//==- DeadStoresChecker.cpp - Check for stores to dead variables -*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a DeadStores, a flow-sensitive checker that looks for // stores to variables that are no longer live. // //===----------------------------------------------------------------------===// #include "ClangSACheckers.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/Analysis/Visitors/CFGRecStmtVisitor.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h" #include "clang/Basic/Diagnostic.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ParentMap.h" #include "llvm/ADT/SmallPtrSet.h" using namespace clang; using namespace ento; namespace { // FIXME: Eventually migrate into its own file, and have it managed by // AnalysisManager. class ReachableCode { const CFG &cfg; llvm::BitVector reachable; public: ReachableCode(const CFG &cfg) : cfg(cfg), reachable(cfg.getNumBlockIDs(), false) {} void computeReachableBlocks(); bool isReachable(const CFGBlock *block) const { return reachable[block->getBlockID()]; } }; } void ReachableCode::computeReachableBlocks() { if (!cfg.getNumBlockIDs()) return; llvm::SmallVector<const CFGBlock*, 10> worklist; worklist.push_back(&cfg.getEntry()); while (!worklist.empty()) { const CFGBlock *block = worklist.back(); worklist.pop_back(); llvm::BitVector::reference isReachable = reachable[block->getBlockID()]; if (isReachable) continue; isReachable = true; for (CFGBlock::const_succ_iterator i = block->succ_begin(), e = block->succ_end(); i != e; ++i) if (const CFGBlock *succ = *i) worklist.push_back(succ); } } namespace { class DeadStoreObs : public LiveVariables::ObserverTy { const CFG &cfg; ASTContext &Ctx; BugReporter& BR; ParentMap& Parents; llvm::SmallPtrSet<VarDecl*, 20> Escaped; llvm::OwningPtr<ReachableCode> reachableCode; const CFGBlock *currentBlock; enum DeadStoreKind { Standard, Enclosing, DeadIncrement, DeadInit }; public: DeadStoreObs(const CFG &cfg, ASTContext &ctx, BugReporter& br, ParentMap& parents, llvm::SmallPtrSet<VarDecl*, 20> &escaped) : cfg(cfg), Ctx(ctx), BR(br), Parents(parents), Escaped(escaped), currentBlock(0) {} virtual ~DeadStoreObs() {} void Report(VarDecl* V, DeadStoreKind dsk, SourceLocation L, SourceRange R) { if (Escaped.count(V)) return; // Compute reachable blocks within the CFG for trivial cases // where a bogus dead store can be reported because itself is unreachable. if (!reachableCode.get()) { reachableCode.reset(new ReachableCode(cfg)); reachableCode->computeReachableBlocks(); } if (!reachableCode->isReachable(currentBlock)) return; const std::string &name = V->getNameAsString(); const char* BugType = 0; std::string msg; switch (dsk) { default: assert(false && "Impossible dead store type."); case DeadInit: BugType = "Dead initialization"; msg = "Value stored to '" + name + "' during its initialization is never read"; break; case DeadIncrement: BugType = "Dead increment"; case Standard: if (!BugType) BugType = "Dead assignment"; msg = "Value stored to '" + name + "' is never read"; break; case Enclosing: // Don't report issues in this case, e.g.: "if (x = foo())", // where 'x' is unused later. We have yet to see a case where // this is a real bug. return; } BR.EmitBasicReport(BugType, "Dead store", msg, L, R); } void CheckVarDecl(VarDecl* VD, Expr* Ex, Expr* Val, DeadStoreKind dsk, const LiveVariables::AnalysisDataTy& AD, const LiveVariables::ValTy& Live) { if (!VD->hasLocalStorage()) return; // Reference types confuse the dead stores checker. Skip them // for now. if (VD->getType()->getAs<ReferenceType>()) return; if (!Live(VD, AD) && !(VD->getAttr<UnusedAttr>() || VD->getAttr<BlocksAttr>())) Report(VD, dsk, Ex->getSourceRange().getBegin(), Val->getSourceRange()); } void CheckDeclRef(DeclRefExpr* DR, Expr* Val, DeadStoreKind dsk, const LiveVariables::AnalysisDataTy& AD, const LiveVariables::ValTy& Live) { if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl())) CheckVarDecl(VD, DR, Val, dsk, AD, Live); } bool isIncrement(VarDecl* VD, BinaryOperator* B) { if (B->isCompoundAssignmentOp()) return true; Expr* RHS = B->getRHS()->IgnoreParenCasts(); BinaryOperator* BRHS = dyn_cast<BinaryOperator>(RHS); if (!BRHS) return false; DeclRefExpr *DR; if ((DR = dyn_cast<DeclRefExpr>(BRHS->getLHS()->IgnoreParenCasts()))) if (DR->getDecl() == VD) return true; if ((DR = dyn_cast<DeclRefExpr>(BRHS->getRHS()->IgnoreParenCasts()))) if (DR->getDecl() == VD) return true; return false; } virtual void ObserveStmt(Stmt* S, const CFGBlock *block, const LiveVariables::AnalysisDataTy& AD, const LiveVariables::ValTy& Live) { currentBlock = block; // Skip statements in macros. if (S->getLocStart().isMacroID()) return; // Only cover dead stores from regular assignments. ++/-- dead