/*- * Copyright (c) 1990 William Jolitz. * Copyright (c) 1991 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)npx.c 7.2 (Berkeley) 5/12/91 * $Id: npx.c,v 1.10 1994/08/13 03:50:11 wollman Exp $ */ #include "npx.h" #if NNPX > 0 #include #include #include #include #include #include #include #include #include #include #include #include #include /* * 387 and 287 Numeric Coprocessor Extension (NPX) Driver. */ #ifdef __GNUC__ #define disable_intr() __asm("cli") #define enable_intr() __asm("sti") #define fldcw(addr) __asm("fldcw %0" : : "m" (*addr)) #define fnclex() __asm("fnclex") #define fninit() __asm("fninit") #define fnsave(addr) __asm("fnsave %0" : "=m" (*addr) : "0" (*addr)) #define fnstcw(addr) __asm("fnstcw %0" : "=m" (*addr) : "0" (*addr)) #define fnstsw(addr) __asm("fnstsw %0" : "=m" (*addr) : "0" (*addr)) #define fp_divide_by_0() __asm("fldz; fld1; fdiv %st,%st(1); fwait") #define frstor(addr) __asm("frstor %0" : : "m" (*addr)) #define fwait() __asm("fwait") #define read_eflags() ({u_long ef; \ __asm("pushf; popl %0" : "=a" (ef)); \ ef; }) #define start_emulating() __asm("smsw %%ax; orb %0,%%al; lmsw %%ax" \ : : "n" (CR0_TS) : "ax") #define stop_emulating() __asm("clts") #define write_eflags(ef) __asm("pushl %0; popf" : : "a" ((u_long) ef)) #else /* not __GNUC__ */ void disable_intr __P((void)); void enable_intr __P((void)); void fldcw __P((caddr_t addr)); void fnclex __P((void)); void fninit __P((void)); void fnsave __P((caddr_t addr)); void fnstcw __P((caddr_t addr)); void fnstsw __P((caddr_t addr)); void fp_divide_by_0 __P((void)); void frstor __P((caddr_t addr)); void fwait __P((void)); u_long read_eflags __P((void)); void start_emulating __P((void)); void stop_emulating __P((void)); void write_eflags __P((u_long ef)); #endif /* __GNUC__ */ typedef u_char bool_t; extern struct gate_descriptor idt[]; int npxdna __P((void)); void npxexit __P((struct proc *p)); void npxinit __P((u_int control)); void npxintr __P((struct intrframe frame)); void npxsave __P((struct save87 *addr)); static int npxattach __P((struct isa_device *dvp)); static int npxprobe __P((struct isa_device *dvp)); static int npxprobe1 __P((struct isa_device *dvp)); struct isa_driver npxdriver = { npxprobe, npxattach, "npx", }; u_int npx0_imask; struct proc *npxproc; static bool_t npx_ex16; static bool_t npx_exists; int hw_float; static struct gate_descriptor npx_idt_probeintr; static int npx_intrno; static volatile u_int npx_intrs_while_probing; static bool_t npx_irq13; static volatile u_int npx_traps_while_probing; /* * Special interrupt handlers. Someday intr0-intr15 will be used to count * interrupts. We'll still need a special exception 16 handler. The busy * latch stuff in probintr() can be moved to npxprobe(). */ void probeintr(void); asm (" .text _probeintr: ss incl _npx_intrs_while_probing pushl %eax movb $0x20,%al # EOI (asm in strings loses cpp features) outb %al,$0xa0 # IO_ICU2 outb %al,$0x20 #IO_ICU1 movb $0,%al outb %al,$0xf0 # clear BUSY# latch popl %eax iret "); void probetrap(void); asm (" .text _probetrap: ss incl _npx_traps_while_probing fnclex iret "); /* * Probe routine. Initialize cr0 to give correct behaviour for [f]wait * whether the device exists or not (XXX should be elsewhere). Set flags * to tell npxattach() what to do. Modify device struct if npx doesn't * need to use interrupts. Return 1 if device exists. */ static int npxprobe(dvp) struct isa_device *dvp; { int result; u_long save_eflags; u_char save_icu1_mask; u_char save_icu2_mask; struct