// SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*- // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines SValBuilder, the base class for all (complete) SValBuilder // implementations. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" #include "clang/StaticAnalyzer/Core/PathSensitive/GRState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h" using namespace clang; using namespace ento; //===----------------------------------------------------------------------===// // Basic SVal creation. //===----------------------------------------------------------------------===// DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType T) { if (Loc::isLocType(T)) return makeNull(); if (T->isIntegerType()) return makeIntVal(0, T); // FIXME: Handle floats. // FIXME: Handle structs. return UnknownVal(); } NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, const llvm::APSInt& v, QualType T) { // The Environment ensures we always get a persistent APSInt in // BasicValueFactory, so we don't need to get the APSInt from // BasicValueFactory again. assert(!Loc::isLocType(T)); return nonloc::SymExprVal(SymMgr.getSymIntExpr(lhs, op, v, T)); } NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, const SymExpr *rhs, QualType T) { assert(SymMgr.getType(lhs) == SymMgr.getType(rhs)); assert(!Loc::isLocType(T)); return nonloc::SymExprVal(SymMgr.getSymSymExpr(lhs, op, rhs, T)); } SVal SValBuilder::convertToArrayIndex(SVal V) { if (V.isUnknownOrUndef()) return V; // Common case: we have an appropriately sized integer. if (nonloc::ConcreteInt* CI = dyn_cast(&V)) { const llvm::APSInt& I = CI->getValue(); if (I.getBitWidth() == ArrayIndexWidth && I.isSigned()) return V; } return evalCastNL(cast(V), ArrayIndexTy); } DefinedOrUnknownSVal SValBuilder::getRegionValueSymbolVal(const TypedRegion* R) { QualType T = R->getValueType(); if (!SymbolManager::canSymbolicate(T)) return UnknownVal(); SymbolRef sym = SymMgr.getRegionValueSymbol(R); if (Loc::isLocType(T)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::getConjuredSymbolVal(const void *SymbolTag, const Expr *E, unsigned Count) { QualType T = E->getType(); if (!SymbolManager::canSymbolicate(T)) return UnknownVal(); SymbolRef sym = SymMgr.getConjuredSymbol(E, Count, SymbolTag); if (Loc::isLocType(T)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::getConjuredSymbolVal(const void *SymbolTag, const Expr *E, QualType T, unsigned Count) { if (!SymbolManager::canSymbolicate(T)) return UnknownVal(); SymbolRef sym = SymMgr.getConjuredSymbol(E, T, Count, SymbolTag); if (Loc::isLocType(T)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedSVal SValBuilder::getMetadataSymbolVal(const void *SymbolTag, const MemRegion *MR, const Expr *E, QualType T, unsigned Count) { assert(SymbolManager::canSymbolicate(T) && "Invalid metadata symbol type"); SymbolRef sym = SymMgr.getMetadataSymbol(MR, E, T, Count, SymbolTag); if (Loc::isLocType(T)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol, const TypedRegion *R) { QualType T = R->getValueType(); if (!SymbolManager::canSymbolicate(T)) return UnknownVal(); SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, R); if (Loc::isLocType(T)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl* FD) { return loc::MemRegionVal(MemMgr.getFunctionTextRegion(FD)); } DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *D, CanQualType locTy, const LocationContext *LC) { const BlockTextRegion *BC = MemMgr.getBlockTextRegion(D, locTy, LC->getAnalysisContext()); const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, LC); return loc::MemRegionVal(BD); } //===----------------------------------------------------------------------===// SVal SValBuilder::evalBinOp(const GRState *ST, BinaryOperator::Opcode Op, SVal L, SVal R, QualType T) { if (L.isUndef() || R.isUndef()) return UndefinedVal(); if (L.isUnknown() || R.isUnknown()) return UnknownVal(); if (isa(L)) { if (isa(R)) return evalBinOpLL(ST, Op, cast(L), cast(R), T); return evalBinOpLN(ST, Op, cast(L), cast(R), T); } if (isa(R)) { // Support pointer arithmetic