stores // have never flagged a real bug. if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) { if (!B->isAssignmentOp()) return; // Skip non-assignments. if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(B->getLHS())) if (VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { // Special case: check for assigning null to a pointer. // This is a common form of defensive programming. QualType T = VD->getType(); if (T->isPointerType() || T->isObjCObjectPointerType()) { if (B->getRHS()->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNull)) return; } Expr* RHS = B->getRHS()->IgnoreParenCasts(); // Special case: self-assignments. These are often used to shut up // "unused variable" compiler warnings. if (DeclRefExpr* RhsDR = dyn_cast<DeclRefExpr>(RHS)) if (VD == dyn_cast<VarDecl>(RhsDR->getDecl())) return; // Otherwise, issue a warning. DeadStoreKind dsk = Parents.isConsumedExpr(B) ? Enclosing : (isIncrement(VD,B) ? DeadIncrement : Standard); CheckVarDecl(VD, DR, B->getRHS(), dsk, AD, Live); } } else if (UnaryOperator* U = dyn_cast<UnaryOperator>(S)) { if (!U->isIncrementOp() || U->isPrefix()) return; Stmt *parent = Parents.getParentIgnoreParenCasts(U); if (!parent || !isa<ReturnStmt>(parent)) return; Expr *Ex = U->getSubExpr()->IgnoreParenCasts(); if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(Ex)) CheckDeclRef(DR, U, DeadIncrement, AD, Live); } else if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) // Iterate through the decls. Warn if any initializers are complex // expressions that are not live (never used). for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end(); DI != DE; ++DI) { VarDecl* V = dyn_cast<VarDecl>(*DI); if (!V) continue; if (V->hasLocalStorage()) { // Reference types confuse the dead stores checker. Skip them // for now. if (V->getType()->getAs<ReferenceType>()) return; if (Expr* E = V->getInit()) { // Don't warn on C++ objects (yet) until we can show that their // constructors/destructors don't have side effects. if (isa<CXXConstructExpr>(E)) return; if (isa<ExprWithCleanups>(E)) return; // A dead initialization is a variable that is dead after it // is initialized. We don't flag warnings for those variables // marked 'unused'. if (!Live(V, AD) && V->getAttr<UnusedAttr>() == 0) { // Special case: check for initializations with constants. // // e.g. : int x = 0; // // If x is EVER assigned a new value later, don't issue // a warning. This is because such initialization can be // due to defensive programming. if (E->isConstantInitializer(Ctx, false)) return; if (DeclRefExpr *DRE=dyn_cast<DeclRefExpr>(E->IgnoreParenCasts())) if (VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { // Special case: check for initialization from constant // variables. // // e.g. extern const int MyConstant; // int x = MyConstant; // if (VD->hasGlobalStorage() && VD->getType().isConstQualified()) return; // Special case: check for initialization from scalar // parameters. This is often a form of defensive // programming. Non-scalars are still an error since // because it more likely represents an actual algorithmic // bug. if (isa<ParmVarDecl>(VD) && VD->getType()->isScalarType()) return; } Report(V, DeadInit, V->getLocation(), E->getSourceRange()); } } } } } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Driver function to invoke the Dead-Stores checker on a CFG. //===----------------------------------------------------------------------===// namespace { class FindEscaped : public CFGRecStmtDeclVisitor<FindEscaped>{ CFG *cfg; public: FindEscaped(CFG *c) : cfg(c) {} CFG& getCFG() { return *cfg; } llvm::SmallPtrSet<VarDecl*, 20> Escaped; void VisitUnaryOperator(UnaryOperator* U) { // Check for '&'. Any VarDecl whose value has its address-taken we // treat as escaped. Expr* E = U->getSubExpr()->IgnoreParenCasts(); if (U->getOpcode() == UO_AddrOf) if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E)) if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl())) { Escaped.insert(VD); return; } Visit(E); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // DeadStoresChecker //===----------------------------------------------------------------------===// namespace { class DeadStoresChecker : public Checker<check::ASTCodeBody> { public: void checkASTCodeBody(const Decl *D, AnalysisManager& mgr, BugReporter &BR) const { if (LiveVariables *L = mgr.getLiveVariables(D)) { CFG &cfg = *mgr.getCFG(D); ParentMap &pmap = mgr.getParentMap(D); FindEscaped FS(&cfg); FS.getCFG().VisitBlockStmts(FS); DeadStoreObs A(cfg, BR.getContext(), BR, pmap, FS.Escaped); L->runOnAllBlocks(cfg, &A); } } }; } void ento::registerDeadStoresChecker(CheckerManager &mgr) { mgr.registerChecker<DeadStoresChecker>(); }