/* * Sun RPC is a product of Sun Microsystems, Inc. and is provided for * unrestricted use provided that this legend is included on all tape * media and as a part of the software program in whole or part. Users * may copy or modify Sun RPC without charge, but are not authorized * to license or distribute it to anyone else except as part of a product or * program developed by the user. * * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun RPC is provided with no support and without any obligation on the * part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ #if defined(LIBC_SCCS) && !defined(lint) /*static char *sccsid = "from: @(#)xdr_float.c 1.12 87/08/11 Copyr 1984 Sun Micro";*/ /*static char *sccsid = "from: @(#)xdr_float.c 2.1 88/07/29 4.0 RPCSRC";*/ static char *rcsid = "$Id$"; #endif /* * xdr_float.c, Generic XDR routines impelmentation. * * Copyright (C) 1984, Sun Microsystems, Inc. * * These are the "floating point" xdr routines used to (de)serialize * most common data items. See xdr.h for more info on the interface to * xdr. */ #include #include #include #include #include /* * NB: Not portable. * This routine works on machines with IEEE754 FP and Vaxen. */ #if defined(__m68k__) || defined(__sparc__) || defined(__i386__) || \ defined(__mips__) || defined(__ns32k__) || defined(__alpha__) || \ defined(__arm32__) || defined(__ppc__) #include #define IEEEFP #endif #ifdef vax /* What IEEE single precision floating point looks like on a Vax */ struct ieee_single { unsigned int mantissa: 23; unsigned int exp : 8; unsigned int sign : 1; }; /* Vax single precision floating point */ struct vax_single { unsigned int mantissa1 : 7; unsigned int exp : 8; unsigned int sign : 1; unsigned int mantissa2 : 16; }; #define VAX_SNG_BIAS 0x81 #define IEEE_SNG_BIAS 0x7f static struct sgl_limits { struct vax_single s; struct ieee_single ieee; } sgl_limits[2] = { {{ 0x7f, 0xff, 0x0, 0xffff }, /* Max Vax */ { 0x0, 0xff, 0x0 }}, /* Max IEEE */ {{ 0x0, 0x0, 0x0, 0x0 }, /* Min Vax */ { 0x0, 0x0, 0x0 }} /* Min IEEE */ }; #endif /* vax */ bool_t xdr_float(xdrs, fp) register XDR *xdrs; register float *fp; { #ifdef IEEEFP bool_t rv; long tmpl; #else struct ieee_single is; struct vax_single vs, *vsp; struct sgl_limits *lim; int i; #endif switch (xdrs->x_op) { case XDR_ENCODE: #ifdef IEEEFP tmpl = *(int32_t *)fp; return (XDR_PUTLONG(xdrs, &tmpl)); #else vs = *((struct vax_single *)fp); for (i = 0, lim = sgl_limits; i < sizeof(sgl_limits)/sizeof(struct sgl_limits); i++, lim++) { if ((vs.mantissa2 == lim->s.mantissa2) && (vs.exp == lim->s.exp) && (vs.mantissa1 == lim->s.mantissa1)) { is = lim->ieee; goto shipit; } } is.exp = vs.exp - VAX_SNG_BIAS + IEEE_SNG_BIAS; is.mantissa = (vs.mantissa1 << 16) | vs.mantissa2; shipit: is.sign = vs.sign; return (XDR_PUTLONG(xdrs, (long *)&is)); #endif case XDR_DECODE: #ifdef IEEEFP rv = XDR_GETLONG(xdrs, &tmpl); *(int32_t *)fp = tmpl; return (rv); #else vsp = (struct vax_single *)fp; if (!XDR_GETLONG(xdrs, (long *)&is)) return (FALSE); for (i = 0, lim = sgl_limits; i < sizeof(sgl_limits)/sizeof(struct sgl_limits); i++, lim++) { if ((is.exp == lim->ieee.exp) && (is.mantissa == lim->ieee.mantissa)) { *vsp = lim->s; goto doneit; } } vsp->exp = is.exp - IEEE_SNG_BIAS + VAX_SNG_BIAS; vsp->mantissa2 = is.mantissa; vsp->mantissa1 = (is.mantissa >> 16); doneit: vsp->sign = is.sign; return (TRUE); #endif case XDR_FREE: return (TRUE); } return (FALSE); } #ifdef vax /* What IEEE double precision floating point looks like on a Vax */ struct ieee_double { unsigned int mantissa1 : 20; unsigned int exp : 11; unsigned int sign : 1; unsigned int mantissa2 : 32; }; /* Vax double precision floating point */ struct vax_double { unsigned int mantissa1 : 7; unsigned int exp : 8; unsigned int sign : 1; unsigned int mantissa2 : 16; unsigned int mantissa3 : 16; unsigned int mantissa4 : 16; }; #define VAX_DBL_BIAS 0x81 #define IEEE_DBL_BIAS 0x3ff #define MASK(nbits) ((1 << nbits) - 1) static struct dbl_limits { struct vax_double d; struct ieee_double ieee; } dbl_limits[2] = { {{ 0x7f, 0xff, 0x0, 0xffff, 0xffff, 0xffff }, /* Max Vax */ { 0x0, 0x7ff, 0x0, 0x0 }}, /* Max IEEE */ {{ 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, /* Min Vax */ { 0x0, 0x0, 0x0, 0x0 }} /* Min IEEE */ }; #endif /* vax */ bool_t xdr_double(xdrs, dp) register XDR *xdrs; double *dp; { #ifdef IEEEFP register int32_t *i32p; bool_t rv; long tmpl; #else register long *lp; struct ieee_double id; struct vax_double vd; register struct dbl_limits *lim; int i; #endif switch (xdrs->x_op) { case XDR_ENCODE: #ifdef IEEEFP i32p = (int32_t *)dp; #if BYTE_ORDER == BIG_ENDIAN tmpl = *i32p++; rv = XDR_PUTLONG(xdrs, &tmpl); if (!rv) return (rv); tmpl = *i32p; rv = XDR_PUTLONG(xdrs, &tmpl); #else tmpl = *(i32p+1); rv = XDR_PUTLONG(xdrs, &tmpl); if (!rv) return (rv); tmpl = *i32p; rv = XDR_PUTLONG(xdrs, &tmpl); #endif return (rv); #else vd = *((struct vax_double *)dp); for (i = 0, lim = dbl_limits; i < sizeof(dbl_limits)/sizeof(struct dbl_limits); i++, lim++) { if ((vd.mantissa4 == lim->d.mantissa4) && (vd.mantissa3 == lim->d.mantissa3) && (vd.mantissa2 == lim->d.mantissa2) && (vd.mantissa1 == lim->d.mantissa1) && (vd.exp == lim->d.exp)) { id = lim->ieee; goto shipit; } } id.exp = vd.exp - VAX_DBL_BIAS + IEEE_DBL_BIAS; id.mantissa1 = (vd.mantissa1 << 13) | (vd.mantissa2 >> 3); id.mantissa2 = ((vd.mantissa2 & MASK(3)) << 29) | (vd.mantissa3 << 13) | ((vd.mantissa4 >> 3) & MASK(13)); shipit: id.sign = vd.sign; lp = (long *)&id; return (XDR_PUTLONG(xdrs, lp++) && XDR_PUTLONG(xdrs, lp)); #endif case XDR_DECODE: #ifdef IEEEFP i32p = (int32_t *)dp; #if BYTE_ORDER == BIG_ENDIAN rv = XDR_GETLONG(xdrs, &tmpl); *i32p++ = tmpl; if (!rv) return (rv); rv = XDR_GETLONG(xdrs, &tmpl); *i32p = tmpl; #else rv = XDR_GETLONG(xdrs, &tmpl); *(i32p+1) = tmpl; if (!rv) return (rv); rv = XDR_GETLONG(xdrs, &tmpl); *i32p = tmpl; #endif return (rv); #else lp = (long *)&id; if (!XDR_GETLONG(xdrs, lp++) || !XDR_GETLONG(xdrs, lp)) return (FALSE); for (i = 0, lim = dbl_limits; i < sizeof(dbl_limits)/sizeof(struct dbl_limits); i++, lim++) { if ((id.mantissa2 == lim->ieee.mantissa2) && (id.mantissa1 == lim->ieee.mantissa1) && (id.exp == lim->ieee.exp)) { vd = lim->d; goto doneit; } } vd.exp = id.exp - IEEE_DBL_BIAS + VAX_DBL_BIAS; vd.mantissa1 = (id.mantissa1 >> 13); vd.mantissa2 = ((id.mantissa1 & MASK(13)) << 3) | (id.mantissa2 >> 29); vd.mantissa3 = (id.mantissa2 >> 13); vd.mantissa4 = (id.mantissa2 << 3); doneit: vd.sign = id.sign; *dp = *((double *)&vd); return (TRUE); #endif case XDR_FREE: return (TRUE); } return (FALSE); }