/*- * Copyright (c) 2005 Joseph Koshy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #define PMCLOG_BUFFER_SIZE 4096 /* * API NOTES * * The pmclog(3) API is oriented towards parsing an event stream in * "realtime", i.e., from an data source that may or may not preserve * record boundaries -- for example when the data source is elsewhere * on a network. The API allows data to be fed into the parser zero * or more bytes at a time. * * The state for a log file parser is maintained in a 'struct * pmclog_parse_state'. Parser invocations are done by calling * 'pmclog_read()'; this function will inform the caller when a * complete event is parsed. * * The parser first assembles a complete log file event in an internal * work area (see "ps_saved" below). Once a complete log file event * is read, the parser then parses it and converts it to an event * descriptor usable by the client. We could possibly avoid this two * step process by directly parsing the input log to set fields in the * event record. However the parser's state machine would get * insanely complicated, and this code is unlikely to be used in * performance critical paths. */ enum pmclog_parser_state { PL_STATE_NEW_RECORD, /* in-between records */ PL_STATE_EXPECTING_HEADER, /* header being read */ PL_STATE_PARTIAL_RECORD, /* header present but not the record */ PL_STATE_ERROR /* parsing error encountered */ }; struct pmclog_parse_state { enum pmclog_parser_state ps_state; enum pmc_cputype ps_arch; /* log file architecture */ uint32_t ps_version; /* hwpmc version */ int ps_initialized; /* whether initialized */ int ps_count; /* count of records processed */ off_t ps_offset; /* stream byte offset */ union pmclog_entry ps_saved; /* saved partial log entry */ int ps_svcount; /* #bytes saved */ int ps_fd; /* active fd or -1 */ char *ps_buffer; /* scratch buffer if fd != -1 */ char *ps_data; /* current parse pointer */ size_t ps_len; /* length of buffered data */ }; #define PMCLOG_HEADER_FROM_SAVED_STATE(PS) \ (* ((uint32_t *) &(PS)->ps_saved)) #define PMCLOG_INITIALIZE_READER(LE,A) LE = (uint32_t *) &(A) #define PMCLOG_READ32(LE,V) do { \ (V) = *(LE)++; \ } while (0) #define PMCLOG_READ64(LE,V) do { \ uint64_t _v; \ _v = (uint64_t) *(LE)++; \ _v |= ((uint64_t) *(LE)++) << 32; \ (V) = _v; \ } while (0) #define PMCLOG_READSTRING(LE,DST,LEN) strlcpy((DST), (char *) (LE), (LEN)) /* * Assemble a log record from '*len' octets starting from address '*data'. * Update 'data' and 'len' to reflect the number of bytes consumed. * * '*data' is potentially an unaligned address and '*len' octets may * not be enough to complete a event record. */ static enum pmclog_parser_state pmclog_get_record(struct pmclog_parse_state *ps, char **data, ssize_t *len) { int avail, copylen, recordsize, used; uint32_t h; const int HEADERSIZE = sizeof(uint32_t); char *src, *dst; if ((avail = *len) <= 0) return (ps->ps_state = PL_STATE_ERROR); src = *data; h = used = 0; if (ps->ps_state == PL_STATE_NEW_RECORD) ps->ps_svcount = 0; dst = (char *) &ps->ps_saved + ps->ps_svcount; switch (ps->ps_state) { case PL_STATE_NEW_RECORD: /* * Transitions: * * Case A: avail < headersize * -> 'expecting header' * * Case B: avail >= headersize * B.1: avail < recordsize * -> 'partial record' * B.2: avail >= recordsize * -> 'new record' */ copylen = avail < HEADERSIZE ? avail : HEADERSIZE; bcopy(src, dst, copylen); ps->ps_svcount = used = copylen; if (copylen < HEADERSIZE) { ps->ps_state = PL_STATE_EXPECTING_HEADER; goto done; } src += copylen; dst += copylen; h = PMCLOG_HEADER_FROM_SAVED_STATE(ps); recordsize = PMCLOG_HEADER_TO_LENGTH(h); if (recordsize <= 0) goto error; if (recordsize <= avail) { /* full record available */ bcopy(src, dst, recordsize - copylen); ps->ps_svcount = used = recordsize; goto done; } /* header + a partial record is available */ bcopy(src, dst, avail - copylen); ps->ps_svcount = used = avail; ps->ps_state = PL_STATE_PARTIAL_RECORD; break; case PL_STATE_EXPECTING_HEADER: /* * Transitions: * * Case C: avail+saved < headersize * -> 'expecting header' * * Case D: avail+saved >= headersize * D.1: avail+saved < recordsize * -> 'partial record' * D.2: avail+saved >= recordsize * -> 'new record' * (see PARTIAL_RECORD handling below) */ if (avail + ps->ps_svcount < HEADERSIZE) { bcopy(src, dst, avail); ps->ps_svcount += avail; used = avail; break; } used = copylen = HEADERSIZE - ps->ps_svcount; bcopy(src, dst, copylen); src += copylen; dst += copylen; avail -= copylen; ps->ps_svcount += copylen; /*FALLTHROUGH*/ case PL_STATE_PARTIAL_RECORD: /* * Transitions: * * Case E: avail+saved < recordsize * -> 'partial record' * * Case F: avail+saved >= recordsize * -> 'new record' */ h = PMCLOG_HEADER_FROM_SAVED_STATE(ps); recordsize = PMCLOG_HEADER_TO_LENGTH(h); if (recordsize <= 0) goto error; if (avail + ps->ps_svcount < recordsize) { copylen = avail; ps->ps_state = PL_STATE_PARTIAL_RECORD; } else { copylen = recordsize - ps->ps_svcount; ps->ps_state = PL_STATE_NEW_RECORD; } bcopy(src, dst, copylen); ps->ps_svcount += copylen; used += copylen; break; default: goto error; } done: *data += used; *len -= used; return ps->ps_state; error: ps->ps_state = PL_STATE_ERROR; return ps->ps_state; } /* * Get an event from the stream pointed to by '*data'. '*len' * indicates the number of bytes available to parse. Arguments * '*data' and '*len' are updated to indicate the number of bytes * consumed. */ static int pmclog_get_event(void *cookie, char **data, ssize_t *len, struct pmclog_ev *ev) { int evlen, pathlen; uint32_t h, *le; enum pmclog_parser_state e; struct pmclog_parse_state *ps; ps = (struct pmclog_parse_state *) cookie; assert(ps->ps_state != PL_STATE_ERROR); if ((e = pmclog_get_record(ps,data,len)) == PL_STATE_ERROR) { ev->pl_state = PMCLOG_ERROR; return -1; } if (e != PL_STATE_NEW_RECORD) { ev->pl_state = PMCLOG_REQUIRE_DATA; return -1; } PMCLOG_INITIALIZE_READER(le, ps->ps_saved); PMCLOG_READ32(le,h); if (!PMCLOG_HEADER_CHECK_MAGIC(h)) { ps->ps_state = PL_STATE_ERROR; ev->pl_state = PMCLOG_ERROR; return -1; } /* copy out the time stamp */ PMCLOG_READ32(le,ev->pl_ts.tv_sec); PMCLOG_READ32(le,ev->pl_ts.tv_nsec); evlen = PMCLOG_HEADER_TO_LENGTH(h); #define PMCLOG_GET_PATHLEN(P,E,TYPE) do { \ (P) = (E) - offsetof(struct TYPE, pl_pathname); \ if ((P) > PATH_MAX || (P) < 0) \ goto error; \ } while (0) switch (ev->pl_type = PMCLOG_HEADER_TO_TYPE(h)) { case PMCLOG_TYPE_CLOSELOG: case PMCLOG_TYPE_DROPNOTIFY: /* nothing to do */ break; case PMCLOG_TYPE_INITIALIZE: PMCLOG_READ32(le,ev->pl_u.pl_i.pl_version); PMCLOG_READ32(le,ev->pl_u.pl_i.pl_arch); ps->ps_version = ev->pl_u.pl_i.pl_version; ps->ps_arch = ev->pl_u.pl_i.pl_arch; ps->ps_initialized = 1; break; case PMCLOG_TYPE_MAPPINGCHANGE: PMCLOG_GET_PATHLEN(pathlen,evlen,pmclog_mappingchange); PMCLOG_READ32(le,ev->pl_u.pl_m.pl_type); PMCLOG_READADDR(le,ev->pl_u.pl_m.pl_start); PMCLOG_READADDR(le,ev->pl_u.pl_m.pl_end); PMCLOG_READ32(le,ev->pl_u.pl_m.pl_pid); PMCLOG_READSTRING(le, ev->pl_u.pl_m.pl_pathname, pathlen); break; case PMCLOG_TYPE_PCSAMPLE: PMCLOG_READ32(le,ev->pl_u.pl_s.pl_pid); PMCLOG_READADDR(le,ev->pl_u.pl_s.pl_pc); PMCLOG_READ32(le,ev->pl_u.pl_s.pl_pmcid); PMCLOG_READ32(le,ev->pl_u.pl_s.pl_usermode); break; case PMCLOG_TYPE_PMCALLOCATE: PMCLOG_READ32(le,ev->pl_u.pl_a.pl_pmcid); PMCLOG_READ32(le,ev->pl_u.pl_a.pl_event); PMCLOG_READ32(le,ev->pl_u.pl_a.pl_flags); if ((ev->pl_u.pl_a.pl_evname = pmc_name_of_event(ev->pl_u.pl_a.pl_event)) == NULL) goto error; break; case PMCLOG_TYPE_PMCATTACH: PMCLOG_GET_PATHLEN(pathlen,evlen,pmclog_pmcattach); PMCLOG_READ32(le,ev->pl_u.pl_t.pl_pmcid); PMCLOG_READ32(le,ev->pl_u.pl_t.pl_pid); PMCLOG_READSTRING(le,ev->pl_u.pl_t.pl_pathname,pathlen); break; case PMCLOG_TYPE_PMCDETACH: PMCLOG_READ32(le,ev->pl_u.pl_d.pl_pmcid); PMCLOG_READ32(le,ev->pl_u.pl_d.pl_pid); break; case PMCLOG_TYPE_PROCCSW: PMCLOG_READ32(le,ev->pl_u.pl_c.pl_pmcid); PMCLOG_READ64(le,ev->pl_u.pl_c.pl_value); PMCLOG_READ32(le,ev->pl_u.pl_c.pl_pid); break; case PMCLOG_TYPE_PROCEXEC: PMCLOG_GET_PATHLEN(pathlen,evlen,pmclog_procexec); PMCLOG_READ32(le,ev->pl_u.pl_x.pl_pid); PMCLOG_READADDR(le,ev->pl_u.pl_x.pl_entryaddr); PMCLOG_READ32(le,ev->pl_u.pl_x.pl_pmcid); PMCLOG_READSTRING(le,ev->pl_u.pl_x.pl_pathname,pathlen); break; case PMCLOG_TYPE_PROCEXIT: PMCLOG_READ32(le,ev->pl_u.pl_e.pl_pmcid); PMCLOG_READ64(le,ev->pl_u.pl_e.pl_value); PMCLOG_READ32(le,ev->pl_u.pl_e.pl_pid); break; case PMCLOG_TYPE_PROCFORK: PMCLOG_READ32(le,ev->pl_u.pl_f.pl_oldpid); PMCLOG_READ32(le,ev->pl_u.pl_f.pl_newpid); break; case PMCLOG_TYPE_SYSEXIT: PMCLOG_READ32(le,ev->pl_u.pl_se.pl_pid); break; case PMCLOG_TYPE_USERDATA: PMCLOG_READ32(le,ev->pl_u.pl_u.pl_userdata); break; default: /* unknown record type */ ps->ps_state = PL_STATE_ERROR; ev->pl_state = PMCLOG_ERROR; return -1; } ev->pl_offset = (ps->ps_offset += evlen); ev->pl_count = (ps->ps_count += 1); ev->pl_state = PMCLOG_OK; return 