/* * Copyright (c) 1995 John Birrell . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by John Birrell. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include "thr_private.h" #if defined(_PTHREADS_INVARIANTS) #define _MUTEX_INIT_LINK(m) do { \ (m)->m_qe.tqe_prev = NULL; \ (m)->m_qe.tqe_next = NULL; \ } while (0) #define _MUTEX_ASSERT_IS_OWNED(m) do { \ if ((m)->m_qe.tqe_prev == NULL) \ PANIC("mutex is not on list"); \ } while (0) #define _MUTEX_ASSERT_NOT_OWNED(m) do { \ if (((m)->m_qe.tqe_prev != NULL) || \ ((m)->m_qe.tqe_next != NULL)) \ PANIC("mutex is on list"); \ } while (0) #else #define _MUTEX_INIT_LINK(m) #define _MUTEX_ASSERT_IS_OWNED(m) #define _MUTEX_ASSERT_NOT_OWNED(m) #endif /* * Prototypes */ static int get_muncontested(pthread_mutex_t, int); static int get_mcontested(pthread_mutex_t, const struct timespec *); static int mutex_init(pthread_mutex_t *, int); static int mutex_lock_common(pthread_mutex_t *, int, const struct timespec *); static inline int mutex_self_trylock(pthread_mutex_t); static inline int mutex_self_lock(pthread_mutex_t); static inline int mutex_unlock_common(pthread_mutex_t *, int); static void mutex_priority_adjust(pthread_mutex_t); static void mutex_rescan_owned (pthread_t, pthread_mutex_t); static inline pthread_t mutex_queue_deq(pthread_mutex_t); static inline void mutex_queue_remove(pthread_mutex_t, pthread_t); static inline void mutex_queue_enq(pthread_mutex_t, pthread_t); static spinlock_t static_init_lock = _SPINLOCK_INITIALIZER; static struct pthread_mutex_attr static_mutex_attr = PTHREAD_MUTEXATTR_STATIC_INITIALIZER; static pthread_mutexattr_t static_mattr = &static_mutex_attr; /* Single underscore versions provided for libc internal usage: */ __weak_reference(__pthread_mutex_trylock, pthread_mutex_trylock); __weak_reference(__pthread_mutex_lock, pthread_mutex_lock); __weak_reference(__pthread_mutex_unlock, pthread_mutex_unlock); /* No difference between libc and application usage of these: */ __weak_reference(_pthread_mutex_init, pthread_mutex_init); __weak_reference(_pthread_mutex_destroy, pthread_mutex_destroy); __weak_reference(_pthread_mutex_timedlock, pthread_mutex_timedlock); /* * Reinitialize a private mutex; this is only used for internal mutexes. */ int _mutex_reinit(pthread_mutex_t * mutex) { int ret = 0; if (mutex == NULL) ret = EINVAL; else if (*mutex == PTHREAD_MUTEX_INITIALIZER) ret = _pthread_mutex_init(mutex, NULL); else { /* * Initialize the mutex structure: */ (*mutex)->m_type = PTHREAD_MUTEX_DEFAULT; (*mutex)->m_protocol = PTHREAD_PRIO_NONE; TAILQ_INIT(&(*mutex)->m_queue); (*mutex)->m_owner = NULL; (*mutex)->m_data.m_count = 0; (*mutex)->m_flags |= MUTEX_FLAGS_INITED | MUTEX_FLAGS_PRIVATE; (*mutex)->m_refcount = 0; (*mutex)->m_prio = 0; (*mutex)->m_saved_prio = 0; _MUTEX_INIT_LINK(*mutex); memset(&(*mutex)->lock, 0, sizeof((*mutex)->lock)); } return (ret); } int _pthread_mutex_init(pthread_mutex_t * mutex, const pthread_mutexattr_t * mutex_attr) { struct pthread_mutex_attr default_attr = {PTHREAD_MUTEX_ERRORCHECK, PTHREAD_PRIO_NONE, PTHREAD_MAX_PRIORITY, 0 }; struct pthread_mutex_attr *attr; if (mutex_attr == NULL) { attr = &default_attr; } else { /* * Check that the given mutex attribute is valid. */ if (((*mutex_attr)->m_type < PTHREAD_MUTEX_ERRORCHECK) || ((*mutex_attr)->m_type >= MUTEX_TYPE_MAX)) return (EINVAL); else if (((*mutex_attr)->m_protocol < PTHREAD_PRIO_NONE) || ((*mutex_attr)->m_protocol > PTHREAD_MUTEX_RECURSIVE)) return (EINVAL); attr = *mutex_attr; } if ((*mutex = (pthread_mutex_t)malloc(sizeof(struct pthread_mutex))) == NULL) return (ENOMEM); memset((void *)(*mutex), 0, sizeof(struct pthread_mutex)); /* Initialise the rest of the mutex: */ TAILQ_INIT(&(*mutex)->m_queue); _MUTEX_INIT_LINK(*mutex); (*mutex)->m_protocol = attr->m_protocol; (*mutex)->m_flags = (attr->m_flags | MUTEX_FLAGS_INITED); (*mutex)->m_type = attr->m_type; if ((*mutex)->m_protocol == PTHREAD_PRIO_PROTECT) (*mutex)->m_prio = attr->m_ceiling; return (0); } int _pthread_mutex_destroy(pthread_mutex_t * mutex) { if (mutex == NULL) return (EINVAL); /* * If this mutex was statically initialized, don't bother * initializing it in order to destroy it immediately. */ if (*mutex == PTHREAD_MUTEX_INITIALIZER) return (0); /* Lock the mutex structure: */ _SPINLOCK(&(*mutex)->lock); /* * Check to see if this mutex is in use: */ if (((*mutex)->m_owner != NULL) || (TAILQ_FIRST(&(*mutex)->m_queue) != NULL) || ((*mutex)->m_refcount != 0)) { /* Unlock the mutex structure: */ _SPINUNLOCK(&(*mutex)->lock); return (EBUSY); } /* * Free the memory allocated for the mutex * structure: */ _MUTEX_ASSERT_NOT_OWNED(*mutex); _SPINUNLOCK(&(*mutex)->lock); free(*mutex); /* * Leave the caller's pointer NULL now that * the mutex has been destroyed: */ *mutex = NULL; return (0); } static int mutex_init(pthread_mutex_t *mutex, int private) { pthread_mutexattr_t *pma; int error; error = 0; pma = private ? &static_mattr : NULL; _SPINLOCK(&static_init_lock); if (*mutex == PTHREAD_MUTEX_INITIALIZER) error = _pthread_mutex_init(mutex, pma); _SPINUNLOCK(&static_init_lock); return (error); } int __pthread_mutex_trylock(pthread_mutex_t *mutex) { int ret = 0; if (mutex == NULL) ret = EINVAL; /* * If the mutex is statically initialized, perform the dynamic * initialization: */ else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) || (ret = mutex_init(mutex, 0)) == 0) ret = mutex_lock_common(mutex, 1, NULL); return (ret); } /* * Libc internal. */ int _pthread_mutex_trylock(pthread_mutex_t *mutex) { int ret = 0; _thread_sigblock(); if (mutex == NULL) ret = EINVAL; /* * If the mutex is statically initialized, perform the dynamic * initialization marking the mutex private (delete safe): */ else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) || (ret = mutex_init(mutex, 1)) == 0) ret = mutex_lock_common(mutex, 1, NULL); if (ret != 0) _thread_sigunblock(); return (ret); } static int mutex_lock_common(pthread_mutex_t * mutex, int nonblock, const struct timespec *abstime) { int ret, error, inCancel; ret = error = inCancel = 0; PTHREAD_ASSERT((mutex != NULL) && (*mutex != NULL), "Uninitialized mutex in mutex_lock_common"); /* * Enter a loop waiting to become the mutex owner. We need a * loop in case the waiting thread is interrupted by a signal * to execute a signal handler. It is not (currently) possible * to remain in the waiting queue while running a handler. * Instead, the thread is interrupted and backed out of the * waiting queue prior to executing the signal handler. */ do { /* * Defer signals to protect the scheduling queues from * access by the signal handler: */ /* _thread_kern_sig_defer(); */ /* Lock the mutex structure: */ _SPINLOCK(&(*mutex)->lock); /* * If the mutex was statically allocated, properly * initialize the tail queue. */ if (((*mutex)->m_flags & MUTEX_FLAGS_INITED) == 0) { TAILQ_INIT(&(*mutex)->m_queue); (*mutex)->m_flags |= MUTEX_FLAGS_INITED; _MUTEX_INIT_LINK(*mutex); } /* Process according to mutex type: */ switch ((*mutex)->m_protocol) { /* Default POSIX mutex: */ case PTHREAD_PRIO_NONE: if ((error = get_muncontested(*mutex, nonblock)) == -1) if (nonblock) { ret = EBUSY; break; } else { error = get_mcontested(*mutex, abstime); ret = (error != EINTR) ? error : ret; } else ret = error; break; /* POSIX priority inheritence mutex: */ case PTHREAD_PRIO_INHERIT: if ((error = get_muncontested(*mutex, nonblock)) == 0) { /* Track number of priority mutexes owned: */ curthread->priority_mutex_count++; /* * The mutex takes on attributes of the * running thread when there are no waiters. */ (*mutex)->m_prio = curthread->active_priority; (*mutex)->m_saved_prio = curthread->inherited_priority; curthread->inherited_priority = (*mutex)->m_prio; } else if (error == -1) { if (nonblock) { ret = EBUSY; break; } else { error = get_mcontested(*mutex, abstime); ret = (error != EINTR) ? error : ret; } if (error == 0) { if (curthread->active_priority > (*mutex)->m_prio) /* Adjust priorities: */ mutex_priority_adjust(*mutex); } else if (error == ETIMEDOUT) { /* XXX - mutex priorities don't work */ } } else { ret = error; } break; /* POSIX priority protection mutex: */ case PTHREAD_PRIO_PROTECT: /* Check for a priority ceiling violation: */ if (curthread->active_priority > (*mutex)->m_prio) ret = EINVAL; if ((error = get_muncontested(*mutex, nonblock)) == 0) { /* Track number of priority mutexes owned: */ curthread->priority_mutex_count++; /* * The running thread inherits the ceiling * priority of the mutex and executes at that * priority: */ curthread->active_priority = (*mutex)->m_prio; (*mutex)->m_saved_prio = curthread->inherited_priority; curthread->inherited_priority = (*mutex)->m_prio; } else if (error == -1) { if (nonblock) { ret = EBUSY; break; } /* Clear any previous error: */ curthread->error = 0; error = get_mcontested(*mutex, abstime); ret = (error != EINTR) ? error : ret; /* * The threads priority may have changed while * waiting for the mutex causing a ceiling * violation. */ if (error == 0) { ret = curthread->error; curthread->error = 0; } } else { ret = error; } break; /* Trap invalid mutex types: */ default: /* Return an invalid argument error: */ ret = EINVAL; break; } /* * Check to see if this thread was interrupted and * is still in the mutex queue of waiting threads: */ if (curthread->cancelflags & PTHREAD_CANCELLING) { if (!nonblock) mutex_queue_remove(*mutex, curthread); inCancel=1; } /* Unlock the mutex structure: */ _SPINUNLOCK(&(*mutex)->lock); /* * Undefer and handle pending signals, yielding if * necessary: */ /* _thread_kern_sig_undefer(); */ if (inCancel) { pthread_testcancel(); PANIC("Canceled thread came back.\n"); } } while ((*mutex)->m_owner != curthread && ret == 0); /* Return the completion status: */ return (ret); } int __pthread_mutex_lock(pthread_mutex_t *mutex) { int ret = 0; if (_thread_initial == NULL) _thread_init(); if (mutex == NULL) ret = EINVAL; /* * If the mutex is statically initialized, perform the dynamic * initialization: */ else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) || ((ret = mutex_init(mutex, 0)) == 0)) ret = mutex_lock_common(mutex, 0, NULL); return (ret); } /* * Libc internal. */ int _pthread_mutex_lock(pthread_mutex_t *mutex) { int ret = 0; if (_thread_initial == NULL) _thread_init(); _thread_sigblock(); if (mutex == NULL) ret = EINVAL; /* * If the mutex is statically initialized, perform the dynamic * initialization marking it private (delete safe): */ else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) || ((ret = mutex_init(mutex, 1)) == 0)) ret = mutex_lock_common(mutex, 0, NULL); if (ret != 0) _thread_sigunblock(); return (ret); } int _pthread_mutex_timedlock(pthread_mutex_t *mutex, const struct timespec *abstime) { int error; error = 0; if (_thread_initial == NULL) _thread_init(); /* * Initialize it if it's a valid statically inited mutex. */ if (mutex == NULL) error = EINVAL; else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) || ((error = mutex_init(mutex, 0)) == 0)) error = mutex_lock_common(mutex, 0, abstime); PTHREAD_ASSERT(error != EINTR, "According to SUSv3 this function shall not return an error code of EINTR"); return (error); } int __pthread_mutex_unlock(pthread_mutex_t * mutex) { return (mutex_unlock_common(mutex, /* add reference */ 0)); } /* * Libc internal */ int _pthread_mutex_unlock(pthread_mutex_t * mutex) { int error; if ((error = mutex_unlock_common(mutex, /* add reference */ 0)) == 0) _thread_sigunblock(); return (error); } int _mutex_cv_unlock(pthread_mutex_t * mutex) { return (mutex_unlock_common(mutex, /* add reference */ 1)); } int _mutex_cv_lock(pthread_mutex_t * mutex) { int ret; if ((ret = _pthread_mutex_lock(mutex)) == 0) (*mutex)->m_refcount--; return (ret); } static inline int mutex_self_trylock(pthread_mutex_t mutex) { int ret = 0; switch (mutex->m_type) { /* case PTHREAD_MUTEX_DEFAULT: */ case PTHREAD_MUTEX_ERRORCHECK: case PTHREAD_MUTEX_NORMAL: /* * POSIX specifies that mutexes should return EDEADLK if a * recursive lock is detected. */ ret = EBUSY; break; case PTHREAD_MUTEX_RECURSIVE: /* Increment the lock count: */ mutex->m_data.m_count++; break; default: /* Trap invalid mutex types; */ ret = EINVAL; } return (ret); } static inline int mutex_self_lock(pthread_mutex_t mutex) { int ret = 0; switch (mutex->m_type) { /* case PTHREAD_MUTEX_DEFAULT: */ case PTHREAD_MUTEX_ERRORCHECK: /* * POSIX specifies that mutexes should return EDEADLK if a * recursive lock is detected. */ ret = EDEADLK; break; case PTHREAD_MUTEX_NORMAL: /* * What SS2 define as a 'normal' mutex. Intentionally * deadlock on attempts to get a lock you already own. */ /* XXX Sched lock. */ PTHREAD_SET_STATE(curthread, PS_DEADLOCK); _SPINUNLOCK(&(mutex)->lock); _thread_suspend(curthread, NULL); PANIC("Shouldn't resume here?\n"); break; case PTHREAD_MUTEX_RECURSIVE: /* Increment the lock count: */ mutex->m_data.m_count++; break; default: /* Trap invalid mutex types; */ ret = EINVAL; } return (ret); } static inline int mutex_unlock_common(pthread_mutex_t * mutex, int add_reference) { int ret = 0; if (mutex == NULL || *mutex == NULL) { ret = EINVAL; } else { /* * Defer signals to protect the scheduling queues from * access by the signal handler: */ /* _thread_kern_sig_defer(); */ /* Lock the mutex structure: */ _SPINLOCK(&(*mutex)->lock); /* Process according to mutex type: */ switch ((*mutex)->m_protocol) { /* Default POSIX mutex: */ case PTHREAD_PRIO_NONE: /* * Check if the running thread is not the owner of the * mutex: */ if ((*mutex)->m_owner != curthread) { /* * Return an invalid argument error for no * owner and a permission error otherwise: */ ret = (*mutex)->m_owner == NULL ? EINVAL : EPERM; } else if (((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE) && ((*mutex)->m_data.m_count > 0)) { /* Decrement the count: */ (*mutex)->m_data.m_count--; } else { /* * Clear the count in case this is recursive * mutex. */ (*mutex)->m_data.m_count = 0; /* Remove the mutex from the threads queue. */ _MUTEX_ASSERT_IS_OWNED(*mutex); TAILQ_REMOVE(&(*mutex)->m_owner->mutexq, (*mutex), m_qe); _MUTEX_INIT_LINK(*mutex); /* * Get the next thread from the queue of * threads waiting on the mutex. The deq * function will have already locked it * for us. */ if (((*mutex)->m_owner = mutex_queue_deq(*mutex)) != NULL) { /* Make the new owner runnable: */ /* XXXTHR sched lock. */ PTHREAD_NEW_STATE((*mutex)->m_owner, PS_RUNNING); /* * Add the mutex to the threads list of * owned mutexes: */ TAILQ_INSERT_TAIL(&(*mutex)->m_owner->mutexq, (*mutex), m_qe); /* * The owner is no longer waiting for * this mutex: */ (*mutex)->m_owner->data.mutex = NULL; _thread_critical_exit((*mutex)->m_owner); } } break; /* POSIX priority inheritence mutex: */ case PTHREAD_PRIO_INHERIT: /* * Check if the running thread is not the owner of the * mutex: */ if ((*mutex)->m_owner != curthread) { /* * Return an invalid argument error for no * owner and a permission error otherwise: */ ret = (*mutex)->m_owner == NULL ? EINVAL : EPERM; } else if (((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE) && ((*mutex)->m_data.m_count > 0)) { /* Decrement the count: */ (*mutex)->m_data.m_count--; } else { /* * Clear the count in case this is recursive * mutex. */ (*mutex)->m_data.m_count = 0; /* * Restore the threads inherited priority and * recompute the active priority (being careful * not to override changes in the threads base * priority subsequent to locking the mutex). */ curthread->inherited_priority = (*mutex)->m_saved_prio; curthread->active_priority = MAX(curthread->inherited_priority, curthread->base_priority); /* * This thread now owns one less priority mutex. */ curthread->priority_mutex_count--; /* Remove the mutex from the threads queue. */ _MUTEX_ASSERT_IS_OWNED(*mutex); TAILQ_REMOVE(&(*mutex)->m_owner->mutexq, (*mutex), m_qe); _MUTEX_INIT_LINK(*mutex); /* * Get the next thread from the queue of threads * waiting on the mutex. It will already be * locked for us. */ if (((*mutex)->m_owner = mutex_queue_deq(*mutex)) == NULL) /* This mutex has no priority. */ (*mutex)->m_prio = 0; else { /* * Track number of priority mutexes owned: */ (*mutex)->m_owner->priority_mutex_count++; /* * Add the