//===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // C Includes // C++ Includes // Other libraries and framework includes // Project includes #include "RenderScriptRuntime.h" #include "lldb/Core/ConstString.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/Error.h" #include "lldb/Core/Log.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/ValueObjectVariable.h" #include "lldb/Core/RegularExpression.h" #include "lldb/DataFormatters/DumpValueObjectOptions.h" #include "lldb/Host/StringConvert.h" #include "lldb/Symbol/Symbol.h" #include "lldb/Symbol/Type.h" #include "lldb/Target/Process.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Interpreter/Args.h" #include "lldb/Interpreter/Options.h" #include "lldb/Interpreter/CommandInterpreter.h" #include "lldb/Interpreter/CommandReturnObject.h" #include "lldb/Interpreter/CommandObjectMultiword.h" #include "lldb/Breakpoint/StoppointCallbackContext.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Expression/UserExpression.h" #include "lldb/Symbol/VariableList.h" using namespace lldb; using namespace lldb_private; using namespace lldb_renderscript; namespace { // The empirical_type adds a basic level of validation to arbitrary data // allowing us to track if data has been discovered and stored or not. // An empirical_type will be marked as valid only if it has been explicitly assigned to. template class empirical_type { public: // Ctor. Contents is invalid when constructed. empirical_type() : valid(false) {} // Return true and copy contents to out if valid, else return false. bool get(type_t& out) const { if (valid) out = data; return valid; } // Return a pointer to the contents or nullptr if it was not valid. const type_t* get() const { return valid ? &data : nullptr; } // Assign data explicitly. void set(const type_t in) { data = in; valid = true; } // Mark contents as invalid. void invalidate() { valid = false; } // Returns true if this type contains valid data. bool isValid() const { return valid; } // Assignment operator. empirical_type& operator = (const type_t in) { set(in); return *this; } // Dereference operator returns contents. // Warning: Will assert if not valid so use only when you know data is valid. const type_t& operator * () const { assert(valid); return data; } protected: bool valid; type_t data; }; } // anonymous namespace // The ScriptDetails class collects data associated with a single script instance. struct RenderScriptRuntime::ScriptDetails { ~ScriptDetails() = default; enum ScriptType { eScript, eScriptC }; // The derived type of the script. empirical_type type; // The name of the original source file. empirical_type resName; // Path to script .so file on the device. empirical_type scriptDyLib; // Directory where kernel objects are cached on device. empirical_type cacheDir; // Pointer to the context which owns this script. empirical_type context; // Pointer to the script object itself. empirical_type script; }; // This Element class represents the Element object in RS, // defining the type associated with an Allocation. struct RenderScriptRuntime::Element { // Taken from rsDefines.h enum DataKind { RS_KIND_USER, RS_KIND_PIXEL_L = 7, RS_KIND_PIXEL_A, RS_KIND_PIXEL_LA, RS_KIND_PIXEL_RGB, RS_KIND_PIXEL_RGBA, RS_KIND_PIXEL_DEPTH, RS_KIND_PIXEL_YUV, RS_KIND_INVALID = 100 }; // Taken from rsDefines.h enum DataType { RS_TYPE_NONE = 0, RS_TYPE_FLOAT_16, RS_TYPE_FLOAT_32, RS_TYPE_FLOAT_64, RS_TYPE_SIGNED_8, RS_TYPE_SIGNED_16, RS_TYPE_SIGNED_32, RS_TYPE_SIGNED_64, RS_TYPE_UNSIGNED_8, RS_TYPE_UNSIGNED_16, RS_TYPE_UNSIGNED_32, RS_TYPE_UNSIGNED_64, RS_TYPE_BOOLEAN, RS_TYPE_UNSIGNED_5_6_5, RS_TYPE_UNSIGNED_5_5_5_1, RS_TYPE_UNSIGNED_4_4_4_4, RS_TYPE_MATRIX_4X4, RS_TYPE_MATRIX_3X3, RS_TYPE_MATRIX_2X2, RS_TYPE_ELEMENT = 1000, RS_TYPE_TYPE, RS_TYPE_ALLOCATION, RS_TYPE_SAMPLER, RS_TYPE_SCRIPT, RS_TYPE_MESH, RS_TYPE_PROGRAM_FRAGMENT, RS_TYPE_PROGRAM_VERTEX, RS_TYPE_PROGRAM_RASTER, RS_TYPE_PROGRAM_STORE, RS_TYPE_FONT, RS_TYPE_INVALID = 10000 }; std::vector children; // Child Element fields for structs empirical_type element_ptr; // Pointer to the RS Element of the Type empirical_type type; // Type of each data pointer stored by the allocation empirical_type type_kind; // Defines pixel type if Allocation is created from an image empirical_type type_vec_size; // Vector size of each data point, e.g '4' for uchar4 empirical_type field_count; // Number of Subelements empirical_type datum_size; // Size of a single Element with padding empirical_type padding; // Number of padding bytes empirical_type array_size; // Number of items in array, only needed for strucrs ConstString type_name; // Name of type, only needed for structs static const ConstString &GetFallbackStructName(); // Print this as the type name of a struct Element // If we can't resolve the actual struct name bool shouldRefresh() const { const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid(); return !valid_ptr || !valid_type || !datum_size.isValid(); } }; // This AllocationDetails class collects data associated with a single // allocation instance. struct RenderScriptRuntime::AllocationDetails { struct Dimension { uint32_t dim_1; uint32_t dim_2; uint32_t dim_3; uint32_t cubeMap; Dimension() { dim_1 = 0; dim_2 = 0; dim_3 = 0; cubeMap = 0; } }; // The FileHeader struct specifies the header we use for writing allocations to a binary file. // Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump. // Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of // the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance // of the ElementHeader struct. With this first instance being the root element, and the other instances being // the root's descendants. To identify which instances are an ElementHeader's children, each struct // is immediately followed by a sequence of consecutive offsets to the start of its child structs. // These offsets are 4 bytes in size, and the 0 offset signifies no more children. struct FileHeader { uint8_t ident[4]; // ASCII 'RSAD' identifying the file uint32_t dims[3]; // Dimensions uint16_t hdr_size; // Header size in bytes, including all element headers }; struct ElementHeader { uint16_t type; // DataType enum uint32_t kind; // DataKind enum uint32_t element_size; // Size of a single element, including padding uint16_t vector_size; // Vector width uint32_t array_size; // Number of elements in array }; // Monotonically increasing from 1 static unsigned int ID; // Maps Allocation DataType enum and vector size to printable strings // using mapping from RenderScript numerical types summary documentation static const char* RsDataTypeToString[][4]; // Maps Allocation DataKind enum to printable strings static const char* RsDataKindToString[]; // Maps allocation types to format sizes for printing. static const unsigned int RSTypeToFormat[][3]; // Give each allocation an ID as a way // for commands to reference it. const unsigned int id; RenderScriptRuntime::Element element; // Allocation Element type empirical_type dimension; // Dimensions of the Allocation empirical_type address; // Pointer to address of the RS Allocation empirical_type data_ptr; // Pointer to the data held by the Allocation empirical_type type_ptr; // Pointer to the RS Type of the Allocation empirical_type context; // Pointer to the RS Context of the Allocation empirical_type size; // Size of the allocation empirical_type stride; // Stride between rows of the allocation // Give each allocation an id, so we can reference it in user commands. AllocationDetails(): id(ID++) { } bool shouldRefresh() const { bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh(); } }; const ConstString & RenderScriptRuntime::Element::GetFallbackStructName() { static const ConstString FallbackStructName("struct"); return FallbackStructName; } unsigned int RenderScriptRuntime::AllocationDetails::ID = 1; const char* RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { "User", "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 "Undefined", "Undefined", "Undefined", "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", "RGBA Pixel", "Pixel Depth", "YUV Pixel" }; const char* RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { {"None", "None", "None", "None"}, {"half", "half2", "half3", "half4"}, {"float", "float2", "float3", "float4"}, {"double", "double2", "double3", "double4"}, {"char", "char2", "char3", "char4"}, {"short", "short2", "short3", "short4"}, {"int", "int2", "int3", "int4"}, {"long", "long2", "long3", "long4"}, {"uchar", "uchar2", "uchar3", "uchar4"}, {"ushort", "ushort2", "ushort3", "ushort4"}, {"uint", "uint2", "uint3", "uint4"}, {"ulong", "ulong2", "ulong3", "ulong4"}, {"bool", "bool2", "bool3", "bool4"}, {"packed_565", "packed_565", "packed_565", "packed_565"}, {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, // Handlers {"RS Element", "RS Element", "RS Element", "RS Element"}, {"RS Type", "RS Type", "RS Type", "RS Type"}, {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, {"RS Script", "RS Script", "RS Script", "RS Script"}, // Deprecated {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"}, {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"}, {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"}, {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"}, {"RS Font", "RS Font", "RS Font", "RS Font"} }; // Used as an index into the RSTypeToFormat array elements enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; // { format enum of single element, format enum of element vector, size of element} const unsigned int RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { {eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE {eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, // RS_TYPE_SIGNED_16 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, // RS_TYPE_SIGNED_32 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, // RS_TYPE_SIGNED_64 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64 {eFormatBoolean, eFormatBoolean, 1}, // RS_TYPE_BOOL {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_6_5 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_5_5_1 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_4_4_4_4 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, // RS_TYPE_MATRIX_3X3 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4} // RS_TYPE_MATRIX_2X2 }; //------------------------------------------------------------------ // Static Functions //------------------------------------------------------------------ LanguageRuntime * RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language) { if (language == eLanguageTypeExtRenderScript) return new RenderScriptRuntime(process); else return NULL; } // Callback with a module to search for matching symbols. // We first check that the module contains RS kernels. // Then look for a symbol which matches our kernel name. // The breakpoint address is finally set using the address of this symbol. Searcher::CallbackReturn RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address*, bool) { ModuleSP module = context.module_sp; if (!module) return Searcher::eCallbackReturnContinue; // Is this a module containing renderscript kernels? if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData)) return Searcher::eCallbackReturnContinue; // Attempt to set a breakpoint on the kernel name symbol within the module library. // If it's not found, it's likely debug info is unavailable - try to set a // breakpoint on .expand. const Symbol* kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); if (!kernel_sym) { std::string kernel_name_expanded(m_kernel_name.AsCString()); kernel_name_expanded.append(".expand"); kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); } if (kernel_sym) { Address bp_addr = kernel_sym->GetAddress(); if (filter.AddressPasses(bp_addr)) m_breakpoint->AddLocation(bp_addr); } return Searcher::eCallbackReturnContinue; } void RenderScriptRuntime::Initialize() { PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance, GetCommandObject); } void RenderScriptRuntime::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); } lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { static ConstString g_name("renderscript"); return g_name; } RenderScriptRuntime::ModuleKind RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { if (module_sp) { // Is this a module containing renderscript kernels? const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); if (info_sym) { return eModuleKindKernelObj; } // Is this the main RS runtime library const ConstString rs_lib("libRS.so"); if (module_sp->GetFileSpec().GetFilename() == rs_lib) { return eModuleKindLibRS; } const ConstString rs_driverlib("libRSDriver.so"); if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { return eModuleKindDriver; } const ConstString rs_cpureflib("libRSCpuRef.so"); if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { return eModuleKindImpl; } } return eModuleKindIgnored; } bool RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp) { return GetModuleKind(module_sp) != eModuleKindIgnored; } void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list ) { Mutex::Locker locker (module_list.GetMutex ()); size_t num_modules = module_list.GetSize(); for (size_t i = 0; i < num_modules; i++) { auto mod = module_list.GetModuleAtIndex (i); if (IsRenderScriptModule (mod)) { LoadModule(mod); } } } //------------------------------------------------------------------ // PluginInterface protocol //------------------------------------------------------------------ lldb_private::ConstString RenderScriptRuntime::GetPluginName() { return GetPluginNameStatic(); } uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } bool RenderScriptRuntime::IsVTableName(const char *name) { return false; } bool RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic, TypeAndOrName &class_type_or_name, Address &address, Value::ValueType &value_type) { return false; } TypeAndOrName RenderScriptRuntime::FixUpDynamicType (const TypeAndOrName& type_and_or_name, ValueObject& static_value) { return type_and_or_name; } bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { return false; } lldb::BreakpointResolverSP RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp) { BreakpointResolverSP resolver_sp; return resolver_sp; } const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = { //rsdScript { "rsdScriptInit", //name "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj", // symbol name 32 bit "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj", // symbol name 64 bit 0, // version RenderScriptRuntime::eModuleKindDriver, // type &lldb_private::RenderScriptRuntime::CaptureScriptInit1 // handler }, { "rsdScriptInvokeForEach", // name "_Z22rsdScriptInvokeForEachPKN7android12renderscript7ContextEPNS0_6ScriptEjPKNS0_10AllocationEPS6_PKvjPK12RsScriptCall", // symbol name 32bit "_Z22rsdScriptInvokeForEachPKN7android12renderscript7ContextEPNS0_6ScriptEjPKNS0_10AllocationEPS6_PKvmPK12RsScriptCall", // symbol name 64bit 0, // version RenderScriptRuntime::eModuleKindDriver, // type nullptr // handler }, { "rsdScriptInvokeForEachMulti", // name "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", // symbol name 32bit "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", // symbol name 64bit 0, // version RenderScriptRuntime::eModuleKindDriver, // type nullptr // handler }, { "rsdScriptInvokeFunction", // name "_Z23rsdScriptInvokeFunctionPKN7android12renderscript7ContextEPNS0_6ScriptEjPKvj", // symbol name 32bit "_Z23rsdScriptInvokeFunctionPKN7android12renderscript7ContextEPNS0_6ScriptEjPKvm", // symbol name 64bit 0, // version RenderScriptRuntime::eModuleKindDriver, // type nullptr // handler }, { "rsdScriptSetGlobalVar", // name "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj", // symbol name 32bit "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm", // symbol name 64bit 0, // version RenderScriptRuntime::eModuleKindDriver, // type &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar1 // handler }, //rsdAllocation { "rsdAllocationInit", // name "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", // symbol name 32bit "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", // symbol name 64bit 0, // version RenderScriptRuntime::eModuleKindDriver, // type &lldb_private::RenderScriptRuntime::CaptureAllocationInit1 // handler }, { "rsdAllocationRead2D", //name "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj", // symbol name 32bit "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm", // symbol name 64bit 0, // version RenderScriptRuntime::eModuleKindDriver, // type nullptr // handler }, { "rsdAllocationDestroy", // name "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", // symbol name 32bit "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", // symbol name 64bit 0, // version RenderScriptRuntime::eModuleKindDriver, // type &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy // handler }, }; const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns)/sizeof(s_runtimeHookDefns[0]); bool RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id, lldb::user_id_t break_loc_id) { RuntimeHook* hook_info = (RuntimeHook*)baton; ExecutionContext context(ctx->exe_ctx_ref); RenderScriptRuntime *lang_rt = (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); lang_rt->HookCallback(hook_info, context); return false; } void RenderScriptRuntime::HookCallback(RuntimeHook* hook_info, ExecutionContext& context) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (log) log->Printf ("RenderScriptRuntime::HookCallback - '%s' .", hook_info->defn->name); if (hook_info->defn->grabber) { (this->*(hook_info->defn->grabber))(hook_info, context); } } bool RenderScriptRuntime::GetArgSimple(ExecutionContext &context, uint32_t arg, uint64_t *data) { // Get a positional integer argument. // Given an ExecutionContext, ``context`` which should be a RenderScript // frame, get the value of the positional argument ``arg`` and save its value // to the address pointed to by ``data``. // returns true on success, false otherwise. // If unsuccessful, the value pointed to by ``data`` is undefined. Otherwise, // ``data`` will be set to the value of the the given ``arg``. // NOTE: only natural width integer arguments for the machine are supported. // Behaviour with non primitive arguments is undefined. if (!data) return false; Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); Error error; RegisterContext* reg_ctx = context.GetRegisterContext(); Process* process = context.GetProcessPtr(); bool success = false; // return value if (!context.GetTargetPtr()) { if (log) log->Printf("RenderScriptRuntime::GetArgSimple - Invalid target"); return false; } switch (context.GetTargetPtr()->GetArchitecture().GetMachine()) { case llvm::Triple::ArchType::x86: { uint64_t sp = reg_ctx->GetSP(); uint32_t offset = (1 + arg) * sizeof(uint32_t); uint32_t result = 0; process->ReadMemory(sp + offset, &result, sizeof(uint32_t), error); if (error.Fail()) { if (log) log->Printf("RenderScriptRuntime::GetArgSimple - error reading X86 stack: %s.", error.AsCString()); } else { *data = result; success = true; } break; } case llvm::Triple::ArchType::x86_64: { // amd64 has 6 integer registers, and 8 XMM registers for parameter passing. // Surplus args are spilled onto the stack. // rdi, rsi, rdx, rcx, r8, r9, (zmm0 - 7 for vectors) // ref: AMD64 ABI Draft 0.99.6 – October 7, 2013 – 10:35; Figure 3.4. Retrieved from // http://www.x86-64.org/documentation/abi.pdf if (arg > 5) { if (log) log->Warning("X86_64 register spill is not supported."); break; } const char * regnames[] = {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}; assert((sizeof(regnames) / sizeof(const char *)) > arg); const RegisterInfo *rArg = reg_ctx->GetRegisterInfoByName(regnames[arg]); RegisterValue rVal; success = reg_ctx->ReadRegister(rArg, rVal); if (success) { *data = rVal.GetAsUInt64(0u, &success); } else { if (log) log->Printf("RenderScriptRuntime::GetArgSimple - error reading x86_64 register: %d.", arg); } break; } case llvm::Triple::ArchType::arm: { // arm 32 bit // first 4 arguments are passed via registers if (arg < 4) { const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg); RegisterValue rVal; success = reg_ctx->ReadRegister(rArg, rVal); if (success) { (*data) = rVal.GetAsUInt32(0u, &success); } else { if (log) log->Printf("RenderScriptRuntime::GetArgSimple - error reading ARM register: %d.", arg); } } else { uint64_t sp = reg_ctx->GetSP(); uint32_t offset = (arg-4) * sizeof(uint32_t); uint32_t value = 0; size_t bytes_read = process->ReadMemory(sp + offset, &value, sizeof(value), error); if (error.Fail() || bytes_read != sizeof(value)) { if (log) log->Printf("RenderScriptRuntime::GetArgSimple - error reading ARM stack: %s.", error.AsCString()); } else { *data = value; success = true; } } break; } case llvm::Triple::ArchType::aarch64: { // arm 64 bit // first 8 arguments are in the registers if (arg < 8) { const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg); RegisterValue rVal; success = reg_ctx->ReadRegister(rArg, rVal); if (success) { *data = rVal.GetAsUInt64(0u, &success); } else { if (log) log->Printf("RenderScriptRuntime::GetArgSimple() - AARCH64 - Error while reading the argument #%d", arg); } } else { // @TODO: need to find the argument in the stack if (log) log->Printf("RenderScriptRuntime::GetArgSimple - AARCH64 - FOR #ARG >= 8 NOT IMPLEMENTED YET. Argument number: %d", arg); } break; } case llvm::Triple::ArchType::mipsel: { // read from the registers // first 4 arguments are passed in registers if (arg < 4){ const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4); RegisterValue rVal; success = reg_ctx->ReadRegister(rArg, rVal); if (success) { *data = rVal.GetAsUInt64(0u, &success); } else { if (log) log->Printf("RenderScriptRuntime::GetArgSimple() - Mips - Error while reading the argument #%d", arg); } } // arguments > 4 are read from the stack else { uint64_t sp = reg_ctx->GetSP(); uint32_t offset = arg * sizeof(uint32_t); uint32_t value = 0; size_t bytes_read = process->ReadMemory(sp + offset, &value, sizeof(value), error); if (error.Fail() || bytes_read != sizeof(value)) { if (log) log->Printf("RenderScriptRuntime::GetArgSimple - error reading Mips stack: %s.", error.AsCString()); } else { *data = value; success = true; } } break; } case llvm::Triple::ArchType::mips64el: { // read from the registers if (arg < 8) { const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4); RegisterValue rVal; success = reg_ctx->ReadRegister(rArg, rVal); if (success) { (*data) = rVal.GetAsUInt64(0u, &success); } else { if (log) log->Printf("RenderScriptRuntime::GetArgSimple - Mips64 - Error reading the argument #%d", arg); } } // arguments > 8 are read from the stack else { uint64_t sp = reg_ctx->GetSP(); uint32_t offset = (arg - 8) * sizeof(uint64_t); uint64_t value = 0; size_t bytes_read = process->ReadMemory(sp + offset, &value, sizeof(value), error); if (error.Fail() || bytes_read != sizeof(value)) { if (log) log->Printf("RenderScriptRuntime::GetArgSimple - Mips64 - Error reading Mips64 stack: %s.", error.AsCString()); } else { *data = value; success = true; } } break; } default: { // invalid architecture if (log) log->Printf("RenderScriptRuntime::GetArgSimple - Architecture not supported"); } } if (!success) { if (log) log->Printf("RenderScriptRuntime::GetArgSimple - failed to get argument at index %" PRIu32, arg); } return success; } void RenderScriptRuntime::CaptureSetGlobalVar1(RuntimeHook* hook_info, ExecutionContext& context) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); //Context, Script, int, data, length uint64_t rs_context_u64 = 0U; uint64_t rs_script_u64 = 0U; uint64_t rs_id_u64 = 0U; uint64_t rs_data_u64 = 0U; uint64_t rs_length_u64 = 0U; bool success = GetArgSimple(context, 0, &rs_context_u64) && GetArgSimple(context, 1, &rs_script_u64) && GetArgSimple(context, 2, &rs_id_u64) && GetArgSimple(context, 3, &rs_data_u64) && GetArgSimple(context, 4, &rs_length_u64); if (!success) { if (log) log->Printf("RenderScriptRuntime::CaptureSetGlobalVar1 - Error while reading the function parameters"); return; } if (log) { log->Printf ("RenderScriptRuntime::CaptureSetGlobalVar1 - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.", rs_context_u64, rs_script_u64, rs_id_u64, rs_data_u64, rs_length_u64); addr_t script_addr = (addr_t)rs_script_u64; if (m_scriptMappings.find( script_addr ) != m_scriptMappings.end()) { auto rsm = m_scriptMappings[script_addr]; if (rs_id_u64 < rsm->m_globals.size()) { auto rsg = rsm->m_globals[rs_id_u64]; log->Printf ("RenderScriptRuntime::CaptureSetGlobalVar1 - Setting of '%s' within '%s' inferred", rsg.m_name.AsCString(), rsm->m_module->GetFileSpec().GetFilename().AsCString()); } } } } void RenderScriptRuntime::CaptureAllocationInit1(RuntimeHook* hook_info, ExecutionContext& context) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); //Context, Alloc, bool uint64_t rs_context_u64 = 0U; uint64_t rs_alloc_u64 = 0U; uint64_t rs_forceZero_u64 = 0U; bool success = GetArgSimple(context, 0, &rs_context_u64) && GetArgSimple(context, 1, &rs_alloc_u64) && GetArgSimple(context, 2, &rs_forceZero_u64); if (!success) // error case { if (log) log->Printf("RenderScriptRuntime::CaptureAllocationInit1 - Error while reading the function parameters"); return; // abort } if (log) log->Printf ("RenderScriptRuntime::CaptureAllocationInit1 - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", rs_context_u64, rs_alloc_u64, rs_forceZero_u64); AllocationDetails* alloc = LookUpAllocation(rs_alloc_u64, true); if (alloc) alloc->context = rs_context_u64; } void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook* hook_info, ExecutionContext& context) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); // Context, Alloc uint64_t rs_context_u64 = 0U; uint64_t rs_alloc_u64 = 0U; bool success = GetArgSimple(context, 0, &rs_context_u64) && GetArgSimple(context, 1, &rs_alloc_u64); if (!success) // error case { if (log) log->Printf("RenderScriptRuntime::CaptureAllocationDestroy - Error while reading the function parameters"); return; // abort } if (log) log->Printf("RenderScriptRuntime::CaptureAllocationDestroy - 0x%" PRIx64 ", 0x%" PRIx64 ".", rs_context_u64, rs_alloc_u64); for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { auto& allocation_ap = *iter; // get the unique pointer if (allocation_ap->address.isValid() && *allocation_ap->address.get() == rs_alloc_u64) { m_allocations.erase(iter); if (log) log->Printf("RenderScriptRuntime::CaptureAllocationDestroy - Deleted allocation entry"); return; } } if (log) log->Printf("RenderScriptRuntime::CaptureAllocationDestroy - Couldn't find destroyed allocation"); } void RenderScriptRuntime::CaptureScriptInit1(RuntimeHook* hook_info, ExecutionContext& context) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); //Context, Script, resname Str, cachedir Str Error error; Process* process = context.GetProcessPtr(); uint64_t rs_context_u64 = 0U; uint64_t rs_script_u64 = 0U; uint64_t rs_resnameptr_u64 = 0U; uint64_t rs_cachedirptr_u64 = 0U; std::string resname; std::string cachedir; // read the function parameters bool success = GetArgSimple(context, 0, &rs_context_u64) && GetArgSimple(context, 1, &rs_script_u64) && GetArgSimple(context, 2, &rs_resnameptr_u64) && GetArgSimple(context, 3, &rs_cachedirptr_u64); if (!success) { if (log) log->Printf("RenderScriptRuntime::CaptureScriptInit1 - Error while reading the function parameters"); return; } process->ReadCStringFromMemory((lldb::addr_t)rs_resnameptr_u64, resname, error); if (error.Fail()) { if (log) log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - error reading resname: %s.", error.AsCString()); } process->ReadCStringFromMemory((lldb::addr_t)rs_cachedirptr_u64, cachedir, error); if (error.Fail()) { if (log) log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - error reading cachedir: %s.", error.AsCString()); } if (log) log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", rs_context_u64, rs_script_u64, resname.c_str(), cachedir.c_str()); if (resname.size() > 0) { StreamString strm; strm.Printf("librs.