/* $KAME: name6.c,v 1.25 2000/06/26 16:44:40 itojun Exp $ */ /* * Copyright (C) 1995, 1996, 1997, 1998, and 1999 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * ++Copyright++ 1985, 1988, 1993 * - * Copyright (c) 1985, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * - * Portions Copyright (c) 1993 by Digital Equipment Corporation. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies, and that * the name of Digital Equipment Corporation not be used in advertising or * publicity pertaining to distribution of the document or software without * specific, written prior permission. * * THE SOFTWARE IS PROVIDED "AS IS" AND DIGITAL EQUIPMENT CORP. DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL DIGITAL EQUIPMENT * CORPORATION BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS * SOFTWARE. * - * --Copyright-- */ /* * Atsushi Onoe */ #include __FBSDID("$FreeBSD$"); #include "namespace.h" #include #include #include #include #include #ifdef INET6 #include #include #include #include #include /* XXX */ #endif #include #include #include #include #include #include #include #include #include #include #include #include "un-namespace.h" #include "netdb_private.h" #include "res_private.h" #ifndef MAXALIASES #define MAXALIASES 10 #endif #ifndef MAXADDRS #define MAXADDRS 20 #endif #ifndef MAXDNAME #define MAXDNAME 1025 #endif #ifdef INET6 #define ADDRLEN(af) ((af) == AF_INET6 ? sizeof(struct in6_addr) : \ sizeof(struct in_addr)) #else #define ADDRLEN(af) sizeof(struct in_addr) #endif #define MAPADDR(ab, ina) \ do { \ memcpy(&(ab)->map_inaddr, ina, sizeof(struct in_addr)); \ memset((ab)->map_zero, 0, sizeof((ab)->map_zero)); \ memset((ab)->map_one, 0xff, sizeof((ab)->map_one)); \ } while (0) #define MAPADDRENABLED(flags) \ (((flags) & AI_V4MAPPED) || \ (((flags) & AI_V4MAPPED_CFG))) union inx_addr { struct in_addr in_addr; #ifdef INET6 struct in6_addr in6_addr; #endif struct { u_char mau_zero[10]; u_char mau_one[2]; struct in_addr mau_inaddr; } map_addr_un; #define map_zero map_addr_un.mau_zero #define map_one map_addr_un.mau_one #define map_inaddr map_addr_un.mau_inaddr }; struct policyqueue { TAILQ_ENTRY(policyqueue) pc_entry; #ifdef INET6 struct in6_addrpolicy pc_policy; #endif }; TAILQ_HEAD(policyhead, policyqueue); #define AIO_SRCFLAG_DEPRECATED 0x1 struct hp_order { union { struct sockaddr_storage aiou_ss; struct sockaddr aiou_sa; } aio_src_un; #define aio_srcsa aio_src_un.aiou_sa u_int32_t aio_srcflag; int aio_srcscope; int aio_dstscope; struct policyqueue *aio_srcpolicy; struct policyqueue *aio_dstpolicy; union { struct sockaddr_storage aiou_ss; struct sockaddr aiou_sa; } aio_un; #define aio_sa aio_un.aiou_sa int aio_matchlen; char *aio_h_addr; }; static struct hostent *_hpcopy(struct hostent *, int *); static struct hostent *_hpaddr(int, const char *, void *, int *); #ifdef INET6 static struct hostent *_hpmerge(struct hostent *, struct hostent *, int *); static struct hostent *_hpmapv6(struct hostent *, int *); #endif static struct hostent *_hpsort(struct hostent *, res_state); #ifdef INET6 static struct hostent *_hpreorder(struct hostent *); static int get_addrselectpolicy(struct policyhead *); static void free_addrselectpolicy(struct policyhead *); static struct policyqueue *match_addrselectpolicy(struct sockaddr *, struct policyhead *); static void set_source(struct hp_order *, struct policyhead *); static int matchlen(struct sockaddr *, struct sockaddr *); static int comp_dst(const void *, const void *); static int gai_addr2scopetype(struct sockaddr *); #endif /* * Functions defined in RFC2553 * getipnodebyname, getipnodebyaddr, freehostent */ struct hostent * getipnodebyname(const char *name, int af, int flags, int *errp) { struct hostent *hp; union inx_addr addrbuf; res_state statp; u_long options; switch (af) { case AF_INET: #ifdef INET6 case AF_INET6: #endif break; default: *errp = NO_RECOVERY; return NULL; } if (flags & AI_ADDRCONFIG) { int s; if ((s = _socket(af, SOCK_DGRAM | SOCK_CLOEXEC, 0)) < 0) return NULL; /* * TODO: * Note that implementation dependent test for address * configuration should be done everytime called * (or apropriate interval), * because addresses will be dynamically assigned or deleted. */ _close(s); } #ifdef INET6 /* special case for literal address */ if (inet_pton(AF_INET6, name, &addrbuf) == 1) { if (af != AF_INET6) { *errp = HOST_NOT_FOUND; return NULL; } return _hpaddr(af, name, &addrbuf, errp); } #endif if (inet_aton(name, (struct in_addr *)&addrbuf) == 1) { if (af != AF_INET) { if (MAPADDRENABLED(flags)) { MAPADDR(&addrbuf, &addrbuf.in_addr); } else { *errp = HOST_NOT_FOUND; return NULL; } } return _hpaddr(af, name, &addrbuf, errp); } statp = __res_state(); if ((statp->options & RES_INIT) == 0) { if (res_ninit(statp) < 0) { *errp = NETDB_INTERNAL; return NULL; } } options = statp->options; statp->options &= ~RES_USE_INET6; hp = gethostbyname2(name, af); hp = _hpcopy(hp, errp); #ifdef INET6 if (af == AF_INET6) hp = _hpreorder(hp); if (af == AF_INET6 && ((flags & AI_ALL) || hp == NULL) && MAPADDRENABLED(flags)) { struct hostent *hp2 = gethostbyname2(name, AF_INET); if (hp == NULL) if (hp2 == NULL) *errp = statp->res_h_errno; else hp = _hpmapv6(hp2, errp); else { if (hp2 && strcmp(hp->h_name, hp2->h_name) == 0) { struct hostent *hpb = hp; hp = _hpmerge(hpb, hp2, errp); freehostent(hpb); } } } #endif if (hp == NULL) *errp = statp->res_h_errno; statp->options = options; return _hpsort(hp, statp); } struct hostent * getipnodebyaddr(const void *src, size_t len, int af, int *errp) { struct hostent *hp; res_state statp; u_long options; #ifdef INET6 struct in6_addr addrbuf; #else struct in_addr addrbuf; #endif switch (af) { case AF_INET: if (len != sizeof(struct in_addr)) { *errp = NO_RECOVERY; return NULL; } if ((long)src & ~(sizeof(struct in_addr) - 1)) { memcpy(&addrbuf, src, len); src = &addrbuf; } if (((struct in_addr *)src)->s_addr == 0) return NULL; break; #ifdef INET6 case AF_INET6: if (len != sizeof(struct in6_addr)) { *errp = NO_RECOVERY; return NULL; } if ((long)src & ~(sizeof(struct in6_addr) / 2 - 1)) { /*XXX*/ memcpy(&addrbuf, src, len); src = &addrbuf; } if (IN6_IS_ADDR_UNSPECIFIED((struct in6_addr *)src)) return NULL; if (IN6_IS_ADDR_V4MAPPED((struct in6_addr *)src) || IN6_IS_ADDR_V4COMPAT((struct in6_addr *)src)) { src = (char *)src + (sizeof(struct in6_addr) - sizeof(struct in_addr)); af = AF_INET; len = sizeof(struct in_addr); } break; #endif default: *errp = NO_RECOVERY; return NULL; } statp = __res_state(); if ((statp->options & RES_INIT) == 0) { if (res_ninit(statp) < 0) { RES_SET_H_ERRNO(statp, NETDB_INTERNAL); return NULL; } } options = statp->options; statp->options &= ~RES_USE_INET6; hp = gethostbyaddr(src, len, af); if (hp == NULL) *errp = statp->res_h_errno; statp->options = options; return (_hpcopy(hp, errp)); } void freehostent(struct hostent *ptr) { free(ptr); } /* * Private utility functions */ /* * _hpcopy: allocate and copy hostent structure */ static struct hostent * _hpcopy(struct hostent *hp, int *errp) { struct hostent *nhp; char *cp, **pp; int size, addrsize; int nalias = 0, naddr = 0; int al_off; int i; if (hp == NULL) return hp; /* count size to be allocated */ size = sizeof(struct hostent); if (hp->h_name != NULL) size += strlen(hp->h_name) + 1; if ((pp = hp->h_aliases) != NULL) { for (i = 0; *pp != NULL; i++, pp++) { if (**pp != '\0') { size += strlen(*pp) + 1; nalias++; } } } /* adjust alignment */ size = ALIGN(size); al_off = size; size += sizeof(char *) * (nalias + 1); addrsize = ALIGN(hp->h_length); if ((pp = hp->h_addr_list) != NULL) { while (*pp++ != NULL) naddr++; } size += addrsize * naddr; size += sizeof(char *) * (naddr + 1); /* copy */ if ((nhp = (struct hostent *)malloc(size)) == NULL) { *errp = TRY_AGAIN; return NULL; } cp = (char *)&nhp[1]; if (hp->h_name != NULL) { nhp->h_name = cp; strcpy(cp, hp->h_name); cp += strlen(cp) + 1; } else nhp->h_name = NULL; nhp->h_aliases = (char **)((char *)nhp + al_off); if ((pp = hp->h_aliases) != NULL) { for (i = 0; *pp != NULL; pp++) { if (**pp != '\0') { nhp->h_aliases[i++] = cp; strcpy(cp, *pp); cp += strlen(cp) + 1; } } } nhp->h_aliases[nalias] = NULL; cp = (char *)&nhp->h_aliases[nalias + 1]; nhp->h_addrtype = hp->h_addrtype; nhp->h_length = hp->h_length; nhp->h_addr_list = (char **)cp; if ((pp = hp->h_addr_list) != NULL) { cp = (char *)&nhp->h_addr_list[naddr + 1]; for (i = 0; *pp != NULL; pp++) { nhp->h_addr_list[i++] = cp; memcpy(cp, *pp, hp->h_length); cp += addrsize; } } nhp->h_addr_list[naddr] = NULL; return nhp; } /* * _hpaddr: construct hostent structure with one address */ static struct hostent * _hpaddr(int af, const char *name, void *addr, int *errp) { struct hostent *hp, hpbuf; char *addrs[2]; hp = &hpbuf; hp->h_name = (char *)name; hp->h_aliases = NULL; hp->h_addrtype = af; hp->h_length = ADDRLEN(af); hp->h_addr_list = addrs; addrs[0] = (char *)addr; addrs[1] = NULL; return (_hpcopy(hp, errp)); } #ifdef INET6 /* * _hpmerge: merge 2 hostent structure, arguments will be freed */ static struct hostent * _hpmerge(struct hostent *hp1, struct hostent *hp2, int *errp) { int i, j; int naddr, nalias; char **pp; struct hostent *hp, hpbuf; char *aliases[MAXALIASES + 1], *addrs[MAXADDRS + 1]; union inx_addr addrbuf[MAXADDRS]; if (hp1 == NULL) return _hpcopy(hp2, errp); if (hp2 == NULL) return _hpcopy(hp1, errp); #define HP(i) (i == 1 ? hp1 : hp2) hp = &hpbuf; hp->h_name = (hp1->h_name != NULL ? hp1->h_name : hp2->h_name); hp->h_aliases = aliases; nalias = 0; for (i = 1; i <= 2; i++) { if ((pp = HP(i)->h_aliases) == NULL) continue; for (; nalias < MAXALIASES && *pp != NULL; pp++) { /* check duplicates */ for (j = 0; j < nalias; j++) if (strcasecmp(*pp, aliases[j]) == 0) break; if (j == nalias) aliases[nalias++] = *pp; } } aliases[nalias] = NULL; if (hp1->h_length != hp2->h_length) { hp->h_addrtype = AF_INET6; hp->h_length = sizeof(struct in6_addr); } else { hp->h_addrtype = hp1->h_addrtype; hp->h_length = hp1->h_length; } hp->h_addr_list = addrs; naddr = 0; for (i = 1; i <= 2; i++) { if ((pp = HP(i)->h_addr_list) == NULL) continue; if (HP(i)->h_length == hp->h_length) { while (naddr < MAXADDRS && *pp != NULL) addrs[naddr++] = *pp++; } else { /* copy IPv4 addr as mapped IPv6 addr */ while (naddr < MAXADDRS && *pp != NULL) { MAPADDR(&addrbuf[naddr], *pp++); addrs[naddr] = (char *)&addrbuf[naddr]; naddr++; } } } addrs[naddr] = NULL; return (_hpcopy(hp, errp)); } #endif /* * _hpmapv6: convert IPv4 hostent into IPv4-mapped IPv6 addresses */ #ifdef INET6 static struct hostent * _hpmapv6(struct hostent *hp, int *errp) { struct hostent hp6; if (hp == NULL) return NULL; if (hp->h_addrtype == AF_INET6) return _hpcopy(hp, errp); memset(&hp6, 0, sizeof(struct hostent)); hp6.h_addrtype = AF_INET6; hp6.h_length = sizeof(struct in6_addr); return _hpmerge(&hp6, hp, errp); } #endif /* * _hpsort: sort address by sortlist */ static struct hostent * _hpsort(struct hostent *hp, res_state statp) { int i, j, n; u_char *ap, *sp, *mp, **pp; char t; char order[MAXADDRS]; int nsort = statp->nsort; if (hp == NULL || hp->h_addr_list[1] == NULL || nsort == 0) return hp; for (i = 0; (ap = (u_char *)hp->h_addr_list[i]); i++) { for (j = 0; j < nsort; j++) { #ifdef INET6 if (statp->_u._ext.ext->sort_list[j].af != hp->h_addrtype) continue; sp = (u_char *)&statp->_u._ext.ext->sort_list[j].addr; mp = (u_char *)&statp->_u._ext.ext->sort_list[j].mask; #else sp = (u_char *)&statp->sort_list[j].addr; mp = (u_char *)&statp->sort_list[j].mask; #endif for (n = 0; n < hp->h_length; n++) { if ((ap[n] & mp[n]) != sp[n]) break; } if (n == hp->h_length) break; } order[i] = j; } n = i; pp = (u_char **)hp->h_addr_list; for (i = 0; i < n - 1; i++) { for (j = i + 1; j < n; j++) { if (order[i] > order[j]) { ap = pp[i]; pp[i] = pp[j]; pp[j] = ap; t = order[i]; order[i] = order[j]; order[j] = t; } } } return hp; } #ifdef INET6 /* * _hpreorder: sort address by default address selection */ static struct hostent * _hpreorder(struct hostent *hp) { struct hp_order *aio; int i, n; char *ap; struct sockaddr *sa; struct policyhead policyhead; if (hp == NULL) return hp; switch (hp->h_addrtype) { case AF_INET: #ifdef INET6 case AF_INET6: #endif break; default: free_addrselectpolicy(&policyhead); return hp; } /* count the number of addrinfo elements for sorting. */ for (n = 0; hp->h_addr_list[n] != NULL; n++) ; /* * If the number is small enough, we can skip the reordering process. */ if (n <= 1) return hp; /* allocate a temporary array for sort and initialization of it. */ if ((aio = malloc(sizeof(*aio) * n)) == NULL) return hp; /* give up reordering */ memset(aio, 0, sizeof(*aio) * n); /* retrieve address selection policy from the kernel */ TAILQ_INIT(&policyhead); if (!get_addrselectpolicy(&policyhead)) { /* no policy is installed into kernel, we don't sort. */ free(aio); return hp; } for (i = 0; i < n; i++) { ap = hp->h_addr_list[i]; aio[i].aio_h_addr = ap; sa = &aio[i].aio_sa; switch (hp->h_addrtype) { case AF_INET: sa->sa_family = AF_INET; sa->sa_len = sizeof(struct