where the addend is on the left // and the pointer on the right. assert(Op == BO_Add); // Commute the operands. return evalBinOpLN(ST, Op, cast(R), cast(L), T); } return evalBinOpNN(ST, Op, cast(L), cast(R), T); } DefinedOrUnknownSVal SValBuilder::evalEQ(const GRState *ST, DefinedOrUnknownSVal L, DefinedOrUnknownSVal R) { return cast(evalBinOp(ST, BO_EQ, L, R, Context.IntTy)); } // FIXME: should rewrite according to the cast kind. SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) { if (val.isUnknownOrUndef() || castTy == originalTy) return val; // For const casts, just propagate the value. if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType()) if (Context.hasSameUnqualifiedType(castTy, originalTy)) return val; // Check for casts to real or complex numbers. We don't handle these at all // right now. if (castTy->isFloatingType() || castTy->isAnyComplexType()) return UnknownVal(); // Check for casts from integers to integers. if (castTy->isIntegerType() && originalTy->isIntegerType()) return evalCastNL(cast(val), castTy); // Check for casts from pointers to integers. if (castTy->isIntegerType() && Loc::isLocType(originalTy)) return evalCastL(cast(val), castTy); // Check for casts from integers to pointers. if (Loc::isLocType(castTy) && originalTy->isIntegerType()) { if (nonloc::LocAsInteger *LV = dyn_cast(&val)) { if (const MemRegion *R = LV->getLoc().getAsRegion()) { StoreManager &storeMgr = StateMgr.getStoreManager(); R = storeMgr.castRegion(R, castTy); return R ? SVal(loc::MemRegionVal(R)) : UnknownVal(); } return LV->getLoc(); } goto DispatchCast; } // Just pass through function and block pointers. if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) { assert(Loc::isLocType(castTy)); return val; } // Check for casts from array type to another type. if (originalTy->isArrayType()) { // We will always decay to a pointer. val = StateMgr.ArrayToPointer(cast(val)); // Are we casting from an array to a pointer? If so just pass on // the decayed value. if (castTy->isPointerType()) return val; // Are we casting from an array to an integer? If so, cast the decayed // pointer value to an integer. assert(castTy->isIntegerType()); // FIXME: Keep these here for now in case we decide soon that we // need the original decayed type. // QualType elemTy = cast(originalTy)->getElementType(); // QualType pointerTy = C.getPointerType(elemTy); return evalCastL(cast(val), castTy); } // Check for casts from a region to a specific type. if (const MemRegion *R = val.getAsRegion()) { // FIXME: We should handle the case where we strip off view layers to get // to a desugared type. if (!Loc::isLocType(castTy)) { // FIXME: There can be gross cases where one casts the result of a function // (that returns a pointer) to some other value that happens to fit // within that pointer value. We currently have no good way to // model such operations. When this happens, the underlying operation // is that the caller is reasoning about bits. Conceptually we are // layering a "view" of a location on top of those bits. Perhaps // we need to be more lazy about mutual possible views, even on an // SVal? This may be necessary for bit-level reasoning as well. return UnknownVal(); } // We get a symbolic function pointer for a dereference of a function // pointer, but it is of function type. Example: // struct FPRec { // void (*my_func)(int * x); // }; // // int bar(int x); // // int f1_a(struct FPRec* foo) { // int x; // (*foo->my_func)(&x); // return bar(x)+1; // no-warning // } assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() || originalTy->isBlockPointerType() || castTy->isReferenceType()); StoreManager &storeMgr = StateMgr.getStoreManager(); // Delegate to store manager to get the result of casting a region to a // different type. If the MemRegion* returned is NULL, this expression // Evaluates to UnknownVal. R = storeMgr.castRegion(R, castTy); return R ? SVal(loc::MemRegionVal(R)) : UnknownVal(); } DispatchCast: // All other cases. return isa(val) ? evalCastL(cast(val), castTy) : evalCastNL(cast(val), castTy); }