%s.so", resname.c_str()); ScriptDetails* script = LookUpScript(rs_script_u64, true); if (script) { script->type = ScriptDetails::eScriptC; script->cacheDir = cachedir; script->resName = resname; script->scriptDyLib = strm.GetData(); script->context = addr_t(rs_context_u64); } if (log) log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".", strm.GetData(), rs_context_u64, rs_script_u64); } else if (log) { log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - resource name invalid, Script not tagged"); } } void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!module) { return; } Target &target = GetProcess()->GetTarget(); llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine(); if (targetArchType != llvm::Triple::ArchType::x86 && targetArchType != llvm::Triple::ArchType::arm && targetArchType != llvm::Triple::ArchType::aarch64 && targetArchType != llvm::Triple::ArchType::mipsel && targetArchType != llvm::Triple::ArchType::mips64el && targetArchType != llvm::Triple::ArchType::x86_64 ) { if (log) log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Unable to hook runtime. Only X86, ARM, Mips supported currently."); return; } uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize(); for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { const HookDefn* hook_defn = &s_runtimeHookDefns[idx]; if (hook_defn->kind != kind) { continue; } const char* symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64; const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode); if (!sym){ if (log){ log->Printf("RenderScriptRuntime::LoadRuntimeHooks - ERROR: Symbol '%s' related to the function %s not found", symbol_name, hook_defn->name); } continue; } addr_t addr = sym->GetLoadAddress(&target); if (addr == LLDB_INVALID_ADDRESS) { if (log) log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Unable to resolve the address of hook function '%s' with symbol '%s'.", hook_defn->name, symbol_name); continue; } else { if (log) log->Printf("RenderScriptRuntime::LoadRuntimeHooks - Function %s, address resolved at 0x%" PRIx64, hook_defn->name, addr); } RuntimeHookSP hook(new RuntimeHook()); hook->address = addr; hook->defn = hook_defn; hook->bp_sp = target.CreateBreakpoint(addr, true, false); hook->bp_sp->SetCallback(HookCallback, hook.get(), true); m_runtimeHooks[addr] = hook; if (log) { log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".", hook_defn->name, module->GetFileSpec().GetFilename().AsCString(), (uint64_t)hook_defn->version, (uint64_t)addr); } } } void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { if (!rsmodule_sp) return; Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); const ModuleSP module = rsmodule_sp->m_module; const FileSpec& file = module->GetPlatformFileSpec(); // Iterate over all of the scripts that we currently know of. // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. for (const auto & rs_script : m_scripts) { // Extract the expected .so file path for this script. std::string dylib; if (!rs_script->scriptDyLib.get(dylib)) continue; // Only proceed if the module that has loaded corresponds to this script. if (file.GetFilename() != ConstString(dylib.c_str())) continue; // Obtain the script address which we use as a key. lldb::addr_t script; if (!rs_script->script.get(script)) continue; // If we have a script mapping for the current script. if (m_scriptMappings.find(script) != m_scriptMappings.end()) { // if the module we have stored is different to the one we just received. if (m_scriptMappings[script] != rsmodule_sp) { if (log) log->Printf ("RenderScriptRuntime::FixupScriptDetails - Error: script %" PRIx64 " wants reassigned to new rsmodule '%s'.", (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); } } // We don't have a script mapping for the current script. else { // Obtain the script resource name. std::string resName; if (rs_script->resName.get(resName)) // Set the modules resource name. rsmodule_sp->m_resname = resName; // Add Script/Module pair to map. m_scriptMappings[script] = rsmodule_sp; if (log) log->Printf ("RenderScriptRuntime::FixupScriptDetails - script %" PRIx64 " associated with rsmodule '%s'.", (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); } } } // Uses the Target API to evaluate the expression passed as a parameter to the function // The result of that expression is returned an unsigned 64 bit int, via the result* paramter. // Function returns true on success, and false on failure bool RenderScriptRuntime::EvalRSExpression(const char* expression, StackFrame* frame_ptr, uint64_t* result) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (log) log->Printf("RenderScriptRuntime::EvalRSExpression(%s)", expression); ValueObjectSP expr_result; // Perform the actual expression evaluation GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result); if (!expr_result) { if (log) log->Printf("RenderScriptRuntime::EvalRSExpression - Error: Couldn't evaluate expression"); return false; } // The result of the expression is invalid if (!expr_result->GetError().Success()) { Error err = expr_result->GetError(); if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success { if (log) log->Printf("RenderScriptRuntime::EvalRSExpression - Expression returned void"); result = nullptr; return true; } if (log) log->Printf("RenderScriptRuntime::EvalRSExpression - Error evaluating expression result: %s", err.AsCString()); return false; } bool success = false; *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an unsigned int. if (!success) { if (log) log->Printf("RenderScriptRuntime::EvalRSExpression - Error: Couldn't convert expression result to unsigned int"); return false; } return true; } namespace // anonymous { // max length of an expanded expression const int jit_max_expr_size = 768; // Format strings containing the expressions we may need to evaluate. const char runtimeExpressions[][256] = { // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace(0x%lx, %u, %u, %u, 0, 0)", // Type* rsaAllocationGetType(Context*, Allocation*) "(void*)rsaAllocationGetType(0x%lx, 0x%lx)", // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ; // mHal.state.lodCount; mHal.state.faces; mElement; into typeData // Need to specify 32 or 64 bit for uint_t since this differs between devices "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[0]", // X dim "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[1]", // Y dim "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[2]", // Z dim "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[5]", // Element ptr // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[0]", // Type "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[1]", // Kind "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[3]", // Vector Size "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[4]", // Field Count // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names, // size_t *arraySizes, uint32_t dataSize) // Needed for Allocations of structs to gather details about fields/Subelements "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];" "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); ids[%u]", // Element* of field "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];" "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); names[%u]", // Name of field "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];" "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); arr_size[%u]" // Array size of field }; // Temporary workaround for MIPS, until the compiler emits the JAL instruction when invoking directly the function. // At the moment, when evaluating an expression involving a function call, the LLVM codegen for Mips emits a JAL // instruction, which is able to jump in the range +/- 128MB with respect to the current program counter ($pc). If // the requested function happens to reside outside the above region, the function address will be truncated and the // function invocation will fail. This is a problem in the RS plugin as we rely on the RS API to probe the number and // the nature of allocations. A proper solution in the MIPS compiler is currently being investigated. As temporary // work around for this context, we'll invoke the RS API through function pointers, which cause the compiler to emit a // register based JALR instruction. const char runtimeExpressions_mips[][512] = { // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) "int* (*f) (void*, int, int, int, int, int) = (int* (*) (void*, int, int, int, int, int)) " "_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace; " "(int*) f((void*) 0x%lx, %u, %u, %u, 0, 0)", // Type* rsaAllocationGetType(Context*, Allocation*) "void* (*f) (void*, void*) = (void* (*) (void*, void*)) rsaAllocationGetType; (void*) f((void*) 0x%lx, (void*) 0x%lx)", // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ; // mHal.state.lodCount; mHal.state.faces; mElement; into typeData // Need to specify 32 or 64 bit for uint_t since this differs between devices "uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) " "rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[0]", "uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) " "rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[1]", "uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) " "rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[2]", "uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) " "rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[5]", // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData "uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) " "rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[0]", // Type "uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) " "rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[1]", // Kind "uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) " "rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[3]", // Vector size "uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) " "rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[4]", // Field count // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names, // size_t *arraySizes, uint32_t dataSize) // Needed for Allocations of structs to gather details about fields/Subelements "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];" "void* (*f) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t) = " "(void* (*) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t)) rsaElementGetSubElements;" "(void*) f((void*) 0x%lx, (void*) 0x%lx, (uintptr_t*) ids, names, arr_size, (uint32_t) %u);" "ids[%u]", // Element* of field "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];" "void* (*f) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t) = " "(void* (*) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t)) rsaElementGetSubElements;" "(void*) f((void*) 0x%lx, (void*) 0x%lx, (uintptr_t*) ids, names, arr_size, (uint32_t) %u);" "names[%u]", // Name of field "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];" "void* (*f) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t) = " "(void* (*) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t)) rsaElementGetSubElements;" "(void*) f((void*) 0x%lx, (void*) 0x%lx, (uintptr_t*) ids, names, arr_size, (uint32_t) %u);" "arr_size[%u]" // Array size of field }; } // end of the anonymous namespace // Retrieve the string to JIT for the given expression const char* RenderScriptRuntime::JITTemplate(ExpressionStrings e) { // be nice to your Mips friend when adding new expression strings static_assert(sizeof(runtimeExpressions)/sizeof(runtimeExpressions[0]) == sizeof(runtimeExpressions_mips)/sizeof(runtimeExpressions_mips[0]), "#runtimeExpressions != #runtimeExpressions_mips"); assert((e >= eExprGetOffsetPtr && e <= eExprSubelementsArrSize) && "Expression string out of bounds"); llvm::Triple::ArchType arch = GetTargetRef().GetArchitecture().GetMachine(); // mips JAL workaround if(arch == llvm::Triple::ArchType::mips64el || arch == llvm::Triple::ArchType::mipsel) return runtimeExpressions_mips[e]; else return runtimeExpressions[e]; } // JITs the RS runtime for the internal data pointer of an allocation. // Is passed x,y,z coordinates for the pointer to a specific element. // Then sets the data_ptr member in Allocation with the result. // Returns true on success, false otherwise bool RenderScriptRuntime::JITDataPointer(AllocationDetails* allocation, StackFrame* frame_ptr, unsigned