.\" Copyright (c) 2000-2001 John H. Baldwin .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY EXPRESS OR .\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES .\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. .\" IN NO EVENT SHALL THE DEVELOPERS BE LIABLE FOR ANY DIRECT, INDIRECT, .\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT .\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, .\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY .\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF .\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. .\" .\" $FreeBSD$ .\" .Dd August 14, 2015 .Dt ATOMIC 9 .Os .Sh NAME .Nm atomic_add , .Nm atomic_clear , .Nm atomic_cmpset , .Nm atomic_fetchadd , .Nm atomic_load , .Nm atomic_readandclear , .Nm atomic_set , .Nm atomic_subtract , .Nm atomic_store .Nd atomic operations .Sh SYNOPSIS .In sys/types.h .In machine/atomic.h .Ft void .Fn atomic_add_[acq_|rel_] "volatile *p" " v" .Ft void .Fn atomic_clear_[acq_|rel_] "volatile *p" " v" .Ft int .Fo atomic_cmpset_[acq_|rel_] .Fa "volatile *dst" .Fa " old" .Fa " new" .Fc .Ft .Fn atomic_fetchadd_ "volatile *p" " v" .Ft .Fn atomic_load_acq_ "volatile *p" .Ft .Fn atomic_readandclear_ "volatile *p" .Ft void .Fn atomic_set_[acq_|rel_] "volatile *p" " v" .Ft void .Fn atomic_subtract_[acq_|rel_] "volatile *p" " v" .Ft void .Fn atomic_store_rel_ "volatile *p" " v" .Ft .Fn atomic_swap_ "volatile *p" " v" .Ft int .Fn atomic_testandset_ "volatile *p" "u_int v" .Sh DESCRIPTION Each of the atomic operations is guaranteed to be atomic across multiple threads and in the presence of interrupts. They can be used to implement reference counts or as building blocks for more advanced synchronization primitives such as mutexes. .Ss Types Each atomic operation operates on a specific .Fa type . The type to use is indicated in the function name. The available types that can be used are: .Pp .Bl -tag -offset indent -width short -compact .It Li int unsigned integer .It Li long unsigned long integer .It Li ptr unsigned integer the size of a pointer .It Li 32 unsigned 32-bit integer .It Li 64 unsigned 64-bit integer .El .Pp For example, the function to atomically add two integers is called .Fn atomic_add_int . .Pp Certain architectures also provide operations for types smaller than .Dq Li int . .Pp .Bl -tag -offset indent -width short -compact .It Li char unsigned character .It Li short unsigned short integer .It Li 8 unsigned 8-bit integer .It Li 16 unsigned 16-bit integer .El .Pp These must not be used in MI code because the instructions to implement them efficiently might not be available. .Ss Acquire and Release Operations By default, a thread's accesses to different memory locations might not be performed in .Em program order , that is, the order in which the accesses appear in the source code. To optimize the program's execution, both the compiler and processor might reorder the thread's accesses. However, both ensure that their reordering of the accesses is not visible to the thread. Otherwise, the traditional memory model that is expected by single-threaded programs would be violated. Nonetheless, other threads in a multithreaded program, such as the .Fx kernel, might observe the reordering. Moreover, in some cases, such as the implementation of synchronization between threads, arbitrary reordering might result in the incorrect execution of the program. To constrain the reordering that both the compiler and processor might perform on a thread's accesses, the thread should use atomic operations with .Em acquire and .Em release semantics. .Pp Most of the atomic operations on memory have three variants. The first variant performs the operation without imposing any ordering constraints on memory accesses to other locations. The second variant has acquire semantics, and the third variant has release semantics. In effect, operations with acquire and release semantics establish one-way barriers to reordering. .Pp When an atomic operation has acquire semantics, the effects of the operation must have completed before any subsequent load or store (by program order) is performed. Conversely, acquire semantics do not require that prior loads or stores have completed before the atomic operation is performed. To denote acquire semantics, the suffix .Dq Li _acq is inserted into the function name immediately prior to the .Dq Li _ Ns Aq Fa type suffix. For example, to subtract two integers ensuring that subsequent loads and stores happen after the subtraction is performed, use .Fn atomic_subtract_acq_int . .Pp When an atomic operation has release semantics, the effects of all prior loads or stores (by program order) must have completed before the operation is performed. Conversely, release semantics do not require that the effects of the atomic operation must have completed before any subsequent load or store is performed. To denote release semantics, the suffix .Dq Li _rel is inserted into the function name immediately prior to the .Dq Li _ Ns Aq Fa type suffix. For example, to add two long integers ensuring that all prior loads and stores happen before the addition, use .Fn atomic_add_rel_long . .Pp The one-way barriers provided by acquire and release operations allow the implementations of common