mutex to the threads list * of owned mutexes: */ TAILQ_INSERT_TAIL(&(*mutex)->m_owner->mutexq, (*mutex), m_qe); /* * The owner is no longer waiting for * this mutex: */ (*mutex)->m_owner->data.mutex = NULL; /* * Set the priority of the mutex. Since * our waiting threads are in descending * priority order, the priority of the * mutex becomes the active priority of * the thread we just dequeued. */ (*mutex)->m_prio = (*mutex)->m_owner->active_priority; /* * Save the owning threads inherited * priority: */ (*mutex)->m_saved_prio = (*mutex)->m_owner->inherited_priority; /* * The owning threads inherited priority * now becomes his active priority (the * priority of the mutex). */ (*mutex)->m_owner->inherited_priority = (*mutex)->m_prio; /* * Make the new owner runnable: */ /* XXXTHR sched lock. */ PTHREAD_NEW_STATE((*mutex)->m_owner, PS_RUNNING); _thread_critical_exit((*mutex)->m_owner); } } break; /* POSIX priority ceiling mutex: */ case PTHREAD_PRIO_PROTECT: /* * Check if the running thread is not the owner of the * mutex: */ if ((*mutex)->m_owner != curthread) { /* * Return an invalid argument error for no * owner and a permission error otherwise: */ ret = (*mutex)->m_owner == NULL ? EINVAL : EPERM; } else if (((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE) && ((*mutex)->m_data.m_count > 0)) { /* Decrement the count: */ (*mutex)->m_data.m_count--; } else { /* * Clear the count in case this is recursive * mutex. */ (*mutex)->m_data.m_count = 0; /* * Restore the threads inherited priority and * recompute the active priority (being careful * not to override changes in the threads base * priority subsequent to locking the mutex). */ curthread->inherited_priority = (*mutex)->m_saved_prio; curthread->active_priority = MAX(curthread->inherited_priority, curthread->base_priority); /* * This thread now owns one less priority mutex. */ curthread->priority_mutex_count--; /* Remove the mutex from the threads queue. */ _MUTEX_ASSERT_IS_OWNED(*mutex); TAILQ_REMOVE(&(*mutex)->m_owner->mutexq, (*mutex), m_qe); _MUTEX_INIT_LINK(*mutex); /* * Enter a loop to find a waiting thread whose * active priority will not cause a ceiling * violation. It will already be locked for us. */ while ((((*mutex)->m_owner = mutex_queue_deq(*mutex)) != NULL) && ((*mutex)->m_owner->active_priority > (*mutex)->m_prio)) { /* * Either the mutex ceiling priority * been lowered and/or this threads * priority has been raised subsequent * to this thread being queued on the * waiting list. */ (*mutex)->m_owner->error = EINVAL; PTHREAD_NEW_STATE((*mutex)->m_owner, PS_RUNNING); /* * The thread is no longer waiting for * this mutex: */ (*mutex)->m_owner->data.mutex = NULL; _thread_critical_exit((*mutex)->m_owner); } /* Check for a new owner: */ if ((*mutex)->m_owner != NULL) { /* * Track number of priority mutexes owned: */ (*mutex)->m_owner->priority_mutex_count++; /* * Add the mutex to the threads list * of owned mutexes: */ TAILQ_INSERT_TAIL(&(*mutex)->m_owner->mutexq, (*mutex), m_qe); /* * The owner is no longer waiting for * this mutex: */ (*mutex)->m_owner->data.mutex = NULL; /* * Save the owning threads inherited * priority: */ (*mutex)->m_saved_prio = (*mutex)->m_owner->inherited_priority; /* * The owning thread inherits the * ceiling priority of the mutex and * executes at that priority: */ (*mutex)->m_owner->inherited_priority = (*mutex)->m_prio; (*mutex)->m_owner->active_priority = (*mutex)->m_prio; /* * Make the new owner runnable: */ /* XXXTHR sched lock. */ PTHREAD_NEW_STATE((*mutex)->m_owner, PS_RUNNING); _thread_critical_exit((*mutex)->m_owner); } } break; /* Trap invalid mutex types: */ default: /* Return an invalid argument error: */ ret = EINVAL; break; } if ((ret == 0) && (add_reference != 0)) { /* Increment the reference count: */ (*mutex)->m_refcount++; } /* Unlock the mutex structure: */ _SPINUNLOCK(&(*mutex)->lock); /* * Undefer and handle pending signals, yielding if * necessary: */ /* _thread_kern_sig_undefer(); */ } /* Return the completion status: */ return (ret); } /* * This function