int x, unsigned int y, unsigned int z) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!allocation->address.isValid()) { if (log) log->Printf("RenderScriptRuntime::JITDataPointer - Failed to find allocation details"); return false; } const char* expr_cstr = JITTemplate(eExprGetOffsetPtr); char buffer[jit_max_expr_size]; int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z); if (chars_written < 0) { if (log) log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()"); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("RenderScriptRuntime::JITDataPointer - Expression too long"); return false; } uint64_t result = 0; if (!EvalRSExpression(buffer, frame_ptr, &result)) return false; addr_t mem_ptr = static_cast(result); allocation->data_ptr = mem_ptr; return true; } // JITs the RS runtime for the internal pointer to the RS Type of an allocation // Then sets the type_ptr member in Allocation with the result. // Returns true on success, false otherwise bool RenderScriptRuntime::JITTypePointer(AllocationDetails* allocation, StackFrame* frame_ptr) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!allocation->address.isValid() || !allocation->context.isValid()) { if (log) log->Printf("RenderScriptRuntime::JITTypePointer - Failed to find allocation details"); return false; } const char* expr_cstr = JITTemplate(eExprAllocGetType); char buffer[jit_max_expr_size]; int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get()); if (chars_written < 0) { if (log) log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()"); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("RenderScriptRuntime::JITTypePointer - Expression too long"); return false; } uint64_t result = 0; if (!EvalRSExpression(buffer, frame_ptr, &result)) return false; addr_t type_ptr = static_cast(result); allocation->type_ptr = type_ptr; return true; } // JITs the RS runtime for information about the dimensions and type of an allocation // Then sets dimension and element_ptr members in Allocation with the result. // Returns true on success, false otherwise bool RenderScriptRuntime::JITTypePacked(AllocationDetails* allocation, StackFrame* frame_ptr) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!allocation->type_ptr.isValid() || !allocation->context.isValid()) { if (log) log->Printf("RenderScriptRuntime::JITTypePacked - Failed to find allocation details"); return false; } // Expression is different depending on if device is 32 or 64 bit uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); const unsigned int bits = archByteSize == 4 ? 32 : 64; // We want 4 elements from packed data const unsigned int num_exprs = 4; assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions"); char buffer[num_exprs][jit_max_expr_size]; uint64_t results[num_exprs]; for (unsigned int i = 0; i < num_exprs; ++i) { const char* expr_cstr = JITTemplate((ExpressionStrings) (eExprTypeDimX + i)); int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(), *allocation->type_ptr.get()); if (chars_written < 0) { if (log) log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()"); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("RenderScriptRuntime::JITTypePacked - Expression too long"); return false; } // Perform expression evaluation if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) return false; } // Assign results to allocation members AllocationDetails::Dimension dims; dims.dim_1 = static_cast(results[0]); dims.dim_2 = static_cast(results[1]); dims.dim_3 = static_cast(results[2]); allocation->dimension = dims; addr_t elem_ptr = static_cast(results[3]); allocation->element.element_ptr = elem_ptr; if (log) log->Printf("RenderScriptRuntime::JITTypePacked - dims (%u, %u, %u) Element*: 0x%" PRIx64, dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr); return true; } // JITs the RS runtime for information about the Element of an allocation // Then sets type, type_vec_size, field_count and type_kind members in Element with the result. // Returns true on success, false otherwise bool RenderScriptRuntime::JITElementPacked(Element& elem, const lldb::addr_t context, StackFrame* frame_ptr) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!elem.element_ptr.isValid()) { if (log) log->Printf("RenderScriptRuntime::JITElementPacked - Failed to find allocation details"); return false; } // We want 4 elements from packed data const unsigned int num_exprs = 4; assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions"); char buffer[num_exprs][jit_max_expr_size]; uint64_t results[num_exprs]; for (unsigned int i = 0; i < num_exprs; i++) { const char* expr_cstr = JITTemplate((ExpressionStrings) (eExprElementType + i)); int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get()); if (chars_written < 0) { if (log) log->Printf("RenderScriptRuntime::JITElementPacked - Encoding error in snprintf()"); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("RenderScriptRuntime::JITElementPacked - Expression too long"); return false; } // Perform expression evaluation if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) return false; } // Assign results to allocation members elem.type = static_cast(results[0]); elem.type_kind = static_cast(results[1]); elem.type_vec_size = static_cast(results[2]); elem.field_count = static_cast(results[3]); if (log) log->Printf("RenderScriptRuntime::JITElementPacked - data type %u, pixel type %u, vector size %u, field count %u", *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get()); // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) return false; return true; } // JITs the RS runtime for information about the subelements/fields of a struct allocation // This is necessary for infering the struct type so we can pretty print the allocation's contents. // Returns true on success, false otherwise bool RenderScriptRuntime::JITSubelements(Element& elem, const lldb::addr_t context, StackFrame* frame_ptr) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { if (log) log->Printf("RenderScriptRuntime::JITSubelements - Failed to find allocation details"); return false; } const short num_exprs = 3; assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions"); char expr_buffer[jit_max_expr_size]; uint64_t results; // Iterate over struct fields. const uint32_t field_count = *elem.field_count.get(); for (unsigned int field_index = 0; field_index < field_count; ++field_index) { Element child; for (unsigned int expr_index = 0; expr_index < num_exprs; ++expr_index) { const char* expr_cstr = JITTemplate((ExpressionStrings) (eExprSubelementsId + expr_index)); int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr, field_count, field_count, field_count, context, *elem.element_ptr.get(), field_count, field_index); if (chars_written < 0) { if (log) log->Printf("RenderScriptRuntime::JITSubelements - Encoding error in snprintf()"); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("RenderScriptRuntime::JITSubelements - Expression too long"); return false; } // Perform expression evaluation if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) return false; if (log) log->Printf("RenderScriptRuntime::JITSubelements - Expr result 0x%" PRIx64, results); switch(expr_index) { case 0: // Element* of child child.element_ptr = static_cast(results); break; case 1: // Name of child { lldb::addr_t address = static_cast(results); Error err; std::string name; GetProcess()->ReadCStringFromMemory(address, name, err); if (!err.Fail()) child.type_name = ConstString(name); else { if (log) log->Printf("RenderScriptRuntime::JITSubelements - Warning: Couldn't read field name"); } break; } case 2: // Array size of child child.array_size = static_cast(results); break; } } // We need to recursively JIT each Element field of the struct since // structs can be nested inside structs. if (!JITElementPacked(child, context, frame_ptr)) return false; elem.children.push_back(child); } // Try to infer the name of the struct type so we can pretty print the allocation contents. FindStructTypeName(elem, frame_ptr); return true; } // JITs the RS runtime for the address of the last element in the allocation. // The `elem_size` paramter represents the size of a single element, including padding. // Which is needed as an offset from the last element pointer. // Using this offset minus the starting address we can calculate the size of the allocation. // Returns true on success, false otherwise bool RenderScriptRuntime::JITAllocationSize(AllocationDetails* allocation, StackFrame* frame_ptr) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() || !allocation->element.datum_size.isValid()) { if (log) log->Printf("RenderScriptRuntime::JITAllocationSize - Failed to find allocation details"); return false; } // Find dimensions unsigned int dim_x = allocation->dimension.get()->dim_1; unsigned int dim_y = allocation->dimension.get()->dim_2; unsigned int dim_z = allocation->dimension.get()->dim_3; // Our plan of jitting the last element address doesn't seem to work for struct Allocations // Instead try to infer the size ourselves without any inter element padding. if (allocation->element.children.size() > 0) { if (dim_x == 0) dim_x = 1; if (dim_y == 0) dim_y = 1; if (dim_z == 0) dim_z = 1; allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get(); if (log) log->Printf("RenderScriptRuntime::JITAllocationSize - Infered size of struct allocation %u", *allocation->size.get()); return true; } const char* expr_cstr = JITTemplate(eExprGetOffsetPtr); char buffer[jit_max_expr_size]; // Calculate last element dim_x = dim_x == 0 ? 0 : dim_x - 1; dim_y = dim_y == 0 ? 0 : dim_y - 1; dim_z = dim_z == 0 ? 0 : dim_z - 1; int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z); if (chars_written < 0) { if (log) log->Printf("RenderScriptRuntime::JITAllocationSize - Encoding error in snprintf()"); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("RenderScriptRuntime::JITAllocationSize - Expression too long"); return false; } uint64_t result = 0; if (!EvalRSExpression(buffer, frame_ptr, &result)) return false; addr_t mem_ptr = static_cast(result); // Find pointer to last element and add on size of an element allocation->size = static_cast(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get(); return true; } // JITs the RS runtime for information about the stride between rows in the allocation. // This is done to detect padding, since allocated memory is 16-byte aligned. // Returns true on success, false otherwise bool RenderScriptRuntime::JITAllocationStride(AllocationDetails* allocation, StackFrame* frame_ptr) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!allocation->address.isValid() || !allocation->data_ptr.isValid()) { if (log) log->Printf("RenderScriptRuntime::JITAllocationStride - Failed to find allocation details"); return false; } const char* expr_cstr = JITTemplate(eExprGetOffsetPtr); char buffer[jit_max_expr_size]; int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0); if (chars_written < 0) { if (log) log->Printf("RenderScriptRuntime::JITAllocationStride - Encoding error in snprintf()"); return false; } else if (chars_written >= jit_max_expr_size) { if (log) log->Printf("RenderScriptRuntime::JITAllocationStride - Expression too long"); return false; } uint64_t result = 0; if (!EvalRSExpression(buffer, frame_ptr, &result)) return false; addr_t mem_ptr = static_cast(result); allocation->stride = static_cast(mem_ptr - *allocation->data_ptr.get()); return true; } // JIT all the current runtime info regarding an allocation bool RenderScriptRuntime::RefreshAllocation(AllocationDetails* allocation, StackFrame* frame_ptr) { // GetOffsetPointer() if (!JITDataPointer(allocation, frame_ptr)) return false; // rsaAllocationGetType() if (!JITTypePointer(allocation, frame_ptr)) return false; // rsaTypeGetNativeData() if (!JITTypePacked(allocation, frame_ptr)) return false; // rsaElementGetNativeData() if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr)) return false; // Sets the datum_size member in Element SetElementSize(allocation->element); // Use GetOffsetPointer() to infer size of the allocation if (!JITAllocationSize(allocation, frame_ptr)) return false; return true; } // Function attempts to set the type_name member of the paramaterised Element object. // This string should be the name of the struct type the Element represents. // We need this string for pretty printing the Element to users. void RenderScriptRuntime::FindStructTypeName(Element& elem, StackFrame* frame_ptr) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (!elem.type_name.IsEmpty()) // Name already set return; else elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed // Find all the global variables from the script rs modules VariableList variable_list; for (auto module_sp : m_rsmodules) module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list); // Iterate over all the global variables looking for one with a matching type to the Element. // We make the assumption a match exists since there needs to be a global variable to reflect the // struct type back into java host code. for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index) { const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index)); if (!var_sp) continue; ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); if (!valobj_sp) continue; // Find the number of variable fields. // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for. // Don't check for equality since RS can add extra struct members