synchronization primitives to express their ordering requirements without also imposing unnecessary ordering. For example, for a critical section guarded by a mutex, an acquire operation when the mutex is locked and a release operation when the mutex is unlocked will prevent any loads or stores from moving outside of the critical section. However, they will not prevent the compiler or processor from moving loads or stores into the critical section, which does not violate the semantics of a mutex. .Ss Multiple Processors In multiprocessor systems, the atomicity of the atomic operations on memory depends on support for cache coherence in the underlying architecture. In general, cache coherence on the default memory type, .Dv VM_MEMATTR_DEFAULT , is guaranteed by all architectures that are supported by .Fx . For example, cache coherence is guaranteed on write-back memory by the .Tn amd64 and .Tn i386 architectures. However, on some architectures, cache coherence might not be enabled on all memory types. To determine if cache coherence is enabled for a non-default memory type, consult the architecture's documentation. On the .Tn ia64 architecture, coherency is only guaranteed for pages that are configured to using a caching policy of either uncached or write back. .Ss Semantics This section describes the semantics of each operation using a C like notation. .Bl -hang .It Fn atomic_add p v .Bd -literal -compact *p += v; .Ed .It Fn atomic_clear p v .Bd -literal -compact *p &= ~v; .Ed .It Fn atomic_cmpset dst old new .Bd -literal -compact if (*dst == old) { *dst = new; return (1); } else return (0); .Ed .El .Pp The .Fn atomic_cmpset functions are not implemented for the types .Dq Li char , .Dq Li short , .Dq Li 8 , and .Dq Li 16 . .Bl -hang .It Fn atomic_fetchadd p v .Bd -literal -compact tmp = *p; *p += v; return (tmp); .Ed .El .Pp The .Fn atomic_fetchadd functions are only implemented for the types .Dq Li int , .Dq Li long and .Dq Li 32 and do not have any variants with memory barriers at this time. .Bl -hang .It Fn atomic_load p .Bd -literal -compact return (*p); .Ed .El .Pp The .Fn atomic_load functions are only provided with acquire memory barriers. .Bl -hang .It Fn atomic_readandclear p .Bd -literal -compact tmp = *p; *p = 0; return (tmp); .Ed .El .Pp The .Fn atomic_readandclear functions are not implemented for the types .Dq Li char , .Dq Li short , .Dq Li ptr , .Dq Li 8 , and .Dq Li 16 and do not have any variants with memory barriers at this time. .Bl -hang .It Fn atomic_set p v .Bd -literal -compact *p |= v; .Ed .It Fn atomic_subtract p v .Bd -literal -compact *p -= v; .Ed .It Fn atomic_store p v .Bd -literal -compact *p = v; .Ed .El .Pp The .Fn atomic_store functions are only provided with release memory barriers. .Bl -hang .It Fn atomic_swap p v .Bd -literal -compact tmp = *p; *p = v; return (tmp); .Ed .El .Pp The .Fn atomic_swap functions are not implemented for the types .Dq Li char , .Dq Li short , .Dq Li ptr , .Dq Li 8 , and .Dq Li 16 and do not have any variants with memory barriers at this time. .Bl -hang .It Fn atomic_testandset p v .Bd -literal -compact bit = 1 << (v % (sizeof(*p) * NBBY)); tmp = (*p & bit) != 0; *p |= bit; return (tmp); .Ed .El .Pp The .Fn atomic_testandset functions are only implemented for the types .Dq Li int , .Dq Li long and .Dq Li 32 and do not have any variants with memory barriers at this time. .Pp The type .Dq Li 64 is currently not implemented for any of the atomic operations on the .Tn arm , .Tn i386 , and .Tn powerpc architectures. .Sh RETURN VALUES The .Fn atomic_cmpset function returns the result of the compare operation. The .Fn atomic_fetchadd , .Fn atomic_load , .Fn atomic_readandclear , and .Fn atomic_swap functions return the value at the specified address. The .Fn atomic_testandset function returns the result of the test operation. .Sh EXAMPLES This example uses the .Fn atomic_cmpset_acq_ptr and .Fn atomic_set_ptr functions to obtain a sleep mutex and handle recursion. Since the .Va mtx_lock member of a .Vt "struct mtx" is a pointer, the .Dq Li ptr type is used. .Bd -literal /* Try to obtain mtx_lock once. */ #define _obtain_lock(mp, tid) \\ atomic_cmpset_acq_ptr(&(mp)->mtx_lock, MTX_UNOWNED, (tid)) /* Get a sleep lock, deal with recursion inline. */ #define _get_sleep_lock(mp, tid, opts, file, line) do { \\ uintptr_t _tid = (uintptr_t)(tid); \\ \\ if (!_obtain_lock(mp, tid)) { \\ if (((mp)->mtx_lock & MTX_FLAGMASK) != _tid) \\ _mtx_lock_sleep((mp), _tid, (opts), (file), (line));\\ else { \\ atomic_set_ptr(&(mp)->mtx_lock, MTX_RECURSE); \\ (mp)->mtx_recurse++; \\ } \\ } \\ } while (0) .Ed .Sh HISTORY The .Fn atomic_add , .Fn atomic_clear , .Fn atomic_set , and .Fn atomic_subtract operations were first introduced in .Fx 3.0 . This first set only supported the types .Dq Li char , .Dq Li short , .Dq Li int , and .Dq Li long . The .Fn atomic_cmpset , .Fn atomic_load , .Fn atomic_readandclear , and .Fn atomic_store operations were added in .Fx 5.0 . The types .Dq Li 8 , .Dq Li 16 , .Dq Li 32 , .Dq Li 64 , and .Dq Li ptr and all of the acquire and release variants were added in .Fx 5.0 as well. The .Fn atomic_fetchadd operations were added in .Fx 6.0 . The .Fn atomic_swap and .Fn atomic_testandset operations were added in .Fx 10.0 .