sockaddr_in); memcpy(&((struct sockaddr_in *)sa)->sin_addr, ap, sizeof(struct in_addr)); break; #ifdef INET6 case AF_INET6: if (IN6_IS_ADDR_V4MAPPED((struct in6_addr *)ap)) { sa->sa_family = AF_INET; sa->sa_len = sizeof(struct sockaddr_in); memcpy(&((struct sockaddr_in *)sa)->sin_addr, &ap[12], sizeof(struct in_addr)); } else { sa->sa_family = AF_INET6; sa->sa_len = sizeof(struct sockaddr_in6); memcpy(&((struct sockaddr_in6 *)sa)->sin6_addr, ap, sizeof(struct in6_addr)); } break; #endif } aio[i].aio_dstscope = gai_addr2scopetype(sa); aio[i].aio_dstpolicy = match_addrselectpolicy(sa, &policyhead); set_source(&aio[i], &policyhead); } /* perform sorting. */ qsort(aio, n, sizeof(*aio), comp_dst); /* reorder the h_addr_list. */ for (i = 0; i < n; i++) hp->h_addr_list[i] = aio[i].aio_h_addr; /* cleanup and return */ free(aio); free_addrselectpolicy(&policyhead); return hp; } static int get_addrselectpolicy(struct policyhead *head) { #ifdef INET6 int mib[] = { CTL_NET, PF_INET6, IPPROTO_IPV6, IPV6CTL_ADDRCTLPOLICY }; size_t l; char *buf; struct in6_addrpolicy *pol, *ep; if (sysctl(mib, sizeof(mib) / sizeof(mib[0]), NULL, &l, NULL, 0) < 0) return (0); if ((buf = malloc(l)) == NULL) return (0); if (sysctl(mib, sizeof(mib) / sizeof(mib[0]), buf, &l, NULL, 0) < 0) { free(buf); return (0); } ep = (struct in6_addrpolicy *)(buf + l); for (pol = (struct in6_addrpolicy *)buf; pol + 1 <= ep; pol++) { struct policyqueue *new; if ((new = malloc(sizeof(*new))) == NULL) { free_addrselectpolicy(head); /* make the list empty */ break; } new->pc_policy = *pol; TAILQ_INSERT_TAIL(head, new, pc_entry); } free(buf); return (1); #else return (0); #endif } static void free_addrselectpolicy(struct policyhead *head) { struct policyqueue *ent, *nent; for (ent = TAILQ_FIRST(head); ent; ent = nent) { nent = TAILQ_NEXT(ent, pc_entry); TAILQ_REMOVE(head, ent, pc_entry); free(ent); } } static struct policyqueue * match_addrselectpolicy(struct sockaddr *addr, struct policyhead *head) { #ifdef INET6 struct policyqueue *ent, *bestent = NULL; struct in6_addrpolicy *pol; int matchlen, bestmatchlen = -1; u_char *mp, *ep, *k, *p, m; struct sockaddr_in6 key; switch(addr->sa_family) { case AF_INET6: key = *(struct sockaddr_in6 *)addr; break; case AF_INET: /* convert the address into IPv4-mapped IPv6 address. */ memset(&key, 0, sizeof(key)); key.sin6_family = AF_INET6; key.sin6_len = sizeof(key); key.sin6_addr.s6_addr[10] = 0xff; key.sin6_addr.s6_addr[11] = 0xff; memcpy(&key.sin6_addr.s6_addr[12], &((struct sockaddr_in *)addr)->sin_addr, 4); break; default: return(NULL); } for (ent = TAILQ_FIRST(head); ent; ent = TAILQ_NEXT(ent, pc_entry)) { pol = &ent->pc_policy; matchlen = 0; mp = (u_char *)&pol->addrmask.sin6_addr; ep = mp + 16; /* XXX: scope field? */ k = (u_char *)&key.sin6_addr; p = (u_char *)&pol->addr.sin6_addr; for (; mp < ep && *mp; mp++, k++, p++) { m = *mp; if ((*k & m) != *p) goto next; /* not match */ if (m == 0xff) /* short cut for a typical case */ matchlen += 8; else { while (m >= 0x80) { matchlen++; m <<= 1; } } } /* matched. check if this is better than the current best. */ if (matchlen > bestmatchlen) { bestent = ent; bestmatchlen = matchlen; } next: continue; } return(bestent); #else return(NULL); #endif } static void set_source(struct hp_order *aio, struct policyhead *ph) { struct sockaddr_storage ss = aio->aio_un.aiou_ss; socklen_t srclen; int s; /* set unspec ("no source is available"), just in case */ aio->aio_srcsa.sa_family = AF_UNSPEC; aio->aio_srcscope = -1; switch(ss.ss_family) { case AF_INET: ((struct sockaddr_in *)&ss)->sin_port = htons(1); break; #ifdef INET6 case AF_INET6: ((struct sockaddr_in6 *)&ss)->sin6_port = htons(1); break; #endif default: /* ignore unsupported AFs explicitly */ return; } /* open a socket to get the source address for the given dst */ if ((s = _socket(ss.ss_family, SOCK_DGRAM | SOCK_CLOEXEC, IPPROTO_UDP)) < 0) return; /* give up */ if (_connect(s, (struct sockaddr *)&ss, ss.ss_len) < 0) goto cleanup; srclen = ss.ss_len; if (_getsockname(s, &aio->aio_srcsa, &srclen) < 0) { aio->aio_srcsa.sa_family = AF_UNSPEC; goto cleanup; } aio->aio_srcscope = gai_addr2scopetype(&aio->aio_srcsa); aio->aio_srcpolicy = match_addrselectpolicy(&aio->aio_srcsa, ph); aio->aio_matchlen = matchlen(&aio->aio_srcsa, (struct sockaddr *)&ss); #ifdef INET6 if (ss.ss_family == AF_INET6) { struct in6_ifreq ifr6; u_int32_t flags6; memset(&ifr6, 0, sizeof(ifr6)); memcpy(&ifr6.ifr_addr, &ss, ss.ss_len); if (_ioctl(s, SIOCGIFAFLAG_IN6, &ifr6) == 0) { flags6 = ifr6.ifr_ifru.ifru_flags6; if ((flags6 & IN6_IFF_DEPRECATED)) aio->aio_srcflag |= AIO_SRCFLAG_DEPRECATED; } } #endif cleanup: _close(s); return; } static int matchlen(struct sockaddr *src, struct sockaddr *dst) { int match = 0; u_char *s, *d; u_char *lim, r; int addrlen; switch (src->sa_family) { #ifdef INET6 case AF_INET6: s = (u_char *)&((struct sockaddr_in6 *)src)->sin6_addr; d = (u_char *)&((struct sockaddr_in6 *)dst)->sin6_addr; addrlen = sizeof(struct in6_addr); lim = s + addrlen; break; #endif case AF_INET: s = (u_char *)&((struct sockaddr_in *)src)->sin_addr; d = (u_char *)&((struct sockaddr_in *)dst)->sin_addr; addrlen = sizeof(struct in_addr); lim = s + addrlen; break; default: return(0); } while (s < lim) if ((r = (*d++ ^ *s++)) != 0) { while (r < addrlen * 8) { match++; r <<= 1; } break; } else match += 8; return(match); } static int comp_dst(const void *arg1, const void *arg2) { const struct hp_order *dst1 = arg1, *dst2 = arg2; /* * Rule 1: Avoid unusable destinations. * XXX: we currently do not consider if an appropriate route exists. */ if (dst1->aio_srcsa.sa_family != AF_UNSPEC && dst2->aio_srcsa.sa_family == AF_UNSPEC) { return(-1); } if (dst1->aio_srcsa.sa_family == AF_UNSPEC && dst2->aio_srcsa.sa_family != AF_UNSPEC) { return(1); } /* Rule 2: Prefer matching scope. */ if (dst1->aio_dstscope == dst1->aio_srcscope && dst2->aio_dstscope != dst2->aio_srcscope) { return(-1); } if (dst1->aio_dstscope != dst1->aio_srcscope && dst2->aio_dstscope == dst2->aio_srcscope) { return(1); } /* Rule 3: Avoid deprecated addresses. */ if (dst1->aio_srcsa.sa_family != AF_UNSPEC && dst2->aio_srcsa.sa_family != AF_UNSPEC) { if (!(dst1->aio_srcflag & AIO_SRCFLAG_DEPRECATED) && (dst2->aio_srcflag & AIO_SRCFLAG_DEPRECATED)) { return(-1); } if ((dst1->aio_srcflag & AIO_SRCFLAG_DEPRECATED) && !