/* * Copyright (c) 2011 The FreeBSD Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Based on: * SHA256-based Unix crypt implementation. Released into the Public Domain by * Ulrich Drepper . */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include "crypt.h" /* Define our magic string to mark salt for SHA256 "encryption" replacement. */ static const char sha256_salt_prefix[] = "$5$"; /* Prefix for optional rounds specification. */ static const char sha256_rounds_prefix[] = "rounds="; /* Maximum salt string length. */ #define SALT_LEN_MAX 16 /* Default number of rounds if not explicitly specified. */ #define ROUNDS_DEFAULT 5000 /* Minimum number of rounds. */ #define ROUNDS_MIN 1000 /* Maximum number of rounds. */ #define ROUNDS_MAX 999999999 static char * crypt_sha256_r(const char *key, const char *salt, char *buffer, int buflen) { u_long srounds; int n; uint8_t alt_result[32], temp_result[32]; SHA256_CTX ctx, alt_ctx; size_t salt_len, key_len, cnt, rounds; char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp; const char *num; bool rounds_custom; copied_key = NULL; copied_salt = NULL; /* Default number of rounds. */ rounds = ROUNDS_DEFAULT; rounds_custom = false; /* Find beginning of salt string. The prefix should normally always * be present. Just in case it is not. */ if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0) /* Skip salt prefix. */ salt += sizeof(sha256_salt_prefix) - 1; if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1) == 0) { num = salt + sizeof(sha256_rounds_prefix) - 1; srounds = strtoul(num, &endp, 10); if (*endp == '$') { salt = endp + 1; rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); rounds_custom = true; } } salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); key_len = strlen(key); /* Prepare for the real work. */ SHA256_Init(&ctx); /* Add the key string. */ SHA256_Update(&ctx, key, key_len); /* The last part is the salt string. This must be at most 8 * characters and it ends at the first `$' character (for * compatibility with existing implementations). */ SHA256_Update(&ctx, salt, salt_len); /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The * final result will be added to the first context. */ SHA256_Init(&alt_ctx); /* Add key. */ SHA256_Update(&alt_ctx, key, key_len); /* Add salt. */ SHA256_Update(&alt_ctx, salt, salt_len); /* Add key again. */ SHA256_Update(&alt_ctx, key, key_len); /* Now get result of this (32 bytes) and add it to the other context. */ SHA256_Final(alt_result, &alt_ctx); /* Add for any character in the key one byte of the alternate sum. */ for (cnt = key_len; cnt > 32; cnt -= 32) SHA256_Update(&ctx, alt_result, 32); SHA256_Update(&ctx, alt_result, cnt); /* Take the binary representation of the length of the key and for * every 1 add the alternate sum, for every 0 the key. */ for (cnt = key_len; cnt > 0; cnt >>= 1) if ((cnt & 1) != 0) SHA256_Update(&ctx, alt_result, 32); else SHA256_Update(&ctx, key, key_len); /* Create intermediate result. */ SHA256_Final(alt_result, &ctx); /* Start computation of P byte sequence. */ SHA256_Init(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < key_len; ++cnt) SHA256_Update(&alt_ctx, key, key_len); /* Finish the digest. */ SHA256_Final(temp_result, &alt_ctx); /* Create byte sequence P. */ cp = p_bytes = alloca(key_len); for (cnt = key_len; cnt >= 32; cnt -= 32) { memcpy(cp, temp_result, 32); cp += 32; } memcpy(cp, temp_result, cnt); /* Start computation of S byte sequence. */ SHA256_Init(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) SHA256_Update(&alt_ctx, salt, salt_len); /* Finish the digest. */ SHA256_Final(temp_result, &alt_ctx); /* Create byte sequence S. */ cp = s_bytes = alloca(salt_len); for (cnt = salt_len; cnt >= 32; cnt -= 32) { memcpy(cp, temp_result, 32); cp += 32; } memcpy(cp, temp_result, cnt); /* Repeatedly run the collected hash value through SHA256 to burn CPU * cycles. */ for (cnt = 0; cnt < rounds; ++cnt) { /* New context. */ SHA256_Init(&ctx); /* Add key or last result. */ if ((cnt & 1) != 0) SHA256_Update(&ctx, p_bytes, key_len); else SHA256_Update(&ctx, alt_result, 32); /* Add salt for numbers not divisible by 3. */ if (cnt % 3 != 0) SHA256_Update(&ctx, s_bytes, salt_len); /* Add key for numbers not divisible by 7. */ if (cnt % 7 != 0) SHA256_Update(&ctx, p_bytes, key_len); /* Add key or last result. */ if ((cnt & 1) != 0) SHA256_Update(&ctx, alt_result, 32); else SHA256_Update(&ctx, p_bytes, key_len); /* Create intermediate result. */ SHA256_Final(alt_result, &ctx); } /* Now we can construct the result string. It consists of three * parts. */ cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen)); buflen -= sizeof(sha256_salt_prefix) - 1; if (rounds_custom) { n = snprintf(cp, MAX(0, buflen), "%s%zu$", sha256_rounds_prefix, rounds); cp += n; buflen -= n; } cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len)); buflen -= MIN((size_t)MAX(0, buflen), salt_len); if (buflen > 0) { *cp++ = '$'; --buflen; } b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &buflen, &cp); b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &buflen, &cp); b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &buflen, &cp); b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &buflen, &cp); b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &buflen, &cp); b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &buflen, &cp); b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &buflen, &cp); b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &buflen, &cp); b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &buflen, &cp); b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &buflen, &cp); b64_from_24bit(0, alt_result[31], alt_result[30], 