//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for initializers. The main entry // point is Sema::CheckInitList(), but all of the work is performed // within the InitListChecker class. // // This file also implements Sema::CheckInitializerTypes. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/Parse/Designator.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include using namespace clang; //===----------------------------------------------------------------------===// // Sema Initialization Checking //===----------------------------------------------------------------------===// static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) { const ArrayType *AT = Context.getAsArrayType(DeclType); if (!AT) return 0; if (!isa(AT) && !isa(AT)) return 0; // See if this is a string literal or @encode. Init = Init->IgnoreParens(); // Handle @encode, which is a narrow string. if (isa(Init) && AT->getElementType()->isCharType()) return Init; // Otherwise we can only handle string literals. StringLiteral *SL = dyn_cast(Init); if (SL == 0) return 0; QualType ElemTy = Context.getCanonicalType(AT->getElementType()); // char array can be initialized with a narrow string. // Only allow char x[] = "foo"; not char x[] = L"foo"; if (!SL->isWide()) return ElemTy->isCharType() ? Init : 0; // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with // correction from DR343): "An array with element type compatible with a // qualified or unqualified version of wchar_t may be initialized by a wide // string literal, optionally enclosed in braces." if (Context.typesAreCompatible(Context.getWCharType(), ElemTy.getUnqualifiedType())) return Init; return 0; } static bool CheckSingleInitializer(Expr *&Init, QualType DeclType, bool DirectInit, Sema &S) { // Get the type before calling CheckSingleAssignmentConstraints(), since // it can promote the expression. QualType InitType = Init->getType(); if (S.getLangOptions().CPlusPlus) { // FIXME: I dislike this error message. A lot. if (S.PerformImplicitConversion(Init, DeclType, "initializing", DirectInit)) return S.Diag(Init->getSourceRange().getBegin(), diag::err_typecheck_convert_incompatible) << DeclType << Init->getType() << "initializing" << Init->getSourceRange(); return false; } Sema::AssignConvertType ConvTy = S.CheckSingleAssignmentConstraints(DeclType, Init); return S.DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType, InitType, Init, "initializing"); } static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) { // Get the length of the string as parsed. uint64_t StrLength = cast(Str->getType())->getSize().getZExtValue(); const ArrayType *AT = S.Context.getAsArrayType(DeclT); if (const IncompleteArrayType *IAT = dyn_cast(AT)) { // C99 6.7.8p14. We have an array of character type with unknown size // being initialized to a string literal. llvm::APSInt ConstVal(32); ConstVal = StrLength; // Return a new array type (C99 6.7.8p22). DeclT = S.Context.getConstantArrayType(IAT->getElementType(), ConstVal, ArrayType::Normal, 0); return; } const ConstantArrayType *CAT = cast(AT); // C99 6.7.8p14. We have an array of character type with known size. However, // the size may be smaller or larger than the string we are initializing. // FIXME: Avoid truncation for 64-bit length strings. if (StrLength-1 > CAT->getSize().getZExtValue()) S.Diag(Str->getSourceRange().getBegin(), diag::warn_initializer_string_for_char_array_too_long) << Str->getSourceRange(); // Set the type to the actual size that we are initializing. If we have // something like: // char x[1] = "foo"; // then this will set the string literal's type to char[1]. Str->setType(DeclT); } bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType, SourceLocation InitLoc, DeclarationName InitEntity, bool DirectInit) { if (DeclType->isDependentType() || Init->isTypeDependent() || Init->isValueDependent()) return false; // C++ [dcl.init.ref]p1: // A variable declared to be a T& or T&&, that is "reference to type T" // (8.3.2), shall be initialized by an object, or function, of // type T or by an object that can be converted into a T. if (DeclType->isReferenceType()) return CheckReferenceInit(Init, DeclType, 0, false, DirectInit); // C99 6.7.8p3: The type of the entity to be initialized shall be an array // of unknown size ("[]") or an object type that is not a variable array type. if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType)) return