// SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*- // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines SValBuilder, the base class for all (complete) SValBuilder // implementations. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" #include "clang/StaticAnalyzer/Core/PathSensitive/GRState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h" using namespace clang; using namespace ento; //===----------------------------------------------------------------------===// // Basic SVal creation. //===----------------------------------------------------------------------===// DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) { if (Loc::isLocType(type)) return makeNull(); if (type->isIntegerType()) return makeIntVal(0, type); // FIXME: Handle floats. // FIXME: Handle structs. return UnknownVal(); } NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, const llvm::APSInt& rhs, QualType type) { // The Environment ensures we always get a persistent APSInt in // BasicValueFactory, so we don't need to get the APSInt from // BasicValueFactory again. assert(!Loc::isLocType(type)); return nonloc::SymExprVal(SymMgr.getSymIntExpr(lhs, op, rhs, type)); } NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, const SymExpr *rhs, QualType type) { assert(SymMgr.getType(lhs) == SymMgr.getType(rhs)); assert(!Loc::isLocType(type)); return nonloc::SymExprVal(SymMgr.getSymSymExpr(lhs, op, rhs, type)); } SVal SValBuilder::convertToArrayIndex(SVal val) { if (val.isUnknownOrUndef()) return val; // Common case: we have an appropriately sized integer. if (nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&val)) { const llvm::APSInt& I = CI->getValue(); if (I.getBitWidth() == ArrayIndexWidth && I.isSigned()) return val; } return evalCastFromNonLoc(cast<NonLoc>(val), ArrayIndexTy); } DefinedOrUnknownSVal SValBuilder::getRegionValueSymbolVal(const TypedRegion* region) { QualType T = region->getValueType(); if (!SymbolManager::canSymbolicate(T)) return UnknownVal(); SymbolRef sym = SymMgr.getRegionValueSymbol(region); if (Loc::isLocType(T)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::getConjuredSymbolVal(const void *symbolTag, const Expr *expr, unsigned count) { QualType T = expr->getType(); if (!SymbolManager::canSymbolicate(T)) return UnknownVal(); SymbolRef sym = SymMgr.getConjuredSymbol(expr, count, symbolTag); if (Loc::isLocType(T)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::getConjuredSymbolVal(const void *symbolTag, const Expr *expr, QualType type, unsigned count) { if (!SymbolManager::canSymbolicate(type)) return UnknownVal(); SymbolRef sym = SymMgr.getConjuredSymbol(expr, type, count, symbolTag); if (Loc::isLocType(type)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag, const MemRegion *region, const Expr *expr, QualType type, unsigned count) { assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type"); SymbolRef sym = SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag); if (Loc::isLocType(type)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol, const TypedRegion *region) { QualType T = region->getValueType(); if (!SymbolManager::canSymbolicate(T)) return UnknownVal(); SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region); if (Loc::isLocType(T)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl* func) { return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func)); } DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block, CanQualType locTy, const LocationContext *locContext) { const BlockTextRegion *BC = MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisContext()); const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext); return loc::MemRegionVal(BD); } //===----------------------------------------------------------------------===// SVal SValBuilder::evalBinOp(const GRState *state, BinaryOperator::Opcode op, SVal lhs, SVal rhs, QualType type) { if (lhs.isUndef() || rhs.isUndef()) return UndefinedVal(); if (lhs.isUnknown() || rhs.isUnknown()) return UnknownVal(); if (isa<Loc>(lhs)) { if (isa<Loc>(rhs)) return evalBinOpLL(state, op, cast<Loc>(lhs), cast<Loc>(rhs), type); return evalBinOpLN(state, op, cast<Loc>(lhs), cast<NonLoc>(rhs), type); } if (isa<Loc>(rhs)) { // Support pointer arithmetic where the