/*- * Copyright (c) 2006-2008 Joseph Koshy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include "_libelf.h" /* WARNING: GENERATED FROM __file__. */ /* * Macros to swap various integral quantities. */ #define SWAP_HALF(X) do { \ uint16_t _x = (uint16_t) (X); \ uint16_t _t = _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ (X) = _t; \ } while (0) #define SWAP_WORD(X) do { \ uint32_t _x = (uint32_t) (X); \ uint32_t _t = _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ (X) = _t; \ } while (0) #define SWAP_ADDR32(X) SWAP_WORD(X) #define SWAP_OFF32(X) SWAP_WORD(X) #define SWAP_SWORD(X) SWAP_WORD(X) #define SWAP_WORD64(X) do { \ uint64_t _x = (uint64_t) (X); \ uint64_t _t = _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ (X) = _t; \ } while (0) #define SWAP_ADDR64(X) SWAP_WORD64(X) #define SWAP_LWORD(X) SWAP_WORD64(X) #define SWAP_OFF64(X) SWAP_WORD64(X) #define SWAP_SXWORD(X) SWAP_WORD64(X) #define SWAP_XWORD(X) SWAP_WORD64(X) /* * Write out various integral values. The destination pointer could * be unaligned. Values are written out in native byte order. The * destination pointer is incremented after the write. */ #define WRITE_BYTE(P,X) do { \ char *const _p = (char *) (P); \ _p[0] = (char) (X); \ (P) = _p + 1; \ } while (0) #define WRITE_HALF(P,X) do { \ uint16_t _t = (X); \ char *const _p = (char *) (P); \ const char *const _q = (char *) &_t; \ _p[0] = _q[0]; \ _p[1] = _q[1]; \ (P) = _p + 2; \ } while (0) #define WRITE_WORD(P,X) do { \ uint32_t _t = (X); \ char *const _p = (char *) (P); \ const char *const _q = (char *) &_t; \ _p[0] = _q[0]; \ _p[1] = _q[1]; \ _p[2] = _q[2]; \ _p[3] = _q[3]; \ (P) = _p + 4; \ } while (0) #define WRITE_ADDR32(P,X) WRITE_WORD(P,X) #define WRITE_OFF32(P,X) WRITE_WORD(P,X) #define WRITE_SWORD(P,X) WRITE_WORD(P,X) #define WRITE_WORD64(P,X) do { \ uint64_t _t = (X); \ char *const _p = (char *) (P); \ const char *const _q = (char *) &_t; \ _p[0] = _q[0]; \ _p[1] = _q[1]; \ _p[2] = _q[2]; \ _p[3] = _q[3]; \ _p[4] = _q[4]; \ _p[5] = _q[5]; \ _p[6] = _q[6]; \ _p[7] = _q[7]; \ (P) = _p + 8; \ } while (0) #define WRITE_ADDR64(P,X) WRITE_WORD64(P,X) #define WRITE_LWORD(P,X) WRITE_WORD64(P,X) #define WRITE_OFF64(P,X) WRITE_WORD64(P,X) #define WRITE_SXWORD(P,X) WRITE_WORD64(P,X) #define WRITE_XWORD(P,X) WRITE_WORD64(P,X) #define WRITE_IDENT(P,X) do { \ (void) memcpy((P), (X), sizeof((X))); \ (P) = (P) + EI_NIDENT; \ } while (0) /* * Read in various integral values. The source pointer could be * unaligned. Values are read in native byte order. The source * pointer is incremented appropriately. */ #define READ_BYTE(P,X) do { \ const char *const _p = \ (const char *) (P); \ (X) = _p[0]; \ (P) = (P) + 1; \ } while (0) #define READ_HALF(P,X) do { \ uint16_t _t; \ char *const _q = (char *) &_t; \ const char *const _p = \ (const char *) (P); \ _q[0] = _p[0]; \ _q[1] = _p[1]; \ (P) = (P) + 2; \ (X) = _t; \ } while (0) #define READ_WORD(P,X) do { \ uint32_t _t; \ char *const _q = (char *) &_t; \ const char *const _p = \ (const char *) (P); \ _q[0] = _p[0]; \ _q[1] = _p[1]; \ _q[2] = _p[2]; \ _q[3] = _p[3]; \ (P) = (P) + 4; \ (X) = _t; \ } while (0) #define READ_ADDR32(P,X) READ_WORD(P,X) #define