//===-- sanitizer_allocator64.h ---------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Specialized allocator which works only in 64-bit address space. // To be used by ThreadSanitizer, MemorySanitizer and possibly other tools. // The main feature of this allocator is that the header is located far away // from the user memory region, so that the tool does not use extra shadow // for the header. // // Status: not yet ready. //===----------------------------------------------------------------------===// #ifndef SANITIZER_ALLOCATOR_H #define SANITIZER_ALLOCATOR_H #include "sanitizer_common.h" #include "sanitizer_internal_defs.h" #include "sanitizer_libc.h" #include "sanitizer_list.h" #include "sanitizer_mutex.h" namespace __sanitizer { // Maps size class id to size and back. class DefaultSizeClassMap { private: // Here we use a spline composed of 5 polynomials of oder 1. // The first size class is l0, then the classes go with step s0 // untill they reach l1, after which they go with step s1 and so on. // Steps should be powers of two for cheap division. // The size of the last size class should be a power of two. // There should be at most 256 size classes. static const uptr l0 = 1 << 4; static const uptr l1 = 1 << 9; static const uptr l2 = 1 << 12; static const uptr l3 = 1 << 15; static const uptr l4 = 1 << 18; static const uptr l5 = 1 << 21; static const uptr s0 = 1 << 4; static const uptr s1 = 1 << 6; static const uptr s2 = 1 << 9; static const uptr s3 = 1 << 12; static const uptr s4 = 1 << 15; static const uptr u0 = 0 + (l1 - l0) / s0; static const uptr u1 = u0 + (l2 - l1) / s1; static const uptr u2 = u1 + (l3 - l2) / s2; static const uptr u3 = u2 + (l4 - l3) / s3; static const uptr u4 = u3 + (l5 - l4) / s4; public: static const uptr kNumClasses = u4 + 1; static const uptr kMaxSize = l5; static const uptr kMinSize = l0; COMPILER_CHECK(kNumClasses <= 256); COMPILER_CHECK((kMaxSize & (kMaxSize - 1)) == 0); static uptr Size(uptr class_id) { if (class_id <= u0) return l0 + s0 * (class_id - 0); if (class_id <= u1) return l1 + s1 * (class_id - u0); if (class_id <= u2) return l2 + s2 * (class_id - u1); if (class_id <= u3) return l3 + s3 * (class_id - u2); if (class_id <= u4) return l4 + s4 * (class_id - u3); return 0; } static uptr ClassID(uptr size) { if (size <= l1) return 0 + (size - l0 + s0 - 1) / s0; if (size <= l2) return u0 + (size - l1 + s1 - 1) / s1; if (size <= l3) return u1 + (size - l2 + s2 - 1) / s2; if (size <= l4) return u2 + (size - l3 + s3 - 1) / s3; if (size <= l5) return u3 + (size - l4 + s4 - 1) / s4; return 0; } }; struct AllocatorListNode { AllocatorListNode *next; }; typedef IntrusiveList AllocatorFreeList; // Space: a portion of address space of kSpaceSize bytes starting at // a fixed address (kSpaceBeg). Both constants are powers of two and // kSpaceBeg is kSpaceSize-aligned. // // Region: a part of Space dedicated to a single size class. // There are kNumClasses Regions of equal size. // // UserChunk: a piece of memory returned to user. // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk. // // A Region looks like this: // UserChunk1 ... UserChunkN MetaChunkN ... MetaChunk1 template class SizeClassAllocator64 { public: void Init() { CHECK_EQ(AllocBeg(), reinterpret_cast(MmapFixedNoReserve( AllocBeg(), AllocSize()))); } bool CanAllocate(uptr size, uptr alignment) { return size <= SizeClassMap::kMaxSize && alignment <= SizeClassMap::kMaxSize; } void *Allocate(uptr size, uptr alignment) { CHECK(CanAllocate(size, alignment)); return AllocateBySizeClass(SizeClassMap::ClassID(size)); } void Deallocate(void *p) { CHECK(PointerIsMine(p)); DeallocateBySizeClass(p, GetSizeClass(p)); } // Allocate several chunks of the given class_id. void BulkAllocate(uptr class_id, AllocatorFreeList *free_list) { CHECK_LT(class_id, kNumClasses); RegionInfo *region = GetRegionInfo(class_id); SpinMutexLock l(®ion->mutex); if (region->free_list.empty()) { PopulateFreeList(class_id, region); } CHECK(!region->free_list.empty()); // Just take as many chunks as we have in the free list now. // FIXME: this might be too much. free_list->append_front(®ion->free_list); CHECK(region->free_list.empty()); } // Swallow the entire free_list for the given class_id. void BulkDeallocate(uptr class_id, AllocatorFreeList *free_list) { CHECK_LT(class_id, kNumClasses); RegionInfo *region = GetRegionInfo(class_id); SpinMutexLock l(®ion->mutex); region->free_list.append_front(free_list); } bool