is called when a change in base priority occurs for * a thread that is holding or waiting for a priority protection or * inheritence mutex. A change in a threads base priority can effect * changes to active priorities of other threads and to the ordering * of mutex locking by waiting threads. * * This must be called while thread scheduling is deferred. */ void _mutex_notify_priochange(pthread_t pthread) { /* Adjust the priorites of any owned priority mutexes: */ if (pthread->priority_mutex_count > 0) { /* * Rescan the mutexes owned by this thread and correct * their priorities to account for this threads change * in priority. This has the side effect of changing * the threads active priority. */ mutex_rescan_owned(pthread, /* rescan all owned */ NULL); } /* * If this thread is waiting on a priority inheritence mutex, * check for priority adjustments. A change in priority can * also effect a ceiling violation(*) for a thread waiting on * a priority protection mutex; we don't perform the check here * as it is done in pthread_mutex_unlock. * * (*) It should be noted that a priority change to a thread * _after_ taking and owning a priority ceiling mutex * does not affect ownership of that mutex; the ceiling * priority is only checked before mutex ownership occurs. */ if (pthread->state == PS_MUTEX_WAIT) { /* Lock the mutex structure: */ _SPINLOCK(&pthread->data.mutex->lock); /* * Check to make sure this thread is still in the same state * (the spinlock above can yield the CPU to another thread): */ if (pthread->state == PS_MUTEX_WAIT) { /* * Remove and reinsert this thread into the list of * waiting threads to preserve decreasing priority * order. */ mutex_queue_remove(pthread->data.mutex, pthread); mutex_queue_enq(pthread->data.mutex, pthread); if (pthread->data.mutex->m_protocol == PTHREAD_PRIO_INHERIT) { /* Adjust priorities: */ mutex_priority_adjust(pthread->data.mutex); } } /* Unlock the mutex structure: */ _SPINUNLOCK(&pthread->data.mutex->lock); } } /* * Called when a new thread is added to the mutex waiting queue or * when a threads priority changes that is already in the mutex * waiting queue. */ static void mutex_priority_adjust(pthread_mutex_t mutex) { pthread_t pthread_next, pthread = mutex->m_owner; int temp_prio; pthread_mutex_t m = mutex; /* * Calculate the mutex priority as the maximum of the highest * active priority of any waiting threads and the owning threads * active priority(*). * * (*) Because the owning threads current active priority may * reflect priority inherited from this mutex (and the mutex * priority may have changed) we must recalculate the active * priority based on the threads saved inherited priority * and its base priority. */ pthread_next = TAILQ_FIRST(&m->m_queue); /* should never be NULL */ temp_prio = MAX(pthread_next->active_priority, MAX(m->m_saved_prio, pthread->base_priority)); /* See if this mutex really needs adjusting: */ if (temp_prio == m->m_prio) /* No need to propagate the priority: */ return; /* Set new priority of the mutex: */ m->m_prio = temp_prio; while (m != NULL) { /* * Save the threads priority before rescanning the * owned mutexes: */ temp_prio = pthread->active_priority; /* * Fix the priorities for all the mutexes this thread has * locked since taking this mutex. This also has a * potential side-effect of changing the threads priority. */ mutex_rescan_owned(pthread, m); /* * If the thread is currently waiting on a mutex, check * to see if the threads new priority has affected the * priority of the mutex. */ if ((temp_prio != pthread->active_priority) && (pthread->state == PS_MUTEX_WAIT) && (pthread->data.mutex->m_protocol == PTHREAD_PRIO_INHERIT)) { /* Grab the mutex this thread is waiting on: */ m = pthread->data.mutex; /* * The priority for this thread has changed. Remove * and reinsert this thread into the list of waiting * threads to preserve decreasing priority order. */ mutex_queue_remove(m, pthread); mutex_queue_enq(m, pthread); /* Grab the waiting thread with highest priority: */ pthread_next = TAILQ_FIRST(&m->m_queue); /* * Calculate the mutex priority as the maximum of the * highest active priority of any waiting threads and * the owning threads active priority. */ temp_prio = MAX(pthread_next->active_priority, MAX(m->m_saved_prio, m->m_owner->base_priority)); if (temp_prio != m->m_prio) { /* * The priority needs to be propagated to the * mutex this thread is waiting on and up to * the owner of that mutex. */ m->m_prio = temp_prio; pthread = m->m_owner; } else /* We're done: */ m = NULL; } else /* We're done: */ m = NULL; } } static void mutex_rescan_owned(pthread_t pthread, pthread_mutex_t mutex) { int active_prio, inherited_prio; pthread_mutex_t m; pthread_t pthread_next; /* * Start walking the mutexes the thread has taken since * taking this mutex. */ if (mutex == NULL) { /* * A null mutex means start at the beginning of the owned * mutex list. */ m = TAILQ_FIRST(&pthread->mutexq); /* There is no inherited priority yet. */ inherited_prio = 0; } else { /* * The caller wants to start after a specific mutex. It * is assumed that this mutex is a priority inheritence * mutex and that its priority has been correctly * calculated. */ m = TAILQ_NEXT(mutex, m_qe); /* Start inheriting priority from the specified mutex. */ inherited_prio = mutex->m_prio; } active_prio = MAX(inherited_prio, pthread->base_priority); while (m != NULL) { /* * We only want to deal with priority inheritence * mutexes. This might be optimized by only placing * priority inheritence mutexes into the owned mutex * list, but it may prove to be useful having all * owned mutexes in this list. Consider a thread * exiting while holding mutexes... */ if (m->m_protocol == PTHREAD_PRIO_INHERIT) { /* * Fix the owners saved (inherited) priority to * reflect the priority of the previous mutex. */ m->m_saved_prio = inherited_prio; if ((pthread_next = TAILQ_FIRST(&m->m_queue)) != NULL) /* Recalculate the priority of the mutex: */ m->m_prio = MAX(active_prio, pthread_next->active_priority); else m->m_prio = active_prio; /* Recalculate new inherited and active priorities: */ inherited_prio = m->m_prio; active_prio = MAX(m->m_prio, pthread->base_priority); } /* Advance to the next mutex owned by this thread: */ m = TAILQ_NEXT(m, m_qe); } /* * Fix the threads inherited priority and recalculate its * active priority. */ pthread->inherited_priority = inherited_prio; active_prio = MAX(inherited_prio, pthread->base_priority); if (active_prio != pthread->active_priority) { #if 0 /* * If this thread is in the priority queue, it must be * removed and reinserted for its new priority. */ if (pthread->flags & PTHREAD_FLAGS_IN_PRIOQ) { /* * Remove the thread from the priority queue * before changing its priority: */ PTHREAD_PRIOQ_REMOVE(pthread); /* * POSIX states that if the priority is being * lowered, the thread must be inserted at the * head of the queue for its priority if it owns * any priority protection or inheritence mutexes. */ if ((active_prio < pthread->active_priority) && (pthread->priority_mutex_count > 0)) { /* Set the new active priority. */ pthread->active_priority = active_prio; PTHREAD_PRIOQ_INSERT_HEAD(pthread); } else { /* Set the new active priority. */ pthread->active_priority = active_prio; PTHREAD_PRIOQ_INSERT_TAIL(pthread); } } else { /* Set the new active priority. */ pthread->active_priority = active_prio; } #endif pthread->active_priority = active_prio; } } void _mutex_unlock_private(pthread_t pthread) { struct pthread_mutex *m, *m_next; for (m = TAILQ_FIRST(&pthread->mutexq); m != NULL; m = m_next) { m_next = TAILQ_NEXT(m, m_qe); if ((m->m_flags & MUTEX_FLAGS_PRIVATE) != 0) _pthread_mutex_unlock(&m); } } void _mutex_lock_backout(pthread_t pthread) { struct pthread_mutex *mutex; mutex = pthread->data.mutex; if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0) { mutex_queue_remove(mutex, pthread); /* This thread is no longer waiting for the mutex: */ pthread->data.mutex = NULL; } } /* * Dequeue a waiting thread from the head of a mutex queue in descending * priority order. This funtion