3, &buflen, &cp); if (buflen <= 0) { errno = ERANGE; buffer = NULL; } else *cp = '\0'; /* Terminate the string. */ /* Clear the buffer for the intermediate result so that people * attaching to processes or reading core dumps cannot get any * information. We do it in this way to clear correct_words[] inside * the SHA256 implementation as well. */ SHA256_Init(&ctx); SHA256_Final(alt_result, &ctx); memset(temp_result, '\0', sizeof(temp_result)); memset(p_bytes, '\0', key_len); memset(s_bytes, '\0', salt_len); memset(&ctx, '\0', sizeof(ctx)); memset(&alt_ctx, '\0', sizeof(alt_ctx)); if (copied_key != NULL) memset(copied_key, '\0', key_len); if (copied_salt != NULL) memset(copied_salt, '\0', salt_len); return buffer; } /* This entry point is equivalent to crypt(3). */ char * crypt_sha256(const char *key, const char *salt) { /* We don't want to have an arbitrary limit in the size of the * password. We can compute an upper bound for the size of the * result in advance and so we can prepare the buffer we pass to * `crypt_sha256_r'. */ static char *buffer; static int buflen; int needed; char *new_buffer; needed = (sizeof(sha256_salt_prefix) - 1 + sizeof(sha256_rounds_prefix) + 9 + 1 + strlen(salt) + 1 + 43 + 1); if (buflen < needed) { new_buffer = (char *)realloc(buffer, needed); if (new_buffer == NULL) return NULL; buffer = new_buffer; buflen = needed; } return crypt_sha256_r(key, salt, buffer, buflen); } #ifdef TEST static const struct { const char *input; const char result[32]; } tests[] = { /* Test vectors from FIPS 180-2: appendix B.1. */ { "abc", "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23" "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad" }, /* Test vectors from FIPS 180-2: appendix B.2. */ { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" }, /* Test vectors from the NESSIE project. */ { "", "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24" "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55" }, { "a", "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d" "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb" }, { "message digest", "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad" "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50" }, { "abcdefghijklmnopqrstuvwxyz", "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52" "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73" }, { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" }, { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80" "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0" }, { "123456789012345678901234567890123456789012345678901234567890" "12345678901234567890", "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e" "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e" } }; #define ntests (sizeof (tests) / sizeof (tests[0])) static const struct { const char *salt; const char *input; const char *expected; } tests2[] = { { "$5$saltstring", "Hello world!", "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5" }, { "$5$rounds=10000$saltstringsaltstring", "Hello world!", "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2." "opqey6IcA" }, { "$5$rounds=5000$toolongsaltstring", "This is just a test", "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8" "mGRcvxa5" }, { "$5$rounds=1400$anotherlongsaltstring", "a very much longer text to encrypt. This one even stretches over more" "than one line.", "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12" "oP84Bnq1" }, { "$5$rounds=77777$short", "we have a short salt string but not a short password", "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/" }, { "$5$rounds=123456$asaltof16chars..", "a short string", "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/" "cZKmF/wJvD" }, { "$5$rounds=10$roundstoolow", "the minimum number is still observed", "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97" "2bIC" }, }; #define ntests2 (sizeof (tests2) / sizeof (tests2[0])) int main(void) { SHA256_CTX ctx; uint8_t sum[32]; int result = 0; int i, cnt; for (cnt = 0; cnt < (int)ntests; ++cnt) { SHA256_Init(&ctx); SHA256_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input)); SHA256_Final(sum, &ctx); if (memcmp(tests[cnt].result, sum, 32) != 0) { for (i = 0; i < 32; i++) printf("%02X", tests[cnt].result[i]); printf("\n"); for (i = 0; i < 32; i++) printf("%02X", sum[i]); printf("\n"); printf("test %d run %d failed\n", cnt, 1); result = 1; } SHA256_Init(&ctx); for (i = 0; tests[cnt].input[i] != '\0'; ++i) SHA256_Update(&ctx, &tests[cnt].input[i], 1); SHA256_Final(sum, &ctx); if (memcmp(tests[cnt].result, sum, 32) != 0) { for (i = 0; i < 32; i++) printf("%02X", tests[cnt].result[i]); printf("\n"); for (i = 0; i < 32; i++) printf("%02X", sum[i]); printf("\n"); printf("test %d run %d failed\n", cnt, 2); result = 1; } } /* Test vector from FIPS 180-2: appendix B.3. */ char buf[1000]; memset(buf, 'a', sizeof(buf)); SHA256_Init(&ctx); for (i = 0; i < 1000; ++i) SHA256_Update(&ctx, buf, sizeof(buf)); SHA256_Final(sum, &ctx); static const char expected[32] = "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67" "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0"; if (memcmp(expected, sum, 32) != 0) { printf("test %d failed\n", cnt); result = 1; } for (cnt = 0; cnt < ntests2; ++cnt) { char *cp = crypt_sha256(tests2[cnt].input, tests2[cnt].salt); if (strcmp(cp, tests2[cnt].expected) != 0) { printf("test %d: expected \"%s\", got \"%s\"\n", cnt, tests2[cnt].expected, cp); result = 1; } } if (result == 0) puts("all tests OK"); return result; } #endif /* TEST */