gate_descriptor save_idt_npxintr; struct gate_descriptor save_idt_npxtrap; /* * This routine is now just a wrapper for npxprobe1(), to install * special npx interrupt and trap handlers, to enable npx interrupts * and to disable other interrupts. Someday isa_configure() will * install suitable handlers and run with interrupts enabled so we * won't need to do so much here. */ npx_intrno = NRSVIDT + ffs(dvp->id_irq) - 1; save_eflags = read_eflags(); disable_intr(); save_icu1_mask = inb(IO_ICU1 + 1); save_icu2_mask = inb(IO_ICU2 + 1); save_idt_npxintr = idt[npx_intrno]; save_idt_npxtrap = idt[16]; outb(IO_ICU1 + 1, ~(IRQ_SLAVE | dvp->id_irq)); outb(IO_ICU2 + 1, ~(dvp->id_irq >> 8)); setidt(16, probetrap, SDT_SYS386TGT, SEL_KPL); setidt(npx_intrno, probeintr, SDT_SYS386IGT, SEL_KPL); npx_idt_probeintr = idt[npx_intrno]; enable_intr(); result = npxprobe1(dvp); disable_intr(); outb(IO_ICU1 + 1, save_icu1_mask); outb(IO_ICU2 + 1, save_icu2_mask); idt[npx_intrno] = save_idt_npxintr; idt[16] = save_idt_npxtrap; write_eflags(save_eflags); return (result); } static int npxprobe1(dvp) struct isa_device *dvp; { int control; int status; #ifdef lint npxintr(); #endif /* * Partially reset the coprocessor, if any. Some BIOS's don't reset * it after a warm boot. */ outb(0xf1, 0); /* full reset on some systems, NOP on others */ outb(0xf0, 0); /* clear BUSY# latch */ /* * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT * instructions. We must set the CR0_MP bit and use the CR0_TS * bit to control the trap, because setting the CR0_EM bit does * not cause WAIT instructions to trap. It's important to trap * WAIT instructions - otherwise the "wait" variants of no-wait * control instructions would degenerate to the "no-wait" variants * after FP context switches but work correctly otherwise. It's * particularly important to trap WAITs when there is no NPX - * otherwise the "wait" variants would always degenerate. * * Try setting CR0_NE to get correct error reporting on 486DX's. * Setting it should fail or do nothing on lesser processors. */ load_cr0(rcr0() | CR0_MP | CR0_NE); /* * But don't trap while we're probing. */ stop_emulating(); /* * Finish resetting the coprocessor, if any. If there is an error * pending, then we may get a bogus IRQ13, but probeintr() will handle * it OK. Bogus halts have never been observed, but we enabled * IRQ13 and cleared the BUSY# latch early to handle them anyway. */ fninit(); DELAY(1000); /* wait for any IRQ13 (fwait might hang) */ #ifdef DIAGNOSTIC if (npx_intrs_while_probing != 0) printf("fninit caused %u bogus npx interrupt(s)\n", npx_intrs_while_probing); if (npx_traps_while_probing != 0) printf("fninit caused %u bogus npx trap(s)\n", npx_traps_while_probing); #endif /* * Check for a status of mostly zero. */ status = 0x5a5a; fnstsw(&status); if ((status & 0xb8ff) == 0) { /* * Good, now check for a proper control word. */ control = 0x5a5a; fnstcw(&control); if ((control & 0x1f3f) == 0x033f) { hw_float = npx_exists = 1; /* * We have an npx, now divide by 0 to see if exception * 16 works. */ control &= ~(1 << 2); /* enable divide by 0 trap */ fldcw(&control); npx_traps_while_probing = npx_intrs_while_probing = 0; fp_divide_by_0(); if (npx_traps_while_probing != 0) { /* * Good, exception 16 works. */ npx_ex16 = 1; dvp->id_irq = 0; /* zap the interrupt */ /* * special return value to flag that we do not * actually use any I/O registers */ return (-1); } if (npx_intrs_while_probing != 0) { /* * Bad, we are stuck with IRQ13. */ npx_irq13 = 1; npx0_imask = dvp->id_irq; /* npxattach too late */ return (IO_NPXSIZE); } /* * Worse, even IRQ13 is broken. Use emulator. */ } } /* * Probe failed, but we want to get to npxattach to initialize the * emulator and say that it has been installed. XXX handle devices * that aren't really devices better. */ dvp->id_irq = 0; /* * special return value to flag that we do not * actually use any I/O registers */ return (-1); } /* * Attach routine - announce which it is, and wire into system */ int npxattach(dvp) struct isa_device *dvp; { if (!npx_ex16 && !npx_irq13) { if (npx_exists) { printf("npx%d: Error reporting broken, using 387 emulator\n",dvp->id_unit); hw_float = npx_exists = 0; } else { printf("npx%d: 387 Emulator\n",dvp->id_unit); } } npxinit(__INITIAL_NPXCW__); return (1); /* XXX unused */ } /* * Initialize floating point unit. */ void npxinit(control) u_int control; { struct save87 dummy; if (!npx_exists) return; /* * fninit has the same h/w bugs as fnsave. Use the detoxified * fnsave to throw away any junk in the fpu. fnsave initializes * the fpu and sets npxproc = NULL as important side effects. */ npxsave(&dummy); stop_emulating(); fldcw(&control); if (curpcb != NULL) fnsave(&curpcb->pcb_savefpu); start_emulating(); } /* * Free coprocessor (if we have it). */ void npxexit(p) struct proc *p; { if (p == npxproc) { start_emulating(); npxproc = NULL; } } /* * Record the FPU state and reinitialize it all except for the control word. * Then generate a SIGFPE. * * Reinitializing the state allows naive SIGFPE handlers to longjmp without * doing any fixups. * * XXX there is currently no way to pass the full error state to signal * handlers, and if this is a nested interrupt there is no way to pass even * a status code! So there is no way to have a non-naive SIGFPE handler. At * best a handler could do an fninit followed by an fldcw of a static value. * fnclex would be of little use because it would leave junk on the FPU stack. * Returning from the handler would be even less safe than usual because * IRQ13 exception handling makes exceptions even less precise than usual. */ void npxintr(frame) struct intrframe frame; { int code; if (npxproc == NULL || !npx_exists) { /* XXX no %p in stand/printf.c. Cast to quiet gcc -Wall. */ printf("npxintr: npxproc = %lx, curproc = %lx, npx_exists = %d\n", (u_long) npxproc, (u_long) curproc, npx_exists); panic("npxintr from nowhere"); } if (npxproc != curproc) { printf("npxintr: npxproc = %lx, curproc = %lx, npx_exists = %d\n", (u_long) npxproc, (u_long) curproc, npx_exists); panic("npxintr from non-current process"); } /* * Save state. This does an implied fninit. It had better not halt * the cpu or we'll hang. */ outb(0xf0, 0); fnsave(&curpcb->pcb_savefpu); fwait(); /* * Restore control word (was clobbered by fnsave). */ fldcw(&curpcb->pcb_savefpu.sv_env.en_cw); fwait(); /* * Remember the exception status word and tag word. The current * (almost fninit'ed) fpu state is in the fpu and the exception * state just saved will soon be junk. However, the implied fninit * doesn't change the error pointers or register contents, and we * preserved the control word and will copy the status and tag * words, so the complete exception state can be recovered. */ curpcb->pcb_savefpu.sv_ex_sw = curpcb->pcb_savefpu.sv_env.en_sw; curpcb->pcb_savefpu.sv_ex_tw = curpcb->pcb_savefpu.sv_env.en_tw; /* * Pass exception to process. */ if (ISPL(frame.if_cs) == SEL_UPL) { /* * Interrupt is essentially a trap, so we can afford to call * the SIGFPE handler (if any) as soon as the interrupt * returns. * * XXX little or nothing is gained from this, and plenty is * lost - the interrupt frame has to contain the trap frame * (this is otherwise only necessary for the rescheduling trap * in doreti, and the frame for that could easily be set up * just before it is used). */ curproc->p_md.md_regs = (int *)&frame.if_es; #ifdef notyet /* * Encode the appropriate code for detailed information on * this exception. */ code = XXX_ENCODE(curpcb->pcb_savefpu.sv_ex_sw); #else code = 0; /* XXX */ #endif trapsignal(curproc, SIGFPE, code); } else { /* * Nested interrupt. These losers occur when: * o an IRQ13 is bogusly generated at a bogus time, e.g.: * o immediately after an fnsave or frstor of an * error state. * o a couple of 386 instructions after * "fstpl _memvar" causes a stack overflow. * These are especially nasty when combined with a * trace trap. * o an IRQ13 occurs at the same time as another higher- * priority interrupt. * * Treat them like a true async interrupt. */ psignal(npxproc, SIGFPE); } } /* * Implement device not available (DNA) exception * * It would be better to switch FP context here (only). This would require * saving the state in the proc table instead of in the pcb. */ int npxdna() { if (!npx_exists) return (0); if (npxproc != NULL) { printf("npxdna: npxproc = %lx, curproc = %lx\n", (u_long) npxproc, (u_long) curproc); panic("npxdna"); } stop_emulating(); /* * Record new context early in case frstor causes an IRQ13. */ npxproc = curproc; /* * The following frstor may cause an IRQ13 when the state being * restored has a pending error. The error will appear to have been * triggered by the current (npx) user instruction even when that * instruction is a no-wait instruction that should not trigger an * error (e.g., fnclex). On at least one 486 system all of the * no-wait instructions are broken the same as frstor, so our * treatment does not amplify the breakage. On at least one * 386/Cyrix 387 system, fnclex works correctly while frstor and * fnsave are broken, so our treatment breaks fnclex if it is the * first FPU instruction after a context switch. */ frstor(&curpcb->pcb_savefpu); return (1); } /* * Wrapper for fnsave instruction to handle h/w bugs. If there is an error * pending, then fnsave generates a bogus IRQ13 on some systems. Force * any IRQ13 to be handled immediately, and then ignore it. This routine is * often called at splhigh so it must not use many system services. In * particular, it's much easier to install a special handler than to * guarantee that it's safe to use npxintr() and its supporting code. */ void npxsave(addr) struct save87 *addr; { u_char icu1_mask; u_char icu2_mask; u_char old_icu1_mask; u_char old_icu2_mask; struct gate_descriptor save_idt_npxintr; disable_intr(); old_icu1_mask = inb(IO_ICU1 + 1); old_icu2_mask = inb(IO_ICU2 + 1); save_idt_npxintr = idt[npx_intrno]; outb(IO_ICU1 + 1, old_icu1_mask & ~(IRQ_SLAVE | npx0_imask)); outb(IO_ICU2 + 1, old_icu2_mask & ~(npx0_imask >> 8)); idt[npx_intrno] = npx_idt_probeintr; enable_intr(); stop_emulating(); fnsave(addr); fwait(); start_emulating(); npxproc = NULL; disable_intr(); icu1_mask = inb(IO_ICU1 + 1); /* masks may have changed */ icu2_mask = inb(IO_ICU2 + 1); outb(IO_ICU1 + 1, (icu1_mask & ~npx0_imask) | (old_icu1_mask & npx0_imask)); outb(IO_ICU2 + 1, (icu2_mask & ~(npx0_imask >> 8)) | (old_icu2_mask & (npx0_imask >> 8))); idt[npx_intrno] = save_idt_npxintr; enable_intr(); /* back to usual state */ } #endif /* NNPX > 0 */