for padding. size_t num_children = valobj_sp->GetNumChildren(); if (num_children > elem.children.size() || num_children == 0) continue; // Iterate over children looking for members with matching field names. // If all the field names match, this is likely the struct we want. // // TODO: This could be made more robust by also checking children data sizes, or array size bool found = true; for (size_t child_index = 0; child_index < num_children; ++child_index) { ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true); if (!child || (child->GetName() != elem.children[child_index].type_name)) { found = false; break; } } // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+' if (found && num_children < elem.children.size()) { const unsigned int size_diff = elem.children.size() - num_children; if (log) log->Printf("RenderScriptRuntime::FindStructTypeName - %u padding struct entries", size_diff); for (unsigned int padding_index = 0; padding_index < size_diff; ++padding_index) { const ConstString& name = elem.children[num_children + padding_index].type_name; if (strcmp(name.AsCString(), "#rs_padding") < 0) found = false; } } // We've found a global var with matching type if (found) { // Dereference since our Element type isn't a pointer. if (valobj_sp->IsPointerType()) { Error err; ValueObjectSP deref_valobj = valobj_sp->Dereference(err); if (!err.Fail()) valobj_sp = deref_valobj; } // Save name of variable in Element. elem.type_name = valobj_sp->GetTypeName(); if (log) log->Printf("RenderScriptRuntime::FindStructTypeName - Element name set to %s", elem.type_name.AsCString()); return; } } } // Function sets the datum_size member of Element. Representing the size of a single instance including padding. // Assumes the relevant allocation information has already been jitted. void RenderScriptRuntime::SetElementSize(Element& elem) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); const Element::DataType type = *elem.type.get(); assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); const unsigned int vec_size = *elem.type_vec_size.get(); unsigned int data_size = 0; unsigned int padding = 0; // Element is of a struct type, calculate size recursively. if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { for (Element& child : elem.children) { SetElementSize(child); const unsigned int array_size = child.array_size.isValid() ? *child.array_size.get() : 1; data_size += *child.datum_size.get() * array_size; } } else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || type == Element::RS_TYPE_UNSIGNED_4_4_4_4) // These have been packed already { data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; } else if (type < Element::RS_TYPE_ELEMENT) { data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; if (vec_size == 3) padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; } else data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); elem.padding = padding; elem.datum_size = data_size + padding; if (log) log->Printf("RenderScriptRuntime::SetElementSize - element size set to %u", data_size + padding); } // Given an allocation, this function copies the allocation contents from device into a buffer on the heap. // Returning a shared pointer to the buffer containing the data. std::shared_ptr RenderScriptRuntime::GetAllocationData(AllocationDetails* allocation, StackFrame* frame_ptr) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); // JIT all the allocation details if (allocation->shouldRefresh()) { if (log) log->Printf("RenderScriptRuntime::GetAllocationData - Allocation details not calculated yet, jitting info"); if (!RefreshAllocation(allocation, frame_ptr)) { if (log) log->Printf("RenderScriptRuntime::GetAllocationData - Couldn't JIT allocation details"); return nullptr; } } assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() && allocation->element.type_vec_size.isValid() && allocation->size.isValid() && "Allocation information not available"); // Allocate a buffer to copy data into const unsigned int size = *allocation->size.get(); std::shared_ptr buffer(new uint8_t[size]); if (!buffer) { if (log) log->Printf("RenderScriptRuntime::GetAllocationData - Couldn't allocate a %u byte buffer", size); return nullptr; } // Read the inferior memory Error error; lldb::addr_t data_ptr = *allocation->data_ptr.get(); GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error); if (error.Fail()) { if (log) log->Printf("RenderScriptRuntime::GetAllocationData - '%s' Couldn't read %u bytes of allocation data from 0x%" PRIx64, error.AsCString(), size, data_ptr); return nullptr; } return buffer; } // Function copies data from a binary file into an allocation. // There is a header at the start of the file, FileHeader, before the data content itself. // Information from this header is used to display warnings to the user about incompatabilities bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char* filename, StackFrame* frame_ptr) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); // Find allocation with the given id AllocationDetails* alloc = FindAllocByID(strm, alloc_id); if (!alloc) return false; if (log) log->Printf("RenderScriptRuntime::LoadAllocation - Found allocation 0x%" PRIx64, *alloc->address.get()); // JIT all the allocation details if (alloc->shouldRefresh()) { if (log) log->Printf("RenderScriptRuntime::LoadAllocation - Allocation details not calculated yet, jitting info"); if (!RefreshAllocation(alloc, frame_ptr)) { if (log) log->Printf("RenderScriptRuntime::LoadAllocation - Couldn't JIT allocation details"); return false; } } assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available"); // Check we can read from file FileSpec file(filename, true); if (!file.Exists()) { strm.Printf("Error: File %s does not exist", filename); strm.EOL(); return false; } if (!file.Readable()) { strm.Printf("Error: File %s does not have readable permissions", filename); strm.EOL(); return false; } // Read file into data buffer DataBufferSP data_sp(file.ReadFileContents()); // Cast start of buffer to FileHeader and use pointer to read metadata void* file_buffer = data_sp->GetBytes(); if (file_buffer == NULL || data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader))) { strm.Printf("Error: File %s does not contain enough data for header", filename); strm.EOL(); return false; } const AllocationDetails::FileHeader* file_header = static_cast(file_buffer); // Check file starts with ascii characters "RSAD" if (file_header->ident[0] != 'R' || file_header->ident[1] != 'S' || file_header->ident[2] != 'A' || file_header->ident[3] != 'D') { strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?"); strm.EOL(); return false; } // Look at the type of the root element in the header AllocationDetails::ElementHeader root_element_header; memcpy(&root_element_header, static_cast(file_buffer) + sizeof(AllocationDetails::FileHeader), sizeof(AllocationDetails::ElementHeader)); if (log) log->Printf("RenderScriptRuntime::LoadAllocation - header type %u, element size %u", root_element_header.type, root_element_header.element_size); // Check if the target allocation and file both have the same number of bytes for an Element if (*alloc->element.datum_size.get() != root_element_header.element_size) { strm.Printf("Warning: Mismatched Element sizes - file %u bytes, allocation %u bytes", root_element_header.element_size, *alloc->element.datum_size.get()); strm.EOL(); } // Check if the target allocation and file both have the same type const unsigned int alloc_type = static_cast(*alloc->element.type.get()); const unsigned int file_type = root_element_header.type; if (file_type > Element::RS_TYPE_FONT) { strm.Printf("Warning: File has unknown allocation type"); strm.EOL(); } else if (alloc_type != file_type) { // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array unsigned int printable_target_type_index = alloc_type; unsigned int printable_head_type_index = file_type; if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT) printable_target_type_index = static_cast( (alloc_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 1); if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT) printable_head_type_index = static_cast( (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 1); const char* file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0]; const char* target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0]; strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr, target_type_cstr); strm.EOL(); } // Advance buffer past header file_buffer = static_cast(file_buffer) + file_header->hdr_size; // Calculate size of allocation data in file size_t length = data_sp->GetByteSize() - file_header->hdr_size; // Check if the target allocation and file both have the same total data size. const unsigned int alloc_size = *alloc->size.get(); if (alloc_size != length) { strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%x bytes", (uint64_t) length, alloc_size); strm.EOL(); length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum } // Copy file data from our buffer into the target allocation. lldb::addr_t alloc_data = *alloc->data_ptr.get(); Error error; size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error); if (!error.Success() || bytes_written != length) { strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString()); strm.EOL(); return false; } strm.Printf("Contents of file '%s' read into allocation %u", filename, alloc->id); strm.EOL(); return true; } // Function takes as parameters a byte buffer, which will eventually be written to file as the element header, // an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset. // Return value is the new offset after writing the element into the buffer. // Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's children. size_t RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr header_buffer, size_t offset, const Element& elem) { // File struct for an element header with all the relevant details copied from elem. // We assume members are valid already. AllocationDetails::ElementHeader elem_header; elem_header.type = *elem.type.get(); elem_header.kind = *elem.type_kind.get(); elem_header.element_size = *elem.datum_size.get(); elem_header.vector_size = *elem.type_vec_size.get(); elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0; const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); // Copy struct into buffer and advance offset // We assume that header_buffer has been checked for NULL before this method is called memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); offset += elem_header_size; // Starting offset of child ElementHeader struct size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t)); for (const RenderScriptRuntime::Element& child : elem.children) { // Recursively populate the buffer with the element header structs of children. // Then save the offsets where they were set after the parent element header. memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); offset += sizeof(uint32_t); child_offset = PopulateElementHeaders(header_buffer, child_offset, child); } // Zero indicates no more children memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); return child_offset; } // Given an Element object this function returns the total size needed in the file header to store the element's details. // Taking into account the size of the element header struct, plus the offsets to all the element's children. // Function is recursive so that the size of all ancestors is taken into account. size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element& elem) { size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator size += sizeof(AllocationDetails::ElementHeader); // Size of header struct with type details // Calculate recursively for all descendants for (const Element& child : elem.children) size += CalculateElementHeaderSize(child); return size; } // Function copies allocation contents into a binary file. // This file can then be loaded later into a different allocation. // There is a header, FileHeader, before the allocation data containing meta-data. bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char* filename, StackFrame* frame_ptr) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); // Find allocation with the given id AllocationDetails* alloc = FindAllocByID(strm, alloc_id); if (!alloc) return false; if (log) log->Printf("RenderScriptRuntime::SaveAllocation - Found allocation 0x%" PRIx64, *alloc->address.get()); // JIT all the allocation details if (alloc->shouldRefresh()) { if (log) log->Printf("RenderScriptRuntime::SaveAllocation - Allocation details not calculated yet, jitting info"); if (!RefreshAllocation(alloc, frame_ptr)) { if (log) log->Printf("RenderScriptRuntime::SaveAllocation - Couldn't JIT allocation details"); return false; } } assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() && "Allocation information not available"); // Check we can create writable file FileSpec file_spec(filename, true); File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate); if (!file) { strm.Printf("Error: Failed to open '%s' for writing", filename); strm.EOL(); return false; } // Read allocation into buffer of heap memory const std::shared_ptr buffer = GetAllocationData(alloc, frame_ptr); if (!buffer) { strm.Printf("Error: Couldn't read allocation data into buffer"); strm.EOL(); return false; } // Create the file header AllocationDetails::FileHeader head; head.ident[0] = 'R'; head.ident[1] = 'S'; head.ident[2] = 