the exitcode must not be BOGUS */ if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) || (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) { panic("Mismatch between handled (%d) and exitcode (%d)", handled, vmexit->exitcode); } if (!handled) vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1); VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d", vmexit->exitcode); VMCLEAR(vmcs); vmx_msr_guest_exit(vmx, vcpu); return (0); } static void vmx_vmcleanup(void *arg) { int i; struct vmx *vmx = arg; if (apic_access_virtualization(vmx, 0)) vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); for (i = 0; i < VM_MAXCPU; i++) vpid_free(vmx->state[i].vpid); free(vmx, M_VMX); return; } static register_t * vmxctx_regptr(struct vmxctx *vmxctx, int reg) { switch (reg) { case VM_REG_GUEST_RAX: return (&vmxctx->guest_rax); case VM_REG_GUEST_RBX: return (&vmxctx->guest_rbx); case VM_REG_GUEST_RCX: return (&vmxctx->guest_rcx); case VM_REG_GUEST_RDX: return (&vmxctx->guest_rdx); case VM_REG_GUEST_RSI: return (&vmxctx->guest_rsi); case VM_REG_GUEST_RDI: return (&vmxctx->guest_rdi); case VM_REG_GUEST_RBP: return (&vmxctx->guest_rbp); case VM_REG_GUEST_R8: return (&vmxctx->guest_r8); case VM_REG_GUEST_R9: return (&vmxctx->guest_r9); case VM_REG_GUEST_R10: return (&vmxctx->guest_r10); case VM_REG_GUEST_R11: return (&vmxctx->guest_r11); case VM_REG_GUEST_R12: return (&vmxctx->guest_r12); case VM_REG_GUEST_R13: return (&vmxctx->guest_r13); case VM_REG_GUEST_R14: return (&vmxctx->guest_r14); case VM_REG_GUEST_R15: return (&vmxctx->guest_r15); case VM_REG_GUEST_CR2: return (&vmxctx->guest_cr2); default: break; } return (NULL); } static int vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval) { register_t *regp; if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { *retval = *regp; return (0); } else return (EINVAL); } static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val) { register_t *regp; if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { *regp = val; return (0); } else return (EINVAL); } static int vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval) { uint64_t gi; int error; error = vmcs_getreg(&vmx->vmcs[vcpu], running, VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi); *retval = (gi & HWINTR_BLOCKING) ? 1 : 0; return (error); } static int vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val) { struct vmcs *vmcs; uint64_t gi; int error, ident; /* * Forcing the vcpu into an interrupt shadow is not supported. */ if (val) { error = EINVAL; goto done; } vmcs = &vmx->vmcs[vcpu]; ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY); error = vmcs_getreg(vmcs, running, ident, &gi); if (error == 0) { gi &= ~HWINTR_BLOCKING; error = vmcs_setreg(vmcs, running, ident, gi); } done: VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val, error ? "failed" : "succeeded"); return (error); } static int vmx_shadow_reg(int reg) { int shreg; shreg = -1; switch (reg) { case VM_REG_GUEST_CR0: shreg = VMCS_CR0_SHADOW; break; case VM_REG_GUEST_CR4: shreg = VMCS_CR4_SHADOW; break; default: break; } return (shreg); } static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval) { int running, hostcpu; struct vmx *vmx = arg; running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); if (running && hostcpu != curcpu) panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu); if (reg == VM_REG_GUEST_INTR_SHADOW) return (vmx_get_intr_shadow(vmx, vcpu, running, retval)); if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0) return (0); return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval)); } static int vmx_setreg(void *arg, int vcpu, int reg, uint64_t val) { int error, hostcpu, running, shadow; uint64_t ctls; pmap_t pmap; struct vmx *vmx = arg; running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); if (running && hostcpu != curcpu) panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu); if (reg == VM_REG_GUEST_INTR_SHADOW) return (vmx_modify_intr_shadow(vmx, vcpu, running, val)); if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0) return (0); error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val); if (error == 0) { /* * If the "load EFER" VM-entry control is 1 then the * value of EFER.LMA must be identical to "IA-32e mode guest" * bit in the VM-entry control. */ if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 && (reg == VM_REG_GUEST_EFER)) { vmcs_getreg(&vmx->vmcs[vcpu], running, VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls); if (val & EFER_LMA) ctls |= VM_ENTRY_GUEST_LMA; else ctls &= ~VM_ENTRY_GUEST_LMA; vmcs_setreg(&vmx->vmcs[vcpu], running, VMCS_IDENT(VMCS_ENTRY_CTLS), ctls); } shadow = vmx_shadow_reg(reg); if (shadow > 0) { /* * Store the unmodified value in the shadow */ error = vmcs_setreg(&vmx->vmcs[vcpu], running, VMCS_IDENT(shadow), val); } if (reg == VM_REG_GUEST_CR3) { /* * Invalidate the guest vcpu's TLB mappings to emulate * the behavior of updating %cr3. * * XXX the processor retains global mappings when %cr3 * is updated but vmx_invvpid() does not. */ pmap = vmx->ctx[vcpu].pmap; vmx_invvpid(vmx, vcpu, pmap, running); } } return (error); } static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) { int hostcpu, running; struct vmx *vmx = arg; running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); if (running && hostcpu != curcpu) panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu); return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc)); } static int vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) { int hostcpu, running; struct vmx *vmx = arg; running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); if (running && hostcpu != curcpu) panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu); return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc)); } static int vmx_getcap(void *arg, int vcpu, int type, int *retval) { struct vmx *vmx = arg; int vcap; int ret; ret = ENOENT; vcap = vmx->cap[vcpu].set; switch (type) { case VM_CAP_HALT_EXIT: if (cap_halt_exit) ret = 0; break; case VM_CAP_PAUSE_EXIT: if (cap_pause_exit) ret = 0; break; case VM_CAP_MTRAP_EXIT: if (cap_monitor_trap) ret = 0; break; case VM_CAP_UNRESTRICTED_GUEST: if (cap_unrestricted_guest) ret = 0; break; case VM_CAP_ENABLE_INVPCID: if (cap_invpcid) ret = 0; break; default: break; } if (ret == 0) *retval = (vcap & (1 << type)) ? 1 : 0; return (ret); } static int vmx_setcap(void *arg, int vcpu, int type, int val) { struct vmx *vmx = arg; struct vmcs *vmcs = &vmx->vmcs[vcpu]; uint32_t baseval; uint32_t *pptr; int error; int flag; int reg; int retval; retval = ENOENT; pptr = NULL; switch (type) { case VM_CAP_HALT_EXIT: if (cap_halt_exit) { retval = 0; pptr = &vmx->cap[vcpu].proc_ctls; baseval = *pptr; flag = PROCBASED_HLT_EXITING; reg = VMCS_PRI_PROC_BASED_CTLS; } break; case VM_CAP_MTRAP_EXIT: if (cap_monitor_trap) { retval = 0; pptr = &vmx->cap[vcpu].proc_ctls; baseval = *pptr; flag = PROCBASED_MTF; reg = VMCS_PRI_PROC_BASED_CTLS; } break; case VM_CAP_PAUSE_EXIT: if (cap_pause_exit) { retval = 0; pptr = &vmx->cap[vcpu].proc_ctls; baseval = *pptr; flag = PROCBASED_PAUSE_EXITING; reg = VMCS_PRI_PROC_BASED_CTLS; } break; case VM_CAP_UNRESTRICTED_GUEST: if (cap_unrestricted_guest) { retval = 0; pptr = &vmx->cap[vcpu].proc_ctls2; baseval = *pptr; flag = PROCBASED2_UNRESTRICTED_GUEST; reg = VMCS_SEC_PROC_BASED_CTLS; } break; case VM_CAP_ENABLE_INVPCID: if (cap_invpcid) { retval = 0; pptr = &vmx->cap[vcpu].proc_ctls2; baseval = *pptr; flag = PROCBASED2_ENABLE_INVPCID; reg = VMCS_SEC_PROC_BASED_CTLS; } break; default: break; } if (retval == 0) { if (val) { baseval |= flag; } else { baseval &= ~flag; } VMPTRLD(vmcs); error = vmwrite(reg, baseval); VMCLEAR(vmcs); if (error) { retval = error; } else { /* * Update optional stored flags, and record * setting */ if (pptr != NULL) { *pptr = baseval; } if (val) { vmx->cap[vcpu].set |= (1 << type); } else { vmx->cap[vcpu].set &= ~(1 << type); } } } return (retval); } struct vlapic_vtx { struct vlapic vlapic; struct pir_desc *pir_desc; struct vmx *vmx; }; #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg) \ do { \ VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d", \ level ? "level" : "edge", vector); \ VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]); \ VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]); \ VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]); \ VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]); \ VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\ } while (0) /* * vlapic->ops handlers that utilize the APICv hardware assist described in * Chapter 29 of the Intel SDM. */ static int vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level) { struct vlapic_vtx *vlapic_vtx; struct pir_desc *pir_desc; uint64_t mask; int idx, notify; vlapic_vtx = (struct vlapic_vtx *)vlapic; pir_desc = vlapic_vtx->pir_desc; /* * Keep track of interrupt requests in the PIR descriptor. This is * because the virtual APIC page pointed to by the VMCS cannot be * modified if the vcpu is running. */ idx = vector / 64; mask = 1UL << (vector % 64); atomic_set_long(&pir_desc->pir[idx], mask); notify = atomic_cmpset_long(&pir_desc->pending, 0, 1); VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector, level, "vmx_set_intr_ready"); return (notify); } static int vmx_pending_intr(struct vlapic *vlapic, int *vecptr) { struct vlapic_vtx *vlapic_vtx; struct pir_desc *pir_desc; struct LAPIC *lapic; uint64_t pending, pirval; uint32_t ppr, vpr; int i; /* * This function is only expected to be called from the 'HLT' exit * handler which does not care about the vector that is pending. */ KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL")); vlapic_vtx = (struct vlapic_vtx *)vlapic; pir_desc = vlapic_vtx->pir_desc; pending = atomic_load_acq_long(&pir_desc->pending); if (!pending) return (0); /* common case */ /* * If there is an interrupt pending then it will be recognized only * if its priority is greater than the processor priority. * * Special case: if the processor priority is zero then any pending * interrupt will be recognized. */ lapic = vlapic->apic_page; ppr = lapic->ppr & 0xf0; if (ppr == 0) return (1); VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d", lapic->ppr); for (i = 3; i >= 0; i--) { pirval = pir_desc->pir[i]; if (pirval != 0) { vpr = (i * 64 + flsl(pirval) - 1) & 0xf0; return (vpr > ppr); } } return (0); } static void vmx_intr_accepted(struct vlapic *vlapic, int vector) { panic("vmx_intr_accepted: not expected to be called"); } static void vmx_set_tmr(struct vlapic *vlapic, int vector, bool level) { struct vlapic_vtx *vlapic_vtx; struct vmx *vmx; struct vmcs *vmcs; uint64_t mask, val; KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector)); KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL), ("vmx_set_tmr: vcpu cannot be running")); vlapic_vtx = (struct vlapic_vtx *)vlapic; vmx = vlapic_vtx->vmx; vmcs = &vmx->vmcs[vlapic->vcpuid]; mask = 1UL << (vector % 64); VMPTRLD(vmcs); val = vmcs_read(VMCS_EOI_EXIT(vector)); if (level) val |= mask; else val &= ~mask; vmcs_write(VMCS_EOI_EXIT(vector), val); VMCLEAR(vmcs); } static void vmx_enable_x2apic_mode(struct vlapic *vlapic) { struct vmx *vmx; struct vmcs *vmcs; uint32_t proc_ctls2; int vcpuid, error; vcpuid = vlapic->vcpuid; vmx = ((struct vlapic_vtx *)vlapic)->vmx; vmcs = &vmx->vmcs[vcpuid]; proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0, ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2)); proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES; proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE; vmx->cap[vcpuid].proc_ctls2 = proc_ctls2; VMPTRLD(vmcs); vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2); VMCLEAR(vmcs); if (vlapic->vcpuid == 0) { /* * The nested page table mappings are