will return with the thread locked. */ static inline pthread_t mutex_queue_deq(pthread_mutex_t mutex) { pthread_t pthread; while ((pthread = TAILQ_FIRST(&mutex->m_queue)) != NULL) { _thread_critical_enter(pthread); TAILQ_REMOVE(&mutex->m_queue, pthread, sqe); pthread->flags &= ~PTHREAD_FLAGS_IN_MUTEXQ; /* * Only exit the loop if the thread hasn't been * cancelled. */ if ((pthread->cancelflags & PTHREAD_CANCELLING) == 0 && pthread->state == PS_MUTEX_WAIT) break; else _thread_critical_exit(pthread); } return (pthread); } /* * Remove a waiting thread from a mutex queue in descending priority order. */ static inline void mutex_queue_remove(pthread_mutex_t mutex, pthread_t pthread) { if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0) { TAILQ_REMOVE(&mutex->m_queue, pthread, sqe); pthread->flags &= ~PTHREAD_FLAGS_IN_MUTEXQ; } } /* * Enqueue a waiting thread to a queue in descending priority order. */ static inline void mutex_queue_enq(pthread_mutex_t mutex, pthread_t pthread) { pthread_t tid = TAILQ_LAST(&mutex->m_queue, mutex_head); char *name; name = pthread->name ? pthread->name : "unknown"; if ((pthread->flags & PTHREAD_FLAGS_IN_CONDQ) != 0) _thread_printf(2, "Thread (%s:%u) already on condq\n", pthread->name, pthread->uniqueid); if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0) _thread_printf(2, "Thread (%s:%u) already on mutexq\n", pthread->name, pthread->uniqueid); PTHREAD_ASSERT_NOT_IN_SYNCQ(pthread); /* * For the common case of all threads having equal priority, * we perform a quick check against the priority of the thread * at the tail of the queue. */ if ((tid == NULL) || (pthread->active_priority <= tid->active_priority)) TAILQ_INSERT_TAIL(&mutex->m_queue, pthread, sqe); else { tid = TAILQ_FIRST(&mutex->m_queue); while (pthread->active_priority <= tid->active_priority) tid = TAILQ_NEXT(tid, sqe); TAILQ_INSERT_BEFORE(tid, pthread, sqe); } pthread->flags |= PTHREAD_FLAGS_IN_MUTEXQ; } /* * Returns with the lock owned and on the threads mutexq if * it is currently unowned. Returns 1, otherwise. */ static int get_muncontested(pthread_mutex_t mutexp, int nonblock) { if (mutexp->m_owner != NULL && mutexp->m_owner != curthread) { return (-1); } else if (mutexp->m_owner == curthread) { if (nonblock) return (mutex_self_trylock(mutexp)); else return (mutex_self_lock(mutexp)); } /* * The mutex belongs to this thread now. Mark it as * such. Add it to the list of mutexes owned by this * thread. */ mutexp->m_owner = curthread; _MUTEX_ASSERT_NOT_OWNED(mutexp); TAILQ_INSERT_TAIL(&curthread->mutexq, mutexp, m_qe); return (0); } /* * Returns with the lock owned and on the thread's mutexq. If * the mutex is currently owned by another thread it will sleep * until it is available. */ static int get_mcontested(pthread_mutex_t mutexp, const struct timespec *abstime) { int error; /* * If the timeout is invalid this thread is not allowed * to block; */ if (abstime != NULL) { if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) return (EINVAL); } /* * Put this thread on the mutex's list of waiting threads. * The lock on the thread ensures atomic (as far as other * threads are concerned) setting of the thread state with * it's status on the mutex queue. */ _thread_critical_enter(curthread); mutex_queue_enq(mutexp, curthread); do { PTHREAD_SET_STATE(curthread, PS_MUTEX_WAIT); curthread->data.mutex = mutexp; _thread_critical_exit(curthread); _SPINUNLOCK(&mutexp->lock); error = _thread_suspend(curthread, abstime); if (error != 0 && error != EAGAIN && error != EINTR) PANIC("Cannot suspend on mutex."); _SPINLOCK(&mutexp->lock); _thread_critical_enter(curthread); if (error == EAGAIN) { /* * Between the timeout and when the mutex was * locked the previous owner may have released * the mutex to this thread. Or not. */ if (mutexp->m_owner == curthread) { error = 0; } else { _mutex_lock_backout(curthread); curthread->state = PS_RUNNING; error = ETIMEDOUT; } } } while ((curthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0); _thread_critical_exit(curthread); return (error); }