'A'; head.ident[3] = 'D'; head.dims[0] = static_cast(alloc->dimension.get()->dim_1); head.dims[1] = static_cast(alloc->dimension.get()->dim_2); head.dims[2] = static_cast(alloc->dimension.get()->dim_3); const size_t element_header_size = CalculateElementHeaderSize(alloc->element); assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large"); head.hdr_size = static_cast(sizeof(AllocationDetails::FileHeader) + element_header_size); // Write the file header size_t num_bytes = sizeof(AllocationDetails::FileHeader); if (log) log->Printf("RenderScriptRuntime::SaveAllocation - Writing File Header, 0x%zX bytes", num_bytes); Error err = file.Write(&head, num_bytes); if (!err.Success()) { strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); strm.EOL(); return false; } // Create the headers describing the element type of the allocation. std::shared_ptr element_header_buffer(new uint8_t[element_header_size]); if (element_header_buffer == nullptr) { strm.Printf("Internal Error: Couldn't allocate %zu bytes on the heap", element_header_size); strm.EOL(); return false; } PopulateElementHeaders(element_header_buffer, 0, alloc->element); // Write headers for allocation element type to file num_bytes = element_header_size; if (log) log->Printf("RenderScriptRuntime::SaveAllocation - Writing Element Headers, 0x%zX bytes", num_bytes); err = file.Write(element_header_buffer.get(), num_bytes); if (!err.Success()) { strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); strm.EOL(); return false; } // Write allocation data to file num_bytes = static_cast(*alloc->size.get()); if (log) log->Printf("RenderScriptRuntime::SaveAllocation - Writing 0x%zX bytes", num_bytes); err = file.Write(buffer.get(), num_bytes); if (!err.Success()) { strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); strm.EOL(); return false; } strm.Printf("Allocation written to file '%s'", filename); strm.EOL(); return true; } bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); if (module_sp) { for (const auto &rs_module : m_rsmodules) { if (rs_module->m_module == module_sp) { // Check if the user has enabled automatically breaking on // all RS kernels. if (m_breakAllKernels) BreakOnModuleKernels(rs_module); return false; } } bool module_loaded = false; switch (GetModuleKind(module_sp)) { case eModuleKindKernelObj: { RSModuleDescriptorSP module_desc; module_desc.reset(new RSModuleDescriptor(module_sp)); if (module_desc->ParseRSInfo()) { m_rsmodules.push_back(module_desc); module_loaded = true; } if (module_loaded) { FixupScriptDetails(module_desc); } break; } case eModuleKindDriver: { if (!m_libRSDriver) { m_libRSDriver = module_sp; LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); } break; } case eModuleKindImpl: { m_libRSCpuRef = module_sp; break; } case eModuleKindLibRS: { if (!m_libRS) { m_libRS = module_sp; static ConstString gDbgPresentStr("gDebuggerPresent"); const Symbol* debug_present = m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData); if (debug_present) { Error error; uint32_t flag = 0x00000001U; Target &target = GetProcess()->GetTarget(); addr_t addr = debug_present->GetLoadAddress(&target); GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error); if(error.Success()) { if (log) log->Printf ("RenderScriptRuntime::LoadModule - Debugger present flag set on debugee"); m_debuggerPresentFlagged = true; } else if (log) { log->Printf ("RenderScriptRuntime::LoadModule - Error writing debugger present flags '%s' ", error.AsCString()); } } else if (log) { log->Printf ("RenderScriptRuntime::LoadModule - Error writing debugger present flags - symbol not found"); } } break; } default: break; } if (module_loaded) Update(); return module_loaded; } return false; } void RenderScriptRuntime::Update() { if (m_rsmodules.size() > 0) { if (!m_initiated) { Initiate(); } } } // The maximum line length of an .rs.info packet #define MAXLINE 500 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed. // The string is basic and is parsed on a line by line basis. bool RSModuleDescriptor::ParseRSInfo() { const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); if (info_sym) { const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); const addr_t size = info_sym->GetByteSize(); const FileSpec fs = m_module->GetFileSpec(); DataBufferSP buffer = fs.ReadFileContents(addr, size); if (!buffer) return false; std::string info((const char *)buffer->GetBytes()); std::vector info_lines; size_t lpos = info.find('\n'); while (lpos != std::string::npos) { info_lines.push_back(info.substr(0, lpos)); info = info.substr(lpos + 1); lpos = info.find('\n'); } size_t offset = 0; while (offset < info_lines.size()) { std::string line = info_lines[offset]; // Parse directives uint32_t numDefns = 0; if (sscanf(line.c_str(), "exportVarCount: %u", &numDefns) == 1) { while (numDefns--) m_globals.push_back(RSGlobalDescriptor(this, info_lines[++offset].c_str())); } else if (sscanf(line.c_str(), "exportFuncCount: %u", &numDefns) == 1) { } else if (sscanf(line.c_str(), "exportForEachCount: %u", &numDefns) == 1) { char name[MAXLINE]; while (numDefns--) { uint32_t slot = 0; name[0] = '\0'; if (sscanf(info_lines[++offset].c_str(), "%u - %s", &slot, &name[0]) == 2) { m_kernels.push_back(RSKernelDescriptor(this, name, slot)); } } } else if (sscanf(line.c_str(), "pragmaCount: %u", &numDefns) == 1) { char name[MAXLINE]; char value[MAXLINE]; while (numDefns--) { name[0] = '\0'; value[0] = '\0'; if (sscanf(info_lines[++offset].c_str(), "%s - %s", &name[0], &value[0]) != 0 && (name[0] != '\0')) { m_pragmas[std::string(name)] = value; } } } else if (sscanf(line.c_str(), "objectSlotCount: %u", &numDefns) == 1) { } offset++; } return m_kernels.size() > 0; } return false; } bool RenderScriptRuntime::ProbeModules(const ModuleList module_list) { bool rs_found = false; size_t num_modules = module_list.GetSize(); for (size_t i = 0; i < num_modules; i++) { auto module = module_list.GetModuleAtIndex(i); rs_found |= LoadModule(module); } return rs_found; } void RenderScriptRuntime::Status(Stream &strm) const { if (m_libRS) { strm.Printf("Runtime Library discovered."); strm.EOL(); } if (m_libRSDriver) { strm.Printf("Runtime Driver discovered."); strm.EOL(); } if (m_libRSCpuRef) { strm.Printf("CPU Reference Implementation discovered."); strm.EOL(); } if (m_runtimeHooks.size()) { strm.Printf("Runtime functions hooked:"); strm.EOL(); for (auto b : m_runtimeHooks) { strm.Indent(b.second->defn->name); strm.EOL(); } } else { strm.Printf("Runtime is not hooked."); strm.EOL(); } } void RenderScriptRuntime::DumpContexts(Stream &strm) const { strm.Printf("Inferred RenderScript Contexts:"); strm.EOL(); strm.IndentMore(); std::map contextReferences; // Iterate over all of the currently discovered scripts. // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script. for (const auto & script : m_scripts) { if (!script->context.isValid()) continue; lldb::addr_t context = *script->context; if (contextReferences.find(context) != contextReferences.end()) { contextReferences[context]++; } else { contextReferences[context] = 1; } } for (const auto& cRef : contextReferences) { strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second); strm.EOL(); } strm.IndentLess(); } void RenderScriptRuntime::DumpKernels(Stream &strm) const { strm.Printf("RenderScript Kernels:"); strm.EOL(); strm.IndentMore(); for (const auto &module : m_rsmodules) { strm.Printf("Resource '%s':",module->m_resname.c_str()); strm.EOL(); for (const auto &kernel : module->m_kernels) { strm.Indent(kernel.m_name.AsCString()); strm.EOL(); } } strm.IndentLess(); } RenderScriptRuntime::AllocationDetails* RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { AllocationDetails* alloc = nullptr; // See if we can find allocation using id as an index; if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id-1]->id == alloc_id) { alloc = m_allocations[alloc_id-1].get(); return alloc; } // Fallback to searching for (const auto & a : m_allocations) { if (a->id == alloc_id) { alloc = a.get(); break; } } if (alloc == nullptr) { strm.Printf("Error: Couldn't find allocation with id matching %u", alloc_id); strm.EOL(); } return alloc; } // Prints the contents of an allocation to the output stream, which may be a file bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame* frame_ptr, const uint32_t id) { Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); // Check we can find the desired allocation AllocationDetails* alloc = FindAllocByID(strm, id); if (!alloc) return false; // FindAllocByID() will print error message for us here if (log) log->Printf("RenderScriptRuntime::DumpAllocation - Found allocation 0x%" PRIx64, *alloc->address.get()); // Check we have information about the allocation, if not calculate it if (alloc->shouldRefresh()) { if (log) log->Printf("RenderScriptRuntime::DumpAllocation - Allocation details not calculated yet, jitting info"); // JIT all the allocation information if (!RefreshAllocation(alloc, frame_ptr)) { strm.Printf("Error: Couldn't JIT allocation details"); strm.EOL(); return false; } } // Establish format and size of each data element const unsigned int vec_size = *alloc->element.type_vec_size.get(); const Element::DataType type = *alloc->element.type.get(); assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); lldb::Format format; if (type >= Element::RS_TYPE_ELEMENT) format = eFormatHex; else format = vec_size == 1 ? static_cast(AllocationDetails::RSTypeToFormat[type][eFormatSingle]) : static_cast(AllocationDetails::RSTypeToFormat[type][eFormatVector]); const unsigned int data_size = *alloc->element.datum_size.get(); if (log) log->Printf("RenderScriptRuntime::DumpAllocation - Element size %u bytes, including padding", data_size); // Allocate a buffer to copy data into std::shared_ptr buffer = GetAllocationData(alloc, frame_ptr); if (!buffer) { strm.Printf("Error: Couldn't read allocation data"); strm.EOL(); return false; } // Calculate stride between rows as there may be padding at end of rows since // allocated memory is 16-byte aligned if (!alloc->stride.isValid()) { if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension alloc->stride = 0; else if (!JITAllocationStride(alloc, frame_ptr)) { strm.Printf("Error: Couldn't calculate allocation row stride"); strm.EOL(); return false; } } const unsigned int stride = *alloc->stride.get(); const unsigned int size = *alloc->size.get(); // Size of whole allocation const unsigned int padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; if (log) log->Printf("RenderScriptRuntime::DumpAllocation - stride %u bytes, size %u bytes, padding %u", stride, size, padding); // Find dimensions used to index loops, so need to be non-zero unsigned int dim_x = alloc->dimension.get()->dim_1; dim_x = dim_x == 0 ? 1 : dim_x; unsigned int dim_y = alloc->dimension.get()->dim_2; dim_y = dim_y == 0 ? 1 : dim_y; unsigned int dim_z = alloc->dimension.get()->dim_3; dim_z = dim_z == 0 ? 1 : dim_z; // Use data extractor to format output const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize); unsigned int offset = 0; // Offset in buffer to next element to be printed unsigned int prev_row = 0; // Offset to the start of the previous row // Iterate over allocation dimensions, printing results to user strm.Printf("Data (X, Y, Z):"); for (unsigned int z = 0; z < dim_z; ++z) { for (unsigned int y = 0; y < dim_y; ++y) { // Use stride to index start of next row. if (!(y==0 && z==0)) offset = prev_row + stride; prev_row = offset; // Print each element in the row individually for (unsigned int x = 0; x < dim_x; ++x) { strm.Printf("\n(%u, %u, %u) = ", x, y, z); if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) && (alloc->element.type_name != Element::GetFallbackStructName())) { // Here we are dumping an Element of struct type. // This is done using expression evaluation with the name of the struct type and pointer to element. // Don't print the name of the resulting expression, since this will be '$[0-9]+' DumpValueObjectOptions expr_options; expr_options.SetHideName(true); // Setup expression as derefrencing a pointer cast to element address. char expr_char_buffer[jit_max_expr_size]; int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset); if (chars_written < 0 || chars_written >= jit_max_expr_size) { if (log) log->Printf("RenderScriptRuntime::DumpAllocation- Error in snprintf()"); continue; } // Evaluate expression ValueObjectSP expr_result; GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result); // Print the results to our stream. expr_result->Dump(strm, expr_options); } else { alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0); } offset += data_size; } } } strm.EOL(); return true; } // Prints infomation regarding all the currently loaded allocations. // These details are gathered by jitting the runtime, which has as latency. void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame* frame_ptr, bool recompute) { strm.Printf("RenderScript Allocations:"); strm.EOL(); strm.IndentMore(); for (auto &alloc : m_allocations) { // JIT the allocation info if we haven't done it, or the user forces us to. bool do_refresh = alloc->shouldRefresh() || recompute; // JIT current allocation information if (do_refresh && !RefreshAllocation(alloc.get(), frame_ptr)) { strm.Printf("Error: Couldn't evaluate details for allocation %u\n", alloc->id); continue; } strm.Printf("%u:\n",alloc->id); strm.IndentMore(); strm.Indent("Context: "); if (!alloc->context.isValid()) strm.Printf("unknown\n"); else strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); strm.Indent("Address: "); if (!alloc->address.isValid()) strm.Printf("unknown\n"); else strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); strm.Indent("Data pointer: "); if (!alloc->data_ptr.isValid()) strm.Printf("unknown\n"); else strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); strm.Indent("Dimensions: "); if (!alloc->dimension.isValid()) strm.Printf("unknown\n"); else strm.Printf("(%d, %d, %d)\n", alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3); strm.Indent("Data Type: "); if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid()) strm.Printf("unknown\n"); else { const int vector_size = *alloc->element.type_vec_size.get(); Element::DataType type = *alloc->element.type.get(); if (!alloc->element.type_name.IsEmpty()) strm.Printf("%s\n", alloc->element.type_name.AsCString()); else { // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) type = static_cast((type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 1); if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / sizeof(AllocationDetails::RsDataTypeToString[0])) || vector_size > 4 || vector_size < 1) strm.Printf("invalid type\n"); else strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast(type)][vector_size-1]); } } strm.Indent("Data Kind: "); if (!alloc->element.type_kind.isValid()) strm.Printf("unknown\n"); else { const Element::DataKind kind = *alloc->element.type_kind.get(); if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) strm.Printf("invalid kind\n"); else strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast(kind)]); } strm.EOL(); strm.IndentLess(); } strm.IndentLess(); } // Set breakpoints on every kernel found in RS module void RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp) { for (const auto &kernel : rsmodule_sp->m_kernels) { // Don't set breakpoint on 'root' kernel if (strcmp(kernel.m_name.AsCString(), "root") == 0) continue; CreateKernelBreakpoint(kernel.m_name); } } // Method is internally called by the 'kernel breakpoint all' command to // enable or disable breaking on all kernels. // // When do_break is true we want to enable this functionality. // When do_break is false we want to disable it. void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); InitSearchFilter(target); // Set breakpoints on all the kernels if (do_break && !m_breakAllKernels) { m_breakAllKernels = true; for (const auto &module : m_rsmodules) BreakOnModuleKernels(module); if (log) log->Printf("RenderScriptRuntime::SetBreakAllKernels(True)" "- breakpoints set on all currently loaded kernels"); } else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels. { m_breakAllKernels = false; if (log) log->Printf("RenderScriptRuntime::SetBreakAllKernels(False) - breakpoints no longer automatically set"); } } // Given the name of a kernel this function creates a breakpoint using our // own breakpoint resolver, and returns the Breakpoint shared pointer. BreakpointSP RenderScriptRuntime::CreateKernelBreakpoint(const ConstString& name) { Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); if (!m_filtersp) { if (log) log->Printf("RenderScriptRuntime::CreateKernelBreakpoint - Error: No breakpoint search filter set"); return nullptr; } BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false); // Give RS breakpoints a specific name, so the user can manipulate them as a group. Error err; if (!bp->AddName("RenderScriptKernel", err) && log) log->Printf("RenderScriptRuntime::CreateKernelBreakpoint: Error setting break name, %s", err.AsCString()); return bp; } // Given an expression for a variable this function tries to calculate the variable's value. // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value. // Otherwise function returns false. bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char* var_name, uint64_t& val) { Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); Error error; VariableSP var_sp; // Find variable in stack frame ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(var_name, eNoDynamicValues, StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, var_sp, error)); if (!error.Success()) { if (log) log->Printf("RenderScriptRuntime::GetFrameVarAsUnsigned - Error, couldn't find '%s' in frame", var_name); return false; } // Find the unsigned int value for the variable bool success = false; val = value_sp->GetValueAsUnsigned(0, &success); if (!success) { if (log) log->Printf("RenderScriptRuntime::GetFrameVarAsUnsigned - Error, couldn't parse '%s' as an unsigned int", var_name); return false; } return true; } // Callback when a kernel breakpoint hits and we're looking for a specific coordinate. // Baton parameter contains a pointer to the target coordinate we want to break on. // Function then checks the .expand frame for the current coordinate and breaks to user if it matches. // Parameter 'break_id' is the id of the Breakpoint which made the callback. // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, // a single logical breakpoint can have multiple addresses. bool RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id, user_id_t break_loc_id) { Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); assert(baton && "Error: null baton in conditional kernel breakpoint callback"); // Coordinate we want to stop on const int* target_coord = static_cast(baton); if (log) log->Printf("RenderScriptRuntime::KernelBreakpointHit - Break ID %" PRIu64 ", target coord (%d, %d, %d)", break_id, target_coord[0], target_coord[1], target_coord[2]); // Go up one stack frame to .expand kernel ExecutionContext context(ctx->exe_ctx_ref); ThreadSP thread_sp = context.GetThreadSP(); if (!thread_sp->SetSelectedFrameByIndex(1)) { if (log) log->Printf("RenderScriptRuntime::KernelBreakpointHit - Error, couldn't go up stack frame"); return false; } StackFrameSP frame_sp = thread_sp->GetSelectedFrame(); if (!frame_sp) { if (log) log->Printf("RenderScriptRuntime::KernelBreakpointHit - Error, couldn't select .expand stack frame"); return false; } // Get values for variables in .expand frame that tell us the current kernel invocation const char* coord_expressions[] = {"rsIndex", "p->current.y", "p->current.z"}; uint64_t current_coord[3] = {0, 0, 0}; for(int i = 0; i < 3; ++i) { if (!GetFrameVarAsUnsigned(frame_sp, coord_expressions[i], current_coord[i])) return false; if (log) log->Printf("RenderScriptRuntime::KernelBreakpointHit, %s = %" PRIu64, coord_expressions[i], current_coord[i]); } // Check if the current kernel invocation coordinate matches our target coordinate if (current_coord[0] == static_cast(target_coord[0]) && current_coord[1] == static_cast(target_coord[1]) && current_coord[2] == static_cast(target_coord[2])) { if (log) log->Printf("RenderScriptRuntime::KernelBreakpointHit, BREAKING %" PRIu64 ", %" PRIu64 ", %" PRIu64, current_coord[0], current_coord[1], current_coord[2]); BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id); assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback"); breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once. return true; } // No match on coordinate return false; } // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name. // Argument 'coords', represents a three dimensional coordinate which can be used to specify // a single kernel instance to break on. If this is set then we add a callback to the breakpoint. void RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char* name, const std::array coords, Error& error, TargetSP target) { if (!name) { error.SetErrorString("invalid kernel name"); return; } InitSearchFilter(target); ConstString kernel_name(name); BreakpointSP bp = CreateKernelBreakpoint(kernel_name); // We have a conditional breakpoint on a specific coordinate if (coords[0] != -1) { strm.Printf("Conditional kernel breakpoint on coordinate %d, %d, %d", coords[0], coords[1], coords[2]); strm.EOL(); // Allocate memory for the baton, and copy over coordinate int* baton = new int[3]; baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2]; // Create a callback that will be invoked everytime the breakpoint is hit. // The baton object passed to the handler is the target coordinate we want to break on. bp->SetCallback(KernelBreakpointHit, baton, true); // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction m_conditional_breaks[bp->GetID()] = std::shared_ptr(baton); } if (bp) bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); } void RenderScriptRuntime::DumpModules(Stream &strm) const { strm.Printf("RenderScript Modules:"); strm.EOL(); strm.IndentMore(); for (const auto &module : m_rsmodules) { module->Dump(strm); } strm.IndentLess(); } RenderScriptRuntime::ScriptDetails* RenderScriptRuntime::LookUpScript(addr_t address, bool create) { for (const auto & s : m_scripts) { if (s->script.isValid()) if (*s->script == address) return s.get(); } if (create) { std::unique_ptr s(new ScriptDetails); s->script = address; m_scripts.push_back(std::move(s)); return m_scripts.back().get(); } return nullptr; } RenderScriptRuntime::AllocationDetails* RenderScriptRuntime::LookUpAllocation(addr_t address, bool create) { for (const auto & a : m_allocations) { if (a->address.isValid()) if (*a->address == address) return a.get(); } if (create) { std::unique_ptr a(new AllocationDetails); a->address = address; m_allocations.push_back(std::move(a)); return m_allocations.back().get(); } return nullptr; } void RSModuleDescriptor::Dump(Stream &strm) const { strm.Indent(); m_module->GetFileSpec().Dump(&strm); if(m_module->GetNumCompileUnits()) { strm.Indent("Debug info loaded."); } else { strm.Indent("Debug info does not exist."); } strm.EOL(); strm.IndentMore(); strm.Indent(); strm.Printf("Globals: %" PRIu64, static_cast(m_globals.size())); strm.EOL(); strm.IndentMore(); for (const auto &global : m_globals) { global.Dump(strm); } strm.IndentLess(); strm.Indent(); strm.Printf("Kernels: %" PRIu64, static_cast(m_kernels.size())); strm.EOL(); strm.IndentMore(); for (const auto &kernel : m_kernels) { kernel.Dump(strm); } strm.Printf("Pragmas: %" PRIu64 , static_cast(m_pragmas.size())); strm.EOL(); strm.IndentMore(); for (const auto &key_val : m_pragmas) { strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); strm.EOL(); } strm.IndentLess(4); } void RSGlobalDescriptor::Dump(Stream &strm) const { strm.Indent(m_name.AsCString()); VariableList var_list; m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); if (var_list.GetSize() == 1) { auto var = var_list.GetVariableAtIndex(0); auto type = var->GetType(); if(type) { strm.Printf(" - "); type->DumpTypeName(&strm); } else { strm.Printf(" - Unknown Type"); } } else { strm.Printf(" - variable identified, but not found in binary"); const Symbol* s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData); if (s) { strm.Printf(" (symbol exists) "); } } strm.EOL(); } void RSKernelDescriptor::Dump(Stream &strm) const { strm.Indent(m_name.AsCString()); strm.EOL(); } class CommandObjectRenderScriptRuntimeModuleProbe : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeModuleProbe(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript module probe", "Initiates a Probe of all loaded modules for kernels and other renderscript objects.", "renderscript module probe", eCommandRequiresTarget | eCommandRequiresProcess | eCommandProcessMustBeLaunched) { } ~CommandObjectRenderScriptRuntimeModuleProbe() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc == 0) { Target *target = m_exe_ctx.GetTargetPtr(); RenderScriptRuntime *runtime = (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); auto module_list = target->GetImages(); bool new_rs_details = runtime->ProbeModules(module_list); if (new_rs_details) { result.AppendMessage("New renderscript modules added to runtime model."); } result.SetStatus(eReturnStatusSuccessFinishResult); return true; } result.AppendErrorWithFormat("'%s' takes no arguments", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } }; class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript module dump", "Dumps renderscript specific information for all modules.", "renderscript module dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched) { } ~CommandObjectRenderScriptRuntimeModuleDump() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { RenderScriptRuntime *runtime = (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); runtime->DumpModules(result.GetOutputStream()); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } }; class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { public: CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.", NULL) { LoadSubCommand("probe", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleProbe(interpreter))); LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter))); } ~CommandObjectRenderScriptRuntimeModule() override = default; }; class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript kernel list", "Lists renderscript kernel names and associated script resources.", "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched) { } ~CommandObjectRenderScriptRuntimeKernelList() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { RenderScriptRuntime *runtime = (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); runtime->DumpKernels(result.GetOutputStream()); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } }; class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set", "Sets a breakpoint on a renderscript kernel.", "renderscript kernel breakpoint set [-c