READ_OFF32(P,X) READ_WORD(P,X) #define READ_SWORD(P,X) READ_WORD(P,X) #define READ_WORD64(P,X) do { \ uint64_t _t; \ char *const _q = (char *) &_t; \ const char *const _p = \ (const char *) (P); \ _q[0] = _p[0]; \ _q[1] = _p[1]; \ _q[2] = _p[2]; \ _q[3] = _p[3]; \ _q[4] = _p[4]; \ _q[5] = _p[5]; \ _q[6] = _p[6]; \ _q[7] = _p[7]; \ (P) = (P) + 8; \ (X) = _t; \ } while (0) #define READ_ADDR64(P,X) READ_WORD64(P,X) #define READ_LWORD(P,X) READ_WORD64(P,X) #define READ_OFF64(P,X) READ_WORD64(P,X) #define READ_SXWORD(P,X) READ_WORD64(P,X) #define READ_XWORD(P,X) READ_WORD64(P,X) #define READ_IDENT(P,X) do { \ (void) memcpy((X), (P), sizeof((X))); \ (P) = (P) + EI_NIDENT; \ } while (0) #define ROUNDUP2(V,N) (V) = ((((V) + (N) - 1)) & ~((N) - 1)) divert(-1) /* * Generate conversion routines for converting between in-memory and * file representations of Elf data structures. * * `In-memory' representations of an Elf data structure use natural * alignments and native byte ordering. This allows arithmetic and * casting to work as expected. On the other hand the `file' * representation of an ELF data structure could be packed tighter * than its `in-memory' representation, and could be of a differing * byte order. An additional complication is that `ar' only pads data * to even addresses and so ELF archive member data being read from * inside an `ar' archive could end up at misaligned memory addresses. * * Consequently, casting the `char *' pointers that point to memory * representations (i.e., source pointers for the *_tof() functions * and the destination pointers for the *_tom() functions), is safe, * as these pointers should be correctly aligned for the memory type * already. However, pointers to file representations have to be * treated as being potentially unaligned and no casting can be done. */ include(SRCDIR`/elf_types.m4') /* * `IGNORE'_* flags turn off generation of template code. */ define(`IGNORE', `define(IGNORE_$1`'32, 1) define(IGNORE_$1`'64, 1)') IGNORE(MOVEP) IGNORE(NOTE) IGNORE(GNUHASH) define(IGNORE_BYTE, 1) /* 'lator, leave 'em bytes alone */ define(IGNORE_GNUHASH, 1) define(IGNORE_NOTE, 1) define(IGNORE_SXWORD32, 1) define(IGNORE_XWORD32, 1) /* * `BASE'_XXX flags cause class agnostic template functions * to be generated. */ define(`BASE_BYTE', 1) define(`BASE_HALF', 1) define(`BASE_NOTE', 1) define(`BASE_WORD', 1) define(`BASE_LWORD', 1) define(`BASE_SWORD', 1) define(`BASE_XWORD', 1) define(`BASE_SXWORD', 1) /* * `SIZEDEP'_XXX flags cause 32/64 bit variants to be generated * for each primitive type. */ define(`SIZEDEP_ADDR', 1) define(`SIZEDEP_OFF', 1) /* * `Primitive' ELF types are those that are an alias for an integral * type. They have no internal structure. These can be copied using * a `memcpy()', and byteswapped in straightforward way. * * Macro use: * `$1': Name of the ELF type. * `$2': C structure name suffix * `$3': ELF class specifier for symbols, one of [`', `32', `64'] * `$4': ELF class specifier for types, one of [`32', `64'] */ define(`MAKEPRIM_TO_F',` static int libelf_cvt_$1$3_tof(char *dst, size_t dsz, char *src, size_t count, int byteswap) { Elf$4_$2 t, *s = (Elf$4_$2 *) (uintptr_t) src; size_t c; (void) dsz; if (!byteswap) { (void) memcpy(dst, src, count * sizeof(*s)); return (1); } for (c = 0; c < count; c++) { t = *s++; SWAP_$1$3(t); WRITE_$1$3(dst,t); } return (1); } ') define(`MAKEPRIM_TO_M',` static int libelf_cvt_$1$3_tom(char *dst, size_t dsz, char *src, size_t count, int byteswap) { Elf$4_$2 t, *d = (Elf$4_$2 *) (uintptr_t) dst; size_t c; if (dsz < count * sizeof(Elf$4_$2)) return (0); if (!byteswap) { (void) memcpy(dst, src, count * sizeof(*d)); return (1); } for (c = 0; c < count; c++) { READ_$1$3(src,t); SWAP_$1$3(t); *d++ = t; } return (1); } ') define(`SWAP_FIELD', `ifdef(`IGNORE_'$2,`', `ifelse(BASE_$2,1, `SWAP_$2(t.$1); ', `ifelse($2,BYTE,`', `ifelse($2,IDENT,`', `SWAP_$2'SZ()`(t.$1); ')')')')') define(`SWAP_MEMBERS', `ifelse($#,1,`/**/', `SWAP_FIELD($1)SWAP_MEMBERS(shift($@))')') define(`SWAP_STRUCT', `pushdef(`SZ',$2)/* Swap an Elf$2_$1 */ SWAP_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')') define(`WRITE_FIELD', `ifelse(BASE_$2,1, `WRITE_$2(dst,t.$1); ', `ifelse($2,IDENT, `WRITE_$2(dst,t.$1); ', `WRITE_$2'SZ()`(dst,t.$1); ')')') define(`WRITE_MEMBERS', `ifelse($#,1,`/**/', `WRITE_FIELD($1)WRITE_MEMBERS(shift($@))')') define(`WRITE_STRUCT', `pushdef(`SZ',$2)/* Write an Elf$2_$1 */ WRITE_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')') define(`READ_FIELD', `ifelse(BASE_$2,1, `READ_$2(s,t.$1); ', `ifelse($2,IDENT, `READ_$2(s,t.$1); ', `READ_$2'SZ()`(s,t.$1); ')')') define(`READ_MEMBERS', `ifelse($#,1,`/**/', `READ_FIELD($1)READ_MEMBERS(shift($@))')') define(`READ_STRUCT', `pushdef(`SZ',$2)/* Read an Elf$2_$1 */ READ_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')') /* * Converters for non-integral ELF data structures. * * When converting data to file representation, the source pointer * will be naturally aligned for a data structure's in-memory * representation. When converting data to memory, the destination * pointer will be similarly aligned. * * For in-place conversions, when converting to file representations, * the source buffer is large enough to hold `file' data. When * converting from file to memory, we need to be careful to work * `backwards', to avoid overwriting unconverted data. * * Macro use: * `$1': Name of the ELF type. * `$2': C structure name suffix. * `$3': ELF class specifier, one of [`', `32', `64'] */ define(`MAKE_TO_F', `ifdef(`IGNORE_'$1$3,`',` static int libelf_cvt$3_$1_tof(char *dst, size_t dsz, char *src, size_t count, int byteswap) { Elf$3_$2 t, *s; size_t c; (void) dsz; s = (Elf$3_$2 *) (uintptr_t) src; for (c = 0; c < count; c++) { t = *s++; if (byteswap) { SWAP_STRUCT($2,$3) } WRITE_STRUCT($2,$3) } return (1); } ')') define(`MAKE_TO_M', `ifdef(`IGNORE_'$1$3,`',` static int libelf_cvt$3_$1_tom(char *dst, size_t dsz, char *src, size_t count, int byteswap) { Elf$3_$2 t, *d; char *s,*s0; size_t fsz; fsz = elf$3_fsize(ELF_T_$1, (size_t) 1, EV_CURRENT); d = ((Elf$3_$2 *) (uintptr_t) dst) + (count - 1); s0 = (char *) src + (count - 1) * fsz; if (dsz < count * sizeof(Elf$3_$2)) return (0); while (count--) { s = s0; READ_STRUCT($2,$3) if (byteswap) { SWAP_STRUCT($2,$3) } *d-- = t; s0 -= fsz; } return (1); } ')') /* * Make type convertor functions from the type definition * of