Diag(InitLoc, diag::err_variable_object_no_init) << VAT->getSizeExpr()->getSourceRange(); InitListExpr *InitList = dyn_cast(Init); if (!InitList) { // FIXME: Handle wide strings if (Expr *Str = IsStringInit(Init, DeclType, Context)) { CheckStringInit(Str, DeclType, *this); return false; } // C++ [dcl.init]p14: // -- If the destination type is a (possibly cv-qualified) class // type: if (getLangOptions().CPlusPlus && DeclType->isRecordType()) { QualType DeclTypeC = Context.getCanonicalType(DeclType); QualType InitTypeC = Context.getCanonicalType(Init->getType()); // -- If the initialization is direct-initialization, or if it is // copy-initialization where the cv-unqualified version of the // source type is the same class as, or a derived class of, the // class of the destination, constructors are considered. if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) || IsDerivedFrom(InitTypeC, DeclTypeC)) { const CXXRecordDecl *RD = cast(DeclType->getAsRecordType()->getDecl()); // No need to make a CXXConstructExpr if both the ctor and dtor are // trivial. if (RD->hasTrivialConstructor() && RD->hasTrivialDestructor()) return false; CXXConstructorDecl *Constructor = PerformInitializationByConstructor(DeclType, &Init, 1, InitLoc, Init->getSourceRange(), InitEntity, DirectInit? IK_Direct : IK_Copy); if (!Constructor) return true; Init = CXXConstructExpr::Create(Context, DeclType, Constructor, false, &Init, 1); return false; } // -- Otherwise (i.e., for the remaining copy-initialization // cases), user-defined conversion sequences that can // convert from the source type to the destination type or // (when a conversion function is used) to a derived class // thereof are enumerated as described in 13.3.1.4, and the // best one is chosen through overload resolution // (13.3). If the conversion cannot be done or is // ambiguous, the initialization is ill-formed. The // function selected is called with the initializer // expression as its argument; if the function is a // constructor, the call initializes a temporary of the // destination type. // FIXME: We're pretending to do copy elision here; return to this when we // have ASTs for such things. if (!PerformImplicitConversion(Init, DeclType, "initializing")) return false; if (InitEntity) return Diag(InitLoc, diag::err_cannot_initialize_decl) << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid) << Init->getType() << Init->getSourceRange(); else return Diag(InitLoc, diag::err_cannot_initialize_decl_noname) << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid) << Init->getType() << Init->getSourceRange(); } // C99 6.7.8p16. if (DeclType->isArrayType()) return Diag(Init->getLocStart(), diag::err_array_init_list_required) << Init->getSourceRange(); return CheckSingleInitializer(Init, DeclType, DirectInit, *this); } bool hadError = CheckInitList(InitList, DeclType); Init = InitList; return hadError; } //===----------------------------------------------------------------------===// // Semantic checking for initializer lists. //===----------------------------------------------------------------------===// /// @brief Semantic checking for initializer lists. /// /// The InitListChecker class contains a set of routines that each /// handle the initialization of a certain kind of entity, e.g., /// arrays, vectors, struct/union types, scalars, etc. The /// InitListChecker itself performs a recursive walk of the subobject /// structure of the type to be initialized, while stepping through /// the initializer list one element at a time. The IList and Index /// parameters to each of the Check* routines contain the active /// (syntactic) initializer list and the index into that initializer /// list that represents the current initializer. Each routine is /// responsible for moving that Index forward as it consumes elements. /// /// Each Check* routine also has a StructuredList/StructuredIndex /// arguments, which contains the current the "structured" (semantic) /// initializer list and the index into that initializer list where we /// are copying initializers as we map them over to the semantic /// list. Once we have completed our recursive walk of the subobject /// structure, we will have constructed a full semantic initializer /// list. /// /// C99 designators cause changes in the initializer list traversal, /// because they make the initialization "jump" into a specific /// subobject and then continue the initialization from that /// point. CheckDesignatedInitializer() recursively steps into