x,y,z]", eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused), m_options(interpreter) { } ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; Options* GetOptions() override { return &m_options; } class CommandOptions : public Options { public: CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) { } ~CommandOptions() override = default; Error SetOptionValue(uint32_t option_idx, const char *option_arg) override { Error error; const int short_option = m_getopt_table[option_idx].val; switch (short_option) { case 'c': if (!ParseCoordinate(option_arg)) error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.", option_arg); break; default: error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); break; } return error; } // -c takes an argument of the form 'num[,num][,num]'. // Where 'id_cstr' is this argument with the whitespace trimmed. // Missing coordinates are defaulted to zero. bool ParseCoordinate(const char* id_cstr) { RegularExpression regex; RegularExpression::Match regex_match(3); bool matched = false; if(regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) matched = true; else if(regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) matched = true; else if(regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) matched = true; for(uint32_t i = 0; i < 3; i++) { std::string group; if(regex_match.GetMatchAtIndex(id_cstr, i + 1, group)) m_coord[i] = (uint32_t)strtoul(group.c_str(), NULL, 0); else m_coord[i] = 0; } return matched; } void OptionParsingStarting() override { // -1 means the -c option hasn't been set m_coord[0] = -1; m_coord[1] = -1; m_coord[2] = -1; } const OptionDefinition* GetDefinitions() override { return g_option_table; } static OptionDefinition g_option_table[]; std::array m_coord; }; bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc < 1) { result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } RenderScriptRuntime *runtime = (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); Error error; runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord, error, m_exe_ctx.GetTargetSP()); if (error.Success()) { result.AppendMessage("Breakpoint(s) created"); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } result.SetStatus(eReturnStatusFailed); result.AppendErrorWithFormat("Error: %s", error.AsCString()); return false; } private: CommandOptions m_options; }; OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = { { LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeValue, "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n" "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. " "Any unset dimensions will be defaulted to zero."}, { 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL } }; class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript kernel breakpoint all", "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n" "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, " "but does not remove currently set breakpoints.", "renderscript kernel breakpoint all ", eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) { } ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc != 1) { result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } RenderScriptRuntime *runtime = static_cast(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); bool do_break = false; const char* argument = command.GetArgumentAtIndex(0); if (strcmp(argument, "enable") == 0) { do_break = true; result.AppendMessage("Breakpoints will be set on all kernels."); } else if (strcmp(argument, "disable") == 0) { do_break = false; result.AppendMessage("Breakpoints will not be set on any new kernels."); } else { result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'"); result.SetStatus(eReturnStatusFailed); return false; } runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } }; class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword { public: CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter) : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that generate breakpoints on renderscript kernels.", nullptr) { LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter))); LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter))); } ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; }; class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { public: CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.", NULL) { LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter))); LoadSubCommand("breakpoint", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); } ~CommandObjectRenderScriptRuntimeKernel() override = default; }; class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.", "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched) { } ~CommandObjectRenderScriptRuntimeContextDump() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { RenderScriptRuntime *runtime = (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); runtime->DumpContexts(result.GetOutputStream()); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } }; class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { public: CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.", NULL) { LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter))); } ~CommandObjectRenderScriptRuntimeContext() override = default; }; class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript allocation dump", "Displays the contents of a particular allocation", "renderscript allocation dump ", eCommandRequiresProcess | eCommandProcessMustBeLaunched), m_options(interpreter) { } ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; Options* GetOptions() override { return &m_options; } class CommandOptions : public Options { public: CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) { } ~CommandOptions() override = default; Error SetOptionValue(uint32_t option_idx, const char *option_arg) override { Error error; const int short_option = m_getopt_table[option_idx].val; switch (short_option) { case 'f': m_outfile.SetFile(option_arg, true); if (m_outfile.Exists()) { m_outfile.Clear(); error.SetErrorStringWithFormat("file already exists: '%s'", option_arg); } break; default: error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); break; } return error; } void OptionParsingStarting() override { m_outfile.Clear(); } const OptionDefinition* GetDefinitions() override { return g_option_table; } static OptionDefinition g_option_table[]; FileSpec m_outfile; }; bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc < 1) { result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } RenderScriptRuntime *runtime = static_cast(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); const char* id_cstr = command.GetArgumentAtIndex(0); bool convert_complete = false; const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); if (!convert_complete) { result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); result.SetStatus(eReturnStatusFailed); return false; } Stream* output_strm = nullptr; StreamFile outfile_stream; const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead if (outfile_spec) { // Open output file char path[256]; outfile_spec.GetPath(path, sizeof(path)); if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success()) { output_strm = &outfile_stream; result.GetOutputStream().Printf("Results written to '%s'", path); result.GetOutputStream().EOL(); } else { result.AppendErrorWithFormat("Couldn't open file '%s'", path); result.SetStatus(eReturnStatusFailed); return false; } } else output_strm = &result.GetOutputStream(); assert(output_strm != nullptr); bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); if (success) result.SetStatus(eReturnStatusSuccessFinishResult); else result.SetStatus(eReturnStatusFailed); return true; } private: CommandOptions m_options; }; OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = { { LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeFilename, "Print results to specified file instead of command line."}, { 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL } }; class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript allocation list", "List renderscript allocations and their information.", "renderscript allocation list", eCommandRequiresProcess | eCommandProcessMustBeLaunched), m_options(interpreter) { } ~CommandObjectRenderScriptRuntimeAllocationList() override = default; Options* GetOptions() override { return &m_options; } class CommandOptions : public Options { public: CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_refresh(false) { } ~CommandOptions() override = default; Error SetOptionValue(uint32_t option_idx, const char *option_arg) override { Error error; const int short_option = m_getopt_table[option_idx].val; switch (short_option) { case 'r': m_refresh = true; break; default: error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); break; } return error; } void OptionParsingStarting() override { m_refresh = false; } const OptionDefinition* GetDefinitions() override { return g_option_table; } static OptionDefinition g_option_table[]; bool m_refresh; }; bool DoExecute(Args &command, CommandReturnObject &result) override { RenderScriptRuntime *runtime = static_cast(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_refresh); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } private: CommandOptions m_options; }; OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = { { LLDB_OPT_SET_1, false, "refresh", 'r', OptionParser::eNoArgument, NULL, NULL, 0, eArgTypeNone, "Recompute allocation details."}, { 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL } }; class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.", "renderscript allocation load ", eCommandRequiresProcess | eCommandProcessMustBeLaunched) { } ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc != 2) { result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } RenderScriptRuntime *runtime = static_cast(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); const char* id_cstr = command.GetArgumentAtIndex(0); bool convert_complete = false; const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); if (!convert_complete) { result.AppendErrorWithFormat ("invalid allocation id argument '%s'", id_cstr); result.SetStatus (eReturnStatusFailed); return false; } const char* filename = command.GetArgumentAtIndex(1); bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); if (success) result.SetStatus(eReturnStatusSuccessFinishResult); else result.SetStatus(eReturnStatusFailed); return true; } }; class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.", "renderscript allocation save ", eCommandRequiresProcess | eCommandProcessMustBeLaunched) { } ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc != 2) { result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } RenderScriptRuntime *runtime = static_cast(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); const char* id_cstr = command.GetArgumentAtIndex(0); bool convert_complete = false; const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); if (!convert_complete) { result.AppendErrorWithFormat ("invalid allocation id argument '%s'", id_cstr); result.SetStatus (eReturnStatusFailed); return false; } const char* filename = command.GetArgumentAtIndex(1); bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); if (success) result.SetStatus(eReturnStatusSuccessFinishResult); else result.SetStatus(eReturnStatusFailed); return true; } }; class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword { public: CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) : CommandObjectMultiword(interpreter, "renderscript allocation", "Commands that deal with renderscript allocations.", NULL) { LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); } ~CommandObjectRenderScriptRuntimeAllocation() override = default; }; class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { public: CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "renderscript status", "Displays current renderscript runtime status.", "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched) { } ~CommandObjectRenderScriptRuntimeStatus() override = default; bool DoExecute(Args &command, CommandReturnObject &result) override { RenderScriptRuntime *runtime = (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); runtime->Status(result.GetOutputStream()); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } }; class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { public: CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) : CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.", "renderscript []") { LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter))); LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter))); LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter))); LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter))); LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter))); } ~CommandObjectRenderScriptRuntime() override = default; }; void RenderScriptRuntime::Initiate() { assert(!m_initiated); } RenderScriptRuntime::RenderScriptRuntime(Process *process) : lldb_private::CPPLanguageRuntime(process), m_initiated(false), m_debuggerPresentFlagged(false), m_breakAllKernels(false) { ModulesDidLoad(process->GetTarget().GetImages()); } lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter& interpreter) { static CommandObjectSP command_object; if(!command_object) { command_object.reset(new CommandObjectRenderScriptRuntime(interpreter)); } return command_object; } RenderScriptRuntime::~RenderScriptRuntime() = default;