the ELF type: * - if the type is a base (i.e., `primitive') type: * - if it is marked as to be ignored (i.e., `IGNORE_'TYPE) * is defined, we skip the code generation step. * - if the type is declared as `SIZEDEP', then 32 and 64 bit * variants of the conversion functions are generated. * - otherwise a 32 bit variant is generated. * - if the type is a structure type, we generate 32 and 64 bit * variants of the conversion functions. */ define(`MAKE_TYPE_CONVERTER', `#if __FreeBSD_version >= $3 /* $1 */ ifdef(`BASE'_$1, `ifdef(`IGNORE_'$1,`', `MAKEPRIM_TO_F($1,$2,`',64) MAKEPRIM_TO_M($1,$2,`',64)')', `ifdef(`SIZEDEP_'$1, `MAKEPRIM_TO_F($1,$2,32,32)dnl MAKEPRIM_TO_M($1,$2,32,32)dnl MAKEPRIM_TO_F($1,$2,64,64)dnl MAKEPRIM_TO_M($1,$2,64,64)', `MAKE_TO_F($1,$2,32)dnl MAKE_TO_F($1,$2,64)dnl MAKE_TO_M($1,$2,32)dnl MAKE_TO_M($1,$2,64)')') #endif /* $1 */ ') define(`MAKE_TYPE_CONVERTERS', `ifelse($#,1,`', `MAKE_TYPE_CONVERTER($1)MAKE_TYPE_CONVERTERS(shift($@))')') divert(0) /* * Sections of type ELF_T_BYTE are never byteswapped, consequently a * simple memcpy suffices for both directions of conversion. */ static int libelf_cvt_BYTE_tox(char *dst, size_t dsz, char *src, size_t count, int byteswap) { (void) byteswap; if (dsz < count) return (0); if (dst != src) (void) memcpy(dst, src, count); return (1); } MAKE_TYPE_CONVERTERS(ELF_TYPE_LIST) #if __FreeBSD_version >= 800062 /* * Sections of type ELF_T_GNUHASH start with a header containing 4 32-bit * words. Bloom filter data comes next, followed by hash buckets and the * hash chain. * * Bloom filter words are 64 bit wide on ELFCLASS64 objects and are 32 bit * wide on ELFCLASS32 objects. The other objects in this section are 32 * bits wide. * * Argument `srcsz' denotes the number of bytes to be converted. In the * 32-bit case we need to translate `srcsz' to a count of 32-bit words. */ static int libelf_cvt32_GNUHASH_tom(char *dst, size_t dsz, char *src, size_t srcsz, int byteswap) { return (libelf_cvt_WORD_tom(dst, dsz, src, srcsz / sizeof(uint32_t), byteswap)); } static int libelf_cvt32_GNUHASH_tof(char *dst, size_t dsz, char *src, size_t srcsz, int byteswap) { return (libelf_cvt_WORD_tof(dst, dsz, src, srcsz / sizeof(uint32_t), byteswap)); } static int libelf_cvt64_GNUHASH_tom(char *dst, size_t dsz, char *src, size_t srcsz, int byteswap) { size_t sz; uint64_t t64, *bloom64; Elf_GNU_Hash_Header *gh; uint32_t n, nbuckets, nchains, maskwords, shift2, symndx, t32; uint32_t *buckets, *chains; sz = 4 * sizeof(uint32_t); /* File header is 4 words long. */ if (dsz < sizeof(Elf_GNU_Hash_Header) || srcsz < sz) return (0); /* Read in the section header and byteswap if needed. */ READ_WORD(src, nbuckets); READ_WORD(src, symndx); READ_WORD(src, maskwords); READ_WORD(src, shift2); srcsz -= sz; if (byteswap) { SWAP_WORD(nbuckets); SWAP_WORD(symndx); SWAP_WORD(maskwords); SWAP_WORD(shift2); } /* Check source buffer and destination buffer sizes. */ sz = nbuckets * sizeof(uint32_t) + maskwords * sizeof(uint64_t); if (srcsz < sz || dsz < sz + sizeof(Elf_GNU_Hash_Header)) return (0); gh = (Elf_GNU_Hash_Header *) (uintptr_t) dst; gh->gh_nbuckets = nbuckets; gh->gh_symndx = symndx; gh->gh_maskwords = maskwords; gh->gh_shift2 = shift2; dsz -= sizeof(Elf_GNU_Hash_Header); dst += sizeof(Elf_GNU_Hash_Header); bloom64 = (uint64_t *) (uintptr_t) dst; /* Copy bloom filter data. */ for (n = 0; n < maskwords; n++) { READ_XWORD(src, t64); if (byteswap) SWAP_XWORD(t64); bloom64[n] = t64; } /* The hash buckets follows the bloom filter. */ dst += maskwords * sizeof(uint64_t); buckets = (uint32_t *) (uintptr_t) dst; for (n = 0; n < nbuckets; n++) { READ_WORD(src, t32); if (byteswap) SWAP_WORD(t32); buckets[n] = t32; } dst += nbuckets * sizeof(uint32_t); /* The hash chain follows the hash buckets. */ dsz -= sz; srcsz -= sz; if (dsz < srcsz) /* Destination lacks space. */ return (0); nchains = srcsz / sizeof(uint32_t); chains = (uint32_t *) (uintptr_t) dst; for (n = 0; n < nchains; n++) { READ_WORD(src, t32); if (byteswap) SWAP_WORD(t32); *chains++ = t32; } return (1); } static int libelf_cvt64_GNUHASH_tof(char *dst, size_t dsz, char *src, size_t srcsz, int byteswap) { uint32_t *s32; size_t sz, hdrsz; uint64_t *s64, t64; Elf_GNU_Hash_Header *gh; uint32_t maskwords, n, nbuckets, nchains, t0, t1, t2, t3, t32; hdrsz = 4 * sizeof(uint32_t); /* Header is 4x32 bits. */ if (dsz < hdrsz || srcsz < sizeof(Elf_GNU_Hash_Header)) return (0); gh = (Elf_GNU_Hash_Header *) (uintptr_t) src; t0 = nbuckets = gh->gh_nbuckets; t1 = gh->gh_symndx; t2 = maskwords = gh->gh_maskwords; t3 = gh->gh_shift2; src += sizeof(Elf_GNU_Hash_Header); srcsz -= sizeof(Elf_GNU_Hash_Header); dsz -= hdrsz; sz = gh->gh_nbuckets * sizeof(uint32_t) + gh->gh_maskwords * sizeof(uint64_t); if (srcsz < sz || dsz < sz) return (0); /* Write out the header. */ if (byteswap) { SWAP_WORD(t0); SWAP_WORD(t1); SWAP_WORD(t2); SWAP_WORD(t3); } WRITE_WORD(dst, t0); WRITE_WORD(dst, t1); WRITE_WORD(dst, t2); WRITE_WORD(dst, t3); /* Copy the bloom filter and the hash table. */ s64 = (uint64_t *) (uintptr_t) src; for (n = 0; n < maskwords; n++) { t64 = *s64++; if (byteswap) SWAP_XWORD(t64); WRITE_WORD64(dst, t64); } s32 = (uint32_t *) s64; for (n = 0; n < nbuckets; n++) { t32 = *s32++; if (byteswap) SWAP_WORD(t32); WRITE_WORD(dst, t32); } srcsz -= sz; dsz -= sz; /* Copy out the hash chains. */ if (dsz < srcsz) return (0); nchains = srcsz / sizeof(uint32_t); for (n = 0; n < nchains; n++) { t32 = *s32++; if (byteswap) SWAP_WORD(t32); WRITE_WORD(dst, t32); } return (1); } #endif /* * Elf_Note structures comprise a fixed size header followed by variable * length strings. The fixed size header needs to be byte swapped, but * not the strings. * * Argument `count' denotes the total number of bytes to be converted. * The destination buffer needs to be at least `count' bytes in size. */ static int libelf_cvt_NOTE_tom(char *dst, size_t dsz, char *src, size_t count, int byteswap) { uint32_t namesz, descsz, type; Elf_Note *en; size_t sz, hdrsz; if (dsz < count) /* Destination buffer is too small. */ return (0); hdrsz = 3 * sizeof(uint32_t); if (count < hdrsz) /* Source too small. */ return (0); if (!byteswap) { (void) memcpy(dst, src, count); return (1); } /* Process all notes in the section. */ while (count > hdrsz) { /* Read the note header. */ READ_WORD(src, namesz); READ_WORD(src, descsz); READ_WORD(src, type); /* Translate. */ SWAP_WORD(namesz); SWAP_WORD(descsz); SWAP_WORD(type); /* Copy out the translated note header. */ en = (Elf_Note *) (uintptr_t) dst; en->n_namesz = namesz; en->n_descsz = descsz; en->n_type = type; dsz -= sizeof(Elf_Note); dst += sizeof(Elf_Note); count -= hdrsz; ROUNDUP2(namesz, 4); ROUNDUP2(descsz, 4); sz = namesz + descsz; if (count < sz || dsz < sz) /* Buffers are too small. */ return (0); (void) memcpy(dst, src, sz); src += sz; dst += sz; count -= sz; dsz -= sz; } return (1); } static int libelf_cvt_NOTE_tof(char *dst, size_t dsz, char *src, size_t count, int byteswap) { uint32_t namesz, descsz, type; Elf_Note *en; size_t sz; if (dsz < count) return (0); if (!byteswap) { (void) memcpy(dst, src, count); return (1); } while (count > sizeof(Elf_Note)) { en = (Elf_Note *) (uintptr_t) src; namesz = en->n_namesz; descsz = en->n_descsz; type = en->n_type; SWAP_WORD(namesz); SWAP_WORD(descsz); SWAP_WORD(type); WRITE_WORD(dst, namesz); WRITE_WORD(dst, descsz); WRITE_WORD(dst, type); src += sizeof(Elf_Note); ROUNDUP2(namesz, 4); ROUNDUP2(descsz, 4); sz = namesz + descsz; if (count < sz) sz = count; (void) memcpy(dst, src, sz); src += sz; dst += sz; count -= sz; } return (1); } struct converters { int (*tof32)(char *dst, size_t dsz, char *src, size_t cnt, int byteswap); int (*tom32)(char *dst, size_t dsz, char *src, size_t cnt, int byteswap); int (*tof64)(char *dst, size_t dsz, char *src, size_t cnt, int byteswap); int (*tom64)(char *dst, size_t dsz, char *src, size_t cnt, int byteswap); }; divert(-1) define(`CONV', `ifdef(`IGNORE_'$1$2, `.$3$2 = NULL', `ifdef(`BASE_'$1, `.$3$2 = libelf_cvt_$1_$3', `ifdef(`SIZEDEP_'$1, `.$3$2 = libelf_cvt_$1$2_$3', `.$3$2 = libelf_cvt$2_$1_$3')')')') define(`CONVERTER_NAME', `ifdef(`IGNORE_'$1,`', `#if __FreeBSD_version >= $3 [ELF_T_$1] = { CONV($1,32,tof), CONV($1,32,tom), CONV($1,64,tof), CONV($1,64,tom) }, #endif ')') define(`CONVERTER_NAMES', `ifelse($#,1,`', `CONVERTER_NAME($1)CONVERTER_NAMES(shift($@))')') undefine(`IGNORE_BYTE32', `IGNORE_BYTE64') divert(0) static struct converters cvt[ELF_T_NUM] = { CONVERTER_NAMES(ELF_TYPE_LIST) /* * Types that needs hand-coded converters follow. */ [ELF_T_BYTE] = { .tof32 = libelf_cvt_BYTE_tox, .tom32 = libelf_cvt_BYTE_tox, .tof64 = libelf_cvt_BYTE_tox, .tom64 = libelf_cvt_BYTE_tox }, #if __FreeBSD_version >= 800062 [ELF_T_GNUHASH] = { .tof32 = libelf_cvt32_GNUHASH_tof, .tom32 = libelf_cvt32_GNUHASH_tom, .tof64 = libelf_cvt64_GNUHASH_tof, .tom64 = libelf_cvt64_GNUHASH_tom }, #endif [ELF_T_NOTE] = { .tof32 = libelf_cvt_NOTE_tof, .tom32 = libelf_cvt_NOTE_tom, .tof64 = libelf_cvt_NOTE_tof, .tom64 = libelf_cvt_NOTE_tom } }; int (*_libelf_get_translator(Elf_Type t, int direction, int elfclass)) (char *_dst, size_t dsz, char *_src, size_t _cnt, int _byteswap) { assert(elfclass == ELFCLASS32 || elfclass == ELFCLASS64); assert(direction == ELF_TOFILE || direction == ELF_TOMEMORY); if (t >= ELF_T_NUM || (elfclass != ELFCLASS32 && elfclass != ELFCLASS64) || (direction != ELF_TOFILE && direction != ELF_TOMEMORY)) return (NULL); return ((elfclass == ELFCLASS32) ? (direction == ELF_TOFILE ? cvt[t].tof32 : cvt[t].tom32) : (direction == ELF_TOFILE ? cvt[t].tof64 : cvt[t].tom64)); }