PointerIsMine(void *p) { return reinterpret_cast(p) / kSpaceSize == kSpaceBeg / kSpaceSize; } uptr GetSizeClass(void *p) { return (reinterpret_cast(p) / kRegionSize) % kNumClasses; } uptr GetActuallyAllocatedSize(void *p) { CHECK(PointerIsMine(p)); return SizeClassMap::Size(GetSizeClass(p)); } uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); } void *GetMetaData(void *p) { uptr class_id = GetSizeClass(p); uptr chunk_idx = GetChunkIdx(reinterpret_cast(p), class_id); return reinterpret_cast(kSpaceBeg + (kRegionSize * (class_id + 1)) - (1 + chunk_idx) * kMetadataSize); } uptr TotalMemoryUsed() { uptr res = 0; for (uptr i = 0; i < kNumClasses; i++) res += GetRegionInfo(i)->allocated_user; return res; } // Test-only. void TestOnlyUnmap() { UnmapOrDie(reinterpret_cast(AllocBeg()), AllocSize()); } static const uptr kNumClasses = 256; // Power of two <= 256 private: COMPILER_CHECK(kNumClasses <= SizeClassMap::kNumClasses); static const uptr kRegionSize = kSpaceSize / kNumClasses; COMPILER_CHECK((kRegionSize >> 32) > 0); // kRegionSize must be >= 2^32. // Populate the free list with at most this number of bytes at once // or with one element if its size is greater. static const uptr kPopulateSize = 1 << 18; struct RegionInfo { SpinMutex mutex; AllocatorFreeList free_list; uptr allocated_user; // Bytes allocated for user memory. uptr allocated_meta; // Bytes allocated for metadata. char padding[kCacheLineSize - 3 * sizeof(uptr) - sizeof(AllocatorFreeList)]; }; COMPILER_CHECK(sizeof(RegionInfo) == kCacheLineSize); uptr AdditionalSize() { uptr res = sizeof(RegionInfo) * kNumClasses; CHECK_EQ(res % kPageSize, 0); return res; } uptr AllocBeg() { return kSpaceBeg - AdditionalSize(); } uptr AllocSize() { return kSpaceSize + AdditionalSize(); } RegionInfo *GetRegionInfo(uptr class_id) { CHECK_LT(class_id, kNumClasses); RegionInfo *regions = reinterpret_cast(kSpaceBeg); return ®ions[-1 - class_id]; } uptr GetChunkIdx(uptr chunk, uptr class_id) { u32 offset = chunk % kRegionSize; // Here we divide by a non-constant. This is costly. // We require that kRegionSize is at least 2^32 so that offset is 32-bit. // We save 2x by using 32-bit div, but may need to use a 256-way switch. return offset / (u32)SizeClassMap::Size(class_id); } void PopulateFreeList(uptr class_id, RegionInfo *region) { uptr size = SizeClassMap::Size(class_id); uptr beg_idx = region->allocated_user; uptr end_idx = beg_idx + kPopulateSize; region->free_list.clear(); uptr region_beg = kSpaceBeg + kRegionSize * class_id; uptr idx = beg_idx; uptr i = 0; do { // do-while loop because we need to put at least one item. uptr p = region_beg + idx; region->free_list.push_front(reinterpret_cast(p)); idx += size; i++; } while (idx < end_idx); region->allocated_user += idx - beg_idx; region->allocated_meta += i * kMetadataSize; CHECK_LT(region->allocated_user + region->allocated_meta, kRegionSize); } void *AllocateBySizeClass(uptr class_id) { CHECK_LT(class_id, kNumClasses); RegionInfo *region = GetRegionInfo(class_id); SpinMutexLock l(®ion->mutex); if (region->free_list.empty()) { PopulateFreeList(class_id, region); } CHECK(!region->free_list.empty()); AllocatorListNode *node = region->free_list.front(); region->free_list.pop_front(); return reinterpret_cast(node); } void DeallocateBySizeClass(void *p, uptr class_id) { RegionInfo *region = GetRegionInfo(class_id); SpinMutexLock l(®ion->mutex); region->free_list.push_front(reinterpret_cast(p)); } }; // Objects of this type should be used as local caches for SizeClassAllocator64. // Since the typical use of this class is to have one object per thread in TLS, // is has to be POD. template struct SizeClassAllocatorLocalCache { // Don't need to call Init if the object is a global (i.e. zero-initialized). void Init() { internal_memset(this, 0, sizeof(*this)); } void *Allocate(SizeClassAllocator *allocator, uptr class_id) { CHECK_LT(class_id, kNumClasses); AllocatorFreeList *free_list = &free_lists_[class_id]; if (free_list->empty()) allocator->BulkAllocate(class_id, free_list); CHECK(!free_list->empty()); void *res = free_list->front(); free_list->pop_front(); return res; } void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) { CHECK_LT(class_id, kNumClasses); free_lists_[class_id].push_front(reinterpret_cast(p)); } void Drain(SizeClassAllocator *allocator) { for (uptr i = 0; i < kNumClasses; i++) { allocator->BulkDeallocate(i, &free_lists_[i]); CHECK(free_lists_[i].empty()); } } // private: AllocatorFreeList free_lists_[kNumClasses]; }; // This class can (de)allocate only large chunks of memory using mmap/unmap. // The main purpose of this allocator is to cover large and rare allocation // sizes not covered by more efficient allocators (e.g. SizeClassAllocator64). // The result is always page-aligned. class LargeMmapAllocator { public: void Init() { internal_memset(this, 0, sizeof(*this)); } void *Allocate(uptr size, uptr alignment) { CHECK_LE(alignment, kPageSize); // Not implemented. Do we need it? uptr map_size = RoundUpMapSize(size); void *map = MmapOrDie(map_size, "LargeMmapAllocator"); void *res = reinterpret_cast(reinterpret_cast(map) + kPageSize); Header *h = GetHeader(res); h->size = size; { SpinMutexLock l(&mutex_); h->next = list_; h->prev = 0; if (list_) list_->prev = h; list_ = h; } return res; } void Deallocate(void *p) { Header *h = GetHeader(p); uptr map_size = RoundUpMapSize(h->size); { SpinMutexLock l(&mutex_); Header *prev = h->prev; Header *next = h->next; if (prev) prev->next = next; if (next) next->prev = prev; if (h == list_) list_ = next; } UnmapOrDie(h, map_size); } uptr TotalMemoryUsed() { SpinMutexLock l(&mutex_); uptr res = 0; for (Header *l = list_; l; l = l->next) { res += RoundUpMapSize(l->size); } return res; } bool PointerIsMine(void *p) { // Fast check. if ((reinterpret_cast(p) % kPageSize) != 0) return false; SpinMutexLock l(&mutex_); for (Header *l = list_; l; l = l->next) { if (GetUser(l) == p) return true; } return false; } uptr GetActuallyAllocatedSize(void *p) { return RoundUpMapSize(GetHeader(p)->size) - kPageSize; } // At least kPageSize/2 metadata bytes is available. void *GetMetaData(void *p) { return GetHeader(p) + 1; } private: struct Header { uptr size; Header *next; Header *prev; }; Header *GetHeader(void *p) { return reinterpret_cast(reinterpret_cast(p) - kPageSize); } void *GetUser(Header *h) { return reinterpret_cast(reinterpret_cast(h) + kPageSize); } uptr RoundUpMapSize(uptr size) { return RoundUpTo(size, kPageSize) + kPageSize; } Header *list_; SpinMutex mutex_; }; // This class implements a complete memory allocator by using two // internal allocators: // PrimaryAllocator is efficient, but may not allocate some sizes (alignments). // When allocating 2^x bytes it should return 2^x aligned chunk. // PrimaryAllocator is used via a local AllocatorCache. // SecondaryAllocator can allocate anything, but is not efficient. template // NOLINT class CombinedAllocator { public: void Init() { primary_.Init(); secondary_.Init(); } void *Allocate(AllocatorCache *cache, uptr size, uptr alignment, bool cleared = false) { // Returning 0 on malloc(0) may break a lot of code. if (size == 0) size = 1; if (alignment > 8) size = RoundUpTo(size, alignment); void *res; if (primary_.CanAllocate(size, alignment)) res = cache->Allocate(&primary_, primary_.ClassID(size)); else res = secondary_.Allocate(size, alignment); if (alignment > 8) CHECK_EQ(reinterpret_cast(res) & (alignment - 1), 0); if (cleared) internal_memset(res, 0, size); return res; } void Deallocate(AllocatorCache *cache, void *p) { if (!p) return; if (primary_.PointerIsMine(p)) cache->Deallocate(&primary_, primary_.GetSizeClass(p), p); else secondary_.Deallocate(p); } void *Reallocate(AllocatorCache *cache, void *p, uptr new_size, uptr alignment) { if (!p) return Allocate(cache, new_size, alignment); if (!new_size) { Deallocate(cache, p); return 0; } CHECK(PointerIsMine(p)); uptr old_size = GetActuallyAllocatedSize(p); uptr memcpy_size = Min(new_size, old_size); void *new_p = Allocate(cache, new_size, alignment); if (new_p) internal_memcpy(new_p, p, memcpy_size); Deallocate(cache, p); return new_p; } bool PointerIsMine(void *p) { if (primary_.PointerIsMine(p)) return true; return secondary_.PointerIsMine(p); } void *GetMetaData(void *p) { if (primary_.PointerIsMine(p)) return primary_.GetMetaData(p); return secondary_.GetMetaData(p); } uptr GetActuallyAllocatedSize(void *p) { if (primary_.PointerIsMine(p)) return primary_.GetActuallyAllocatedSize(p); return secondary_.GetActuallyAllocatedSize(p); } uptr TotalMemoryUsed() { return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed(); } void TestOnlyUnmap() { primary_.TestOnlyUnmap(); } void SwallowCache(AllocatorCache *cache) { cache->Drain(&primary_); } private: PrimaryAllocator primary_; SecondaryAllocator secondary_; }; } // namespace __sanitizer #endif // SANITIZER_ALLOCATOR_H