/*- * Copyright (c) 2000 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct linux_select_argv { int nfds; fd_set *readfds; fd_set *writefds; fd_set *exceptfds; struct timeval *timeout; }; int linux_execve(struct thread *td, struct linux_execve_args *args) { struct image_args eargs; char *path; int error; LCONVPATHEXIST(td, args->path, &path); #ifdef DEBUG if (ldebug(execve)) printf(ARGS(execve, "%s"), path); #endif error = exec_copyin_args(&eargs, path, UIO_SYSSPACE, args->argp, args->envp); free(path, M_TEMP); if (error == 0) error = kern_execve(td, &eargs, NULL); return (error); } /* * MPSAFE */ int linux_fork(struct thread *td, struct linux_fork_args *args) { int error; #ifdef DEBUG if (ldebug(fork)) printf(ARGS(fork, "")); #endif if ((error = fork(td, (struct fork_args *)args)) != 0) return (error); if (td->td_retval[1] == 1) td->td_retval[0] = 0; return (0); } /* * MPSAFE */ int linux_vfork(struct thread *td, struct linux_vfork_args *args) { int error; #ifdef DEBUG if (ldebug(vfork)) printf(ARGS(vfork, "")); #endif if ((error = vfork(td, (struct vfork_args *)args)) != 0) return (error); /* Are we the child? */ if (td->td_retval[1] == 1) td->td_retval[0] = 0; return (0); } #define CLONE_VM 0x100 #define CLONE_FS 0x200 #define CLONE_FILES 0x400 #define CLONE_SIGHAND 0x800 #define CLONE_PID 0x1000 int linux_clone(struct thread *td, struct linux_clone_args *args) { int error, ff = RFPROC | RFSTOPPED; struct proc *p2; struct thread *td2; int exit_signal; #ifdef DEBUG if (ldebug(clone)) { printf(ARGS(clone, "flags %x, stack %p"), (unsigned int)args->flags, args->stack); if (args->flags & CLONE_PID) printf(LMSG("CLONE_PID not yet supported")); } #endif if (!args->stack) return (EINVAL); exit_signal = args->flags & 0x000000ff; if (exit_signal >= LINUX_NSIG) return (EINVAL); /* if (exit_signal <= LINUX_SIGTBLSZ) exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)]; */ if (args->flags & CLONE_VM) ff |= RFMEM; if (args->flags & CLONE_SIGHAND) ff |= RFSIGSHARE; if (!(args->flags & CLONE_FILES)) ff |= RFFDG; error = fork1(td, ff, 0, &p2); if (error) return (error); PROC_LOCK(p2); p2->p_sigparent = exit_signal; PROC_UNLOCK(p2); td2 = FIRST_THREAD_IN_PROC(p2); td2->td_pcb->pcb_hw.apcb_usp = (unsigned long)args->stack; #ifdef DEBUG if (ldebug(clone)) printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"), (long)p2->p_pid, args->stack, exit_signal); #endif /* * Make this runnable after we are finished with it. */ mtx_lock_spin(&sched_lock); TD_SET_CAN_RUN(td2); setrunqueue(td2, SRQ_BORING); mtx_unlock_spin(&sched_lock); td->td_retval[0] = p2->p_pid; td->td_retval[1] = 0; return (0); } #define STACK_SIZE (2 * 1024 * 1024) #define GUARD_SIZE (4 * PAGE_SIZE) int linux_mmap(struct thread *td, struct linux_mmap_args *linux_args) { struct mmap_args /* { caddr_t addr; size_t len; int prot; int flags; int fd; long pad; off_t pos; } */ bsd_args; int error; #ifdef DEBUG if (ldebug(mmap)) printf(ARGS(mmap, "%p, 0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx"), (void *)linux_args->addr, linux_args->len, linux_args->prot, linux_args->flags, linux_args->fd, linux_args->pos); #endif bsd_args.prot = linux_args->prot | PROT_READ; /* always required */ bsd_args.flags = 0; if (linux_args->flags & LINUX_MAP_SHARED) bsd_args.flags |= MAP_SHARED; if (linux_args->flags & LINUX_MAP_PRIVATE) bsd_args.flags |= MAP_PRIVATE; if (linux_args->flags & LINUX_MAP_FIXED){ bsd_args.flags |= MAP_FIXED; bsd_args.pos = trunc_page(linux_args->pos); } else { bsd_args.pos = linux_args->pos; } if (linux_args->flags & LINUX_MAP_ANON) bsd_args.flags |= MAP_ANON; if (linux_args->flags & LINUX_MAP_GROWSDOWN) { bsd_args.flags |= MAP_STACK; /* The linux MAP_GROWSDOWN option does not limit auto * growth of the region. Linux mmap with this option * takes as addr the inital BOS, and as len, the initial * region size. It can then grow down from addr without * limit. However, linux threads has an implicit internal * limit to stack size of STACK_SIZE. Its just not * enforced explicitly in linux. But, here we impose * a limit of (STACK_SIZE - GUARD_SIZE) on the stack * region, since we can do this with our mmap. * * Our mmap with MAP_STACK takes addr as the maximum * downsize limit on BOS, and as len the max size of * the region. It them maps the top SGROWSIZ bytes, * and autgrows the region down, up to the limit * in addr. * * If we don't use the MAP_STACK option, the effect * of this code is to allocate a stack region of a * fixed size of (STACK_SIZE - GUARD_SIZE). */ /* This gives us TOS */ bsd_args.addr = (caddr_t)(linux_args->addr + linux_args->len); /* This gives us our maximum stack size */ if (linux_args->len > STACK_SIZE - GUARD_SIZE) bsd_args.len = linux_args->len; else bsd_args.len = STACK_SIZE - GUARD_SIZE; /* This gives us a new BOS. If we're using VM_STACK, then * mmap will just map the top SGROWSIZ bytes, and let * the stack grow down to the limit at BOS. If we're * not using VM_STACK we map the full stack, since we * don't have a way to autogrow it. */ bsd_args.addr -= bsd_args.len; bsd_args.addr = (caddr_t)round_page(bsd_args.addr); /* XXXX */ } else { bsd_args.addr = (caddr_t)linux_args->addr; bsd_args.len = linux_args->len; } bsd_args.fd = linux_args->fd; if(linux_args->fd == 0) bsd_args.fd = -1; bsd_args.pad = 0; #ifdef DEBUG if (ldebug(mmap)) printf(ARGS(mmap, "%p, 0x%lx, 0x%x, 0x%x, 0x%x, 0x%lx"), (void *)bsd_args.addr, bsd_args.len, bsd_args.prot, bsd_args.flags, bsd_args.fd, bsd_args.pos); #endif if (bsd_args.addr == 0) bsd_args.addr = (caddr_t)0x40000000UL; error = mmap(td, &bsd_args); #ifdef DEBUG if (ldebug(mmap)) printf(LMSG("mmap returns %d, 0x%lx"), error, td->td_retval[0]); #endif return (error); } int linux_rt_sigsuspend(td, uap) struct thread *td; struct linux_rt_sigsuspend_args *uap; { int error; l_sigset_t lmask; sigset_t bmask; #ifdef DEBUG if (ldebug(rt_sigsuspend)) printf(ARGS(rt_sigsuspend, "%p, %zd"), (void *)uap->newset, uap->sigsetsize); #endif if (uap->sigsetsize != sizeof(l_sigset_t)) return (EINVAL); error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); if (error) return (error); linux_to_bsd_sigset(&lmask, &bmask); return (kern_sigsuspend(td, bmask)); } int linux_mprotect(td, uap) struct thread *td; struct linux_mprotect_args *uap; { #ifdef DEBUG if (ldebug(mprotect)) printf(ARGS(mprotect, "%p, 0x%zx, 0x%lx"), (void *)uap->addr, uap->len, uap->prot); #endif return (mprotect(td, (void *)uap)); } int linux_munmap(td, uap) struct thread *td; struct linux_munmap_args *uap; { #ifdef DEBUG if (ldebug(munmap)) printf(ARGS(munmap, "%p, 0x%lx"), (void *)uap->addr, uap->len); #endif return (munmap(td, (void *)uap)); } static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NOFILE, -1, RLIMIT_NPROC, RLIMIT_MEMLOCK }; int linux_setrlimit(td, uap) struct thread *td; struct linux_setrlimit_args *uap; { struct rlimit rlim; u_int which; int error; #ifdef DEBUG if (ldebug(setrlimit)) printf(ARGS(setrlimit, "%d, %p"), uap->resource, (void *)uap->rlim); #endif if (uap->resource >= LINUX_RLIM_NLIMITS) return EINVAL; which = linux_to_bsd_resource[uap->resource]; if (which == -1) return EINVAL; if ((error = copyin(uap->rlim, &rlim, sizeof (struct rlimit)))) return (error); return (kern_setrlimit(td, which, &rlim)); } int linux_getrlimit(td, uap) struct thread *td; struct linux_getrlimit_args *uap; { struct rlimit rlim; u_int which; int error; #ifdef DEBUG if (ldebug(getrlimit)) printf(ARGS(getrlimit, "%d, %p"), uap->resource, (void *)uap->rlim); #endif if (uap->resource >= LINUX_RLIM_NLIMITS) return EINVAL; which = linux_to_bsd_resource[uap->resource]; if (which == -1) return EINVAL; PROC_LOCK(td->td_proc); lim_rlimit(td->td_proc, which, &rlim); PROC_UNLOCK(td->td_proc); error = copyout(&rlim, uap->rlim, sizeof (struct rlimit)); return (error); }