shared by all vcpus * so unmap the APIC access page just once. */ error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); KASSERT(error == 0, ("%s: vm_unmap_mmio error %d", __func__, error)); /* * The MSR bitmap is shared by all vcpus so modify it only * once in the context of vcpu 0. */ error = vmx_allow_x2apic_msrs(vmx); KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d", __func__, error)); } } static void vmx_post_intr(struct vlapic *vlapic, int hostcpu) { ipi_cpu(hostcpu, pirvec); } /* * Transfer the pending interrupts in the PIR descriptor to the IRR * in the virtual APIC page. */ static void vmx_inject_pir(struct vlapic *vlapic) { struct vlapic_vtx *vlapic_vtx; struct pir_desc *pir_desc; struct LAPIC *lapic; uint64_t val, pirval; int rvi, pirbase = -1; uint16_t intr_status_old, intr_status_new; vlapic_vtx = (struct vlapic_vtx *)vlapic; pir_desc = vlapic_vtx->pir_desc; if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) { VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " "no posted interrupt pending"); return; } pirval = 0; pirbase = -1; lapic = vlapic->apic_page; val = atomic_readandclear_long(&pir_desc->pir[0]); if (val != 0) { lapic->irr0 |= val; lapic->irr1 |= val >> 32; pirbase = 0; pirval = val; } val = atomic_readandclear_long(&pir_desc->pir[1]); if (val != 0) { lapic->irr2 |= val; lapic->irr3 |= val >> 32; pirbase = 64; pirval = val; } val = atomic_readandclear_long(&pir_desc->pir[2]); if (val != 0) { lapic->irr4 |= val; lapic->irr5 |= val >> 32; pirbase = 128; pirval = val; } val = atomic_readandclear_long(&pir_desc->pir[3]); if (val != 0) { lapic->irr6 |= val; lapic->irr7 |= val >> 32; pirbase = 192; pirval = val; } VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir"); /* * Update RVI so the processor can evaluate pending virtual * interrupts on VM-entry. * * It is possible for pirval to be 0 here, even though the * pending bit has been set. The scenario is: * CPU-Y is sending a posted interrupt to CPU-X, which * is running a guest and processing posted interrupts in h/w. * CPU-X will eventually exit and the state seen in s/w is * the pending bit set, but no PIR bits set. * * CPU-X CPU-Y * (vm running) (host running) * rx posted interrupt * CLEAR pending bit * SET PIR bit * READ/CLEAR PIR bits * SET pending bit * (vm exit) * pending bit set, PIR 0 */ if (pirval != 0) { rvi = pirbase + flsl(pirval) - 1; intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS); intr_status_new = (intr_status_old & 0xFF00) | rvi; if (intr_status_new > intr_status_old) { vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new); VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " "guest_intr_status changed from 0x%04x to 0x%04x", intr_status_old, intr_status_new); } } } static struct vlapic * vmx_vlapic_init(void *arg, int vcpuid) { struct vmx *vmx; struct vlapic *vlapic; struct vlapic_vtx *vlapic_vtx; vmx = arg; vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO); vlapic->vm = vmx->vm; vlapic->vcpuid = vcpuid; vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid]; vlapic_vtx = (struct vlapic_vtx *)vlapic; vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid]; vlapic_vtx->vmx = vmx; if (virtual_interrupt_delivery) { vlapic->ops.set_intr_ready = vmx_set_intr_ready; vlapic->ops.pending_intr = vmx_pending_intr; vlapic->ops.intr_accepted = vmx_intr_accepted; vlapic->ops.set_tmr = vmx_set_tmr; vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode; } if (posted_interrupts) vlapic->ops.post_intr = vmx_post_intr; vlapic_init(vlapic); return (vlapic); } static void vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic) { vlapic_cleanup(vlapic); free(vlapic, M_VLAPIC); } struct vmm_ops vmm_ops_intel = { vmx_init, vmx_cleanup, vmx_restore, vmx_vminit, vmx_run, vmx_vmcleanup, vmx_getreg, vmx_setreg, vmx_getdesc, vmx_setdesc, vmx_getcap, vmx_setcap, ept_vmspace_alloc, ept_vmspace_free, vmx_vlapic_init, vmx_vlapic_cleanup, };