addend is on the left // and the pointer on the right. assert(op == BO_Add); // Commute the operands. return evalBinOpLN(state, op, cast<Loc>(rhs), cast<NonLoc>(lhs), type); } return evalBinOpNN(state, op, cast<NonLoc>(lhs), cast<NonLoc>(rhs), type); } DefinedOrUnknownSVal SValBuilder::evalEQ(const GRState *state, DefinedOrUnknownSVal lhs, DefinedOrUnknownSVal rhs) { return cast<DefinedOrUnknownSVal>(evalBinOp(state, BO_EQ, lhs, rhs, Context.IntTy)); } // FIXME: should rewrite according to the cast kind. SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) { if (val.isUnknownOrUndef() || castTy == originalTy) return val; // For const casts, just propagate the value. if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType()) if (Context.hasSameUnqualifiedType(castTy, originalTy)) return val; // Check for casts to real or complex numbers. We don't handle these at all // right now. if (castTy->isFloatingType() || castTy->isAnyComplexType()) return UnknownVal(); // Check for casts from integers to integers. if (castTy->isIntegerType() && originalTy->isIntegerType()) return evalCastFromNonLoc(cast<NonLoc>(val), castTy); // Check for casts from pointers to integers. if (castTy->isIntegerType() && Loc::isLocType(originalTy)) return evalCastFromLoc(cast<Loc>(val), castTy); // Check for casts from integers to pointers. if (Loc::isLocType(castTy) && originalTy->isIntegerType()) { if (nonloc::LocAsInteger *LV = dyn_cast<nonloc::LocAsInteger>(&val)) { if (const MemRegion *R = LV->getLoc().getAsRegion()) { StoreManager &storeMgr = StateMgr.getStoreManager(); R = storeMgr.castRegion(R, castTy); return R ? SVal(loc::MemRegionVal(R)) : UnknownVal(); } return LV->getLoc(); } goto DispatchCast; } // Just pass through function and block pointers. if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) { assert(Loc::isLocType(castTy)); return val; } // Check for casts from array type to another type. if (originalTy->isArrayType()) { // We will always decay to a pointer. val = StateMgr.ArrayToPointer(cast<Loc>(val)); // Are we casting from an array to a pointer? If so just pass on // the decayed value. if (castTy->isPointerType()) return val; // Are we casting from an array to an integer? If so, cast the decayed // pointer value to an integer. assert(castTy->isIntegerType()); // FIXME: Keep these here for now in case we decide soon that we // need the original decayed type. // QualType elemTy = cast<ArrayType>(originalTy)->getElementType(); // QualType pointerTy = C.getPointerType(elemTy); return evalCastFromLoc(cast<Loc>(val), castTy); } // Check for casts from a region to a specific type. if (const MemRegion *R = val.getAsRegion()) { // FIXME: We should handle the case where we strip off view layers to get // to a desugared type. if (!Loc::isLocType(castTy)) { // FIXME: There can be gross cases where one casts the result of a function // (that returns a pointer) to some other value that happens to fit // within that pointer value. We currently have no good way to // model such operations. When this happens, the underlying operation // is that the caller is reasoning about bits. Conceptually we are // layering a "view" of a location on top of those bits. Perhaps // we need to be more lazy about mutual possible views, even on an // SVal? This may be necessary for bit-level reasoning as well. return UnknownVal(); } // We get a symbolic function pointer for a dereference of a function // pointer, but it is of function type. Example: // struct FPRec { // void (*my_func)(int * x); // }; // // int bar(int x); // // int f1_a(struct FPRec* foo) { // int x; // (*foo->my_func)(&x); // return bar(x)+1; // no-warning // } assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() || originalTy->isBlockPointerType() || castTy->isReferenceType()); StoreManager &storeMgr = StateMgr.getStoreManager(); // Delegate to store manager to get the result of casting a region to a // different type. If the MemRegion* returned is NULL, this expression // Evaluates to UnknownVal. R = storeMgr.castRegion(R, castTy); return R ? SVal(loc::MemRegionVal(R)) : UnknownVal(); } DispatchCast: // All other cases. return isa<Loc>(val) ? evalCastFromLoc(cast<Loc>(val), castTy) : evalCastFromNonLoc(cast<NonLoc>(val), castTy); }