(dst2->aio_srcflag & AIO_SRCFLAG_DEPRECATED)) { return(1); } } /* Rule 4: Prefer home addresses. */ /* XXX: not implemented yet */ /* Rule 5: Prefer matching label. */ #ifdef INET6 if (dst1->aio_srcpolicy && dst1->aio_dstpolicy && dst1->aio_srcpolicy->pc_policy.label == dst1->aio_dstpolicy->pc_policy.label && (dst2->aio_srcpolicy == NULL || dst2->aio_dstpolicy == NULL || dst2->aio_srcpolicy->pc_policy.label != dst2->aio_dstpolicy->pc_policy.label)) { return(-1); } if (dst2->aio_srcpolicy && dst2->aio_dstpolicy && dst2->aio_srcpolicy->pc_policy.label == dst2->aio_dstpolicy->pc_policy.label && (dst1->aio_srcpolicy == NULL || dst1->aio_dstpolicy == NULL || dst1->aio_srcpolicy->pc_policy.label != dst1->aio_dstpolicy->pc_policy.label)) { return(1); } #endif /* Rule 6: Prefer higher precedence. */ #ifdef INET6 if (dst1->aio_dstpolicy && (dst2->aio_dstpolicy == NULL || dst1->aio_dstpolicy->pc_policy.preced > dst2->aio_dstpolicy->pc_policy.preced)) { return(-1); } if (dst2->aio_dstpolicy && (dst1->aio_dstpolicy == NULL || dst2->aio_dstpolicy->pc_policy.preced > dst1->aio_dstpolicy->pc_policy.preced)) { return(1); } #endif /* Rule 7: Prefer native transport. */ /* XXX: not implemented yet */ /* Rule 8: Prefer smaller scope. */ if (dst1->aio_dstscope >= 0 && dst1->aio_dstscope < dst2->aio_dstscope) { return(-1); } if (dst2->aio_dstscope >= 0 && dst2->aio_dstscope < dst1->aio_dstscope) { return(1); } /* * Rule 9: Use longest matching prefix. * We compare the match length in a same AF only. */ if (dst1->aio_sa.sa_family == dst2->aio_sa.sa_family) { if (dst1->aio_matchlen > dst2->aio_matchlen) { return(-1); } if (dst1->aio_matchlen < dst2->aio_matchlen) { return(1); } } /* Rule 10: Otherwise, leave the order unchanged. */ return(-1); } /* * Copy from scope.c. * XXX: we should standardize the functions and link them as standard * library. */ static int gai_addr2scopetype(struct sockaddr *sa) { #ifdef INET6 struct sockaddr_in6 *sa6; #endif struct sockaddr_in *sa4; switch(sa->sa_family) { #ifdef INET6 case AF_INET6: sa6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { /* just use the scope field of the multicast address */ return(sa6->sin6_addr.s6_addr[2] & 0x0f); } /* * Unicast addresses: map scope type to corresponding scope * value defined for multcast addresses. * XXX: hardcoded scope type values are bad... */ if (IN6_IS_ADDR_LOOPBACK(&sa6->sin6_addr)) return(1); /* node local scope */ if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) return(2); /* link-local scope */ if (IN6_IS_ADDR_SITELOCAL(&sa6->sin6_addr)) return(5); /* site-local scope */ return(14); /* global scope */ break; #endif case AF_INET: /* * IPv4 pseudo scoping according to RFC 3484. */ sa4 = (struct sockaddr_in *)sa; /* IPv4 autoconfiguration addresses have link-local scope. */ if (((u_char *)&sa4->sin_addr)[0] == 169 && ((u_char *)&sa4->sin_addr)[1] == 254) return(2); /* Private addresses have site-local scope. */ if (((u_char *)&sa4->sin_addr)[0] == 10 || (((u_char *)&sa4->sin_addr)[0] == 172 && (((u_char *)&sa4->sin_addr)[1] & 0xf0) == 16) || (((u_char *)&sa4->sin_addr)[0] == 192 && ((u_char *)&sa4->sin_addr)[1] == 168)) return(14); /* XXX: It should be 5 unless NAT */ /* Loopback addresses have link-local scope. */ if (((u_char *)&sa4->sin_addr)[0] == 127) return(2); return(14); break; default: errno = EAFNOSUPPORT; /* is this a good error? */ return(-1); } } #endif