0; error: ev->pl_state = PMCLOG_ERROR; ps->ps_state = PL_STATE_ERROR; return -1; } /* * Extract and return the next event from the byte stream. * * Returns 0 and sets the event's state to PMCLOG_OK in case an event * was successfully parsed. Otherwise this function returns -1 and * sets the event's state to one of PMCLOG_REQUIRE_DATA (if more data * is needed) or PMCLOG_EOF (if an EOF was seen) or PMCLOG_ERROR if * a parse error was encountered. */ int pmclog_read(void *cookie, struct pmclog_ev *ev) { int retval; ssize_t nread; struct pmclog_parse_state *ps; ps = (struct pmclog_parse_state *) cookie; if (ps->ps_state == PL_STATE_ERROR) { ev->pl_state = PMCLOG_ERROR; return -1; } /* * If there isn't enough data left for a new event try and get * more data. */ if (ps->ps_len == 0) { ev->pl_state = PMCLOG_REQUIRE_DATA; /* * If we have a valid file descriptor to read from, attempt * to read from that. This read may return with an error, * (which may be EAGAIN or other recoverable error), or * can return EOF. */ if (ps->ps_fd != PMCLOG_FD_NONE) { refill: nread = read(ps->ps_fd, ps->ps_buffer, PMCLOG_BUFFER_SIZE); if (nread <= 0) { if (nread == 0) ev->pl_state = PMCLOG_EOF; else if (errno != EAGAIN) /* not restartable */ ev->pl_state = PMCLOG_ERROR; return -1; } ps->ps_len = nread; ps->ps_data = ps->ps_buffer; } else return -1; } assert(ps->ps_len > 0); /* Retrieve one event from the byte stream. */ retval = pmclog_get_event(ps, &ps->ps_data, &ps->ps_len, ev); /* * If we need more data and we have a configured fd, try read * from it. */ if (retval < 0 && ev->pl_state == PMCLOG_REQUIRE_DATA && ps->ps_fd != -1) { assert(ps->ps_len == 0); goto refill; } return retval; } /* * Feed data to a memory based parser. * * The memory area pointed to by 'data' needs to be valid till the * next error return from pmclog_next_event(). */ int pmclog_feed(void *cookie, char *data, int len) { struct pmclog_parse_state *ps; ps = (struct pmclog_parse_state *) cookie; if (len < 0 || /* invalid length */ ps->ps_buffer || /* called for a file parser */ ps->ps_len != 0) /* unnecessary call */ return -1; ps->ps_data = data; ps->ps_len = len; return 0; } /* * Allocate and initialize parser state. */ void * pmclog_open(int fd) { struct pmclog_parse_state *ps; if ((ps = (struct pmclog_parse_state *) malloc(sizeof(*ps))) == NULL) return NULL; ps->ps_state = PL_STATE_NEW_RECORD; ps->ps_arch = -1; ps->ps_initialized = 0; ps->ps_count = 0; ps->ps_offset = (off_t) 0; bzero(&ps->ps_saved, sizeof(ps->ps_saved)); ps->ps_svcount = 0; ps->ps_fd = fd; ps->ps_data = NULL; ps->ps_buffer = NULL; ps->ps_len = 0; /* allocate space for a work area */ if (ps->ps_fd != PMCLOG_FD_NONE) { if ((ps->ps_buffer = malloc(PMCLOG_BUFFER_SIZE)) == NULL) return NULL; } return ps; } /* * Free up parser state. */ void pmclog_close(void *cookie) { struct pmclog_parse_state *ps; ps = (struct pmclog_parse_state *) cookie; if (ps->ps_buffer) free(ps->ps_buffer); free(ps); }