the /// designated subobject and manages backing out the recursion to /// initialize the subobjects after the one designated. namespace { class InitListChecker { Sema &SemaRef; bool hadError; std::map SyntacticToSemantic; InitListExpr *FullyStructuredList; void CheckImplicitInitList(InitListExpr *ParentIList, QualType T, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool TopLevelObject = false); void CheckExplicitInitList(InitListExpr *IList, QualType &T, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool TopLevelObject = false); void CheckListElementTypes(InitListExpr *IList, QualType &DeclType, bool SubobjectIsDesignatorContext, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool TopLevelObject = false); void CheckSubElementType(InitListExpr *IList, QualType ElemType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex); void CheckScalarType(InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex); void CheckReferenceType(InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex); void CheckVectorType(InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex); void CheckStructUnionTypes(InitListExpr *IList, QualType DeclType, RecordDecl::field_iterator Field, bool SubobjectIsDesignatorContext, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool TopLevelObject = false); void CheckArrayType(InitListExpr *IList, QualType &DeclType, llvm::APSInt elementIndex, bool SubobjectIsDesignatorContext, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex); bool CheckDesignatedInitializer(InitListExpr *IList, DesignatedInitExpr *DIE, unsigned DesigIdx, QualType &CurrentObjectType, RecordDecl::field_iterator *NextField, llvm::APSInt *NextElementIndex, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool FinishSubobjectInit, bool TopLevelObject); InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, QualType CurrentObjectType, InitListExpr *StructuredList, unsigned StructuredIndex, SourceRange InitRange); void UpdateStructuredListElement(InitListExpr *StructuredList, unsigned &StructuredIndex, Expr *expr); int numArrayElements(QualType DeclType); int numStructUnionElements(QualType DeclType); void FillInValueInitializations(InitListExpr *ILE); public: InitListChecker(Sema &S, InitListExpr *IL, QualType &T); bool HadError() { return hadError; } // @brief Retrieves the fully-structured initializer list used for // semantic analysis and code generation. InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } }; } // end anonymous namespace /// Recursively replaces NULL values within the given initializer list /// with expressions that perform value-initialization of the /// appropriate type. void InitListChecker::FillInValueInitializations(InitListExpr *ILE) { assert((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"); SourceLocation Loc = ILE->getSourceRange().getBegin(); if (ILE->getSyntacticForm()) Loc = ILE->getSyntacticForm()->getSourceRange().getBegin(); if (const RecordType *RType = ILE->getType()->getAsRecordType()) { unsigned Init = 0, NumInits = ILE->getNumInits(); for (RecordDecl::field_iterator Field = RType->getDecl()->field_begin(SemaRef.Context), FieldEnd = RType->getDecl()->field_end(SemaRef.Context); Field != FieldEnd; ++Field) { if (Field->isUnnamedBitfield()) continue; if (Init >= NumInits || !ILE->getInit(Init)) { if (Field->getType()->isReferenceType()) { // C++ [dcl.init.aggr]p9: // If an incomplete or empty initializer-list leaves a // member of reference type uninitialized, the program is // ill-formed. SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) << Field->getType() << ILE->getSyntacticForm()->getSourceRange(); SemaRef.Diag(Field->getLocation(), diag::note_uninit_reference_member); hadError = true; return; } else if (SemaRef.CheckValueInitialization(Field->getType(), Loc)) { hadError = true; return; } // FIXME: If value-initialization involves calling a constructor, should // we make that call explicit in the representation (even when it means // extending the initializer list)? if (Init < NumInits && !hadError) ILE->setInit(Init, new (SemaRef.Context) ImplicitValueInitExpr(Field->getType())); } else if (InitListExpr *InnerILE = dyn_cast(ILE->getInit(Init))) FillInValueInitializations(InnerILE); ++Init; // Only look at the first initialization of a union. if (RType->getDecl()->isUnion()) break; } return; } QualType ElementType; unsigned NumInits = ILE->getNumInits(); unsigned NumElements = NumInits; if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { ElementType = AType->getElementType(); if (const ConstantArrayType *CAType = dyn_cast(AType)) NumElements = CAType->getSize().getZExtValue(); } else if (const VectorType *VType = ILE->getType()->getAsVectorType()) { ElementType = VType->getElementType(); NumElements = VType->getNumElements(); } else ElementType = ILE->getType(); for (unsigned Init = 0; Init != NumElements; ++Init) { if (Init >= NumInits || !ILE->getInit(Init)) { if (SemaRef.CheckValueInitialization(ElementType, Loc)) { hadError = true; return; } // FIXME: If value-initialization involves calling a constructor, should // we make that call explicit in the representation (even when it means // extending the initializer list)? if (Init < NumInits && !hadError) ILE->setInit(Init, new (SemaRef.Context) ImplicitValueInitExpr(ElementType)); } else if (InitListExpr *InnerILE =dyn_cast(ILE->getInit(Init))) FillInValueInitializations(InnerILE); } } InitListChecker::InitListChecker(Sema &S, InitListExpr *IL, QualType &T) : SemaRef(S) { hadError = false; unsigned newIndex = 0; unsigned newStructuredIndex = 0; FullyStructuredList = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange()); CheckExplicitInitList(IL, T, newIndex, FullyStructuredList, newStructuredIndex, /*TopLevelObject=*/true); if (!hadError) FillInValueInitializations(FullyStructuredList); } int InitListChecker::numArrayElements(QualType DeclType) { // FIXME: use a proper constant int maxElements = 0x7FFFFFFF; if (const ConstantArrayType *CAT = SemaRef.Context.getAsConstantArrayType(DeclType)) { maxElements = static_cast(CAT->getSize().getZExtValue()); } return maxElements; } int InitListChecker::numStructUnionElements(QualType DeclType) { RecordDecl *structDecl = DeclType->getAsRecordType()->getDecl(); int InitializableMembers = 0; for (RecordDecl::field_iterator Field = structDecl->field_begin(SemaRef.Context), FieldEnd = structDecl->field_end(SemaRef.Context); Field != FieldEnd; ++Field) { if ((*Field)->getIdentifier() || !(*Field)->isBitField()) ++InitializableMembers; } if (structDecl->isUnion()) return std::min(InitializableMembers, 1); return InitializableMembers - structDecl->hasFlexibleArrayMember(); } void InitListChecker::CheckImplicitInitList(InitListExpr *ParentIList, QualType T, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool TopLevelObject) { int maxElements = 0; if (T->isArrayType()) maxElements = numArrayElements(T); else if (T->isStructureType() || T->isUnionType()) maxElements = numStructUnionElements(T); else if (T->isVectorType()) maxElements = T->getAsVectorType()->getNumElements(); else assert(0 && "CheckImplicitInitList(): Illegal type"); if (maxElements == 0) { SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(), diag::err_implicit_empty_initializer); ++Index; hadError = true; return; } // Build a structured initializer list corresponding to this subobject. InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList, StructuredIndex, SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(), ParentIList->getSourceRange().getEnd())); unsigned StructuredSubobjectInitIndex = 0; // Check the element types and build the structural subobject. unsigned StartIndex = Index; CheckListElementTypes(ParentIList, T, false, Index, StructuredSubobjectInitList, StructuredSubobjectInitIndex, TopLevelObject); unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); StructuredSubobjectInitList->setType(T); // Update the structured sub-object initializer so that it's ending // range corresponds with the end of the last initializer it used. if (EndIndex < ParentIList->getNumInits()) { SourceLocation EndLoc = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); StructuredSubobjectInitList->setRBraceLoc(EndLoc); } } void InitListChecker::CheckExplicitInitList(InitListExpr *IList, QualType &T, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool TopLevelObject) { assert(IList->isExplicit() && "Illegal Implicit InitListExpr"); SyntacticToSemantic[IList] = StructuredList; StructuredList->setSyntacticForm(IList); CheckListElementTypes(IList, T, true, Index, StructuredList, StructuredIndex, TopLevelObject); IList->setType(T); StructuredList->setType(T); if (hadError) return; if (Index < IList->getNumInits()) { // We have leftover initializers if (StructuredIndex == 1 && IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) { unsigned DK = diag::warn_excess_initializers_in_char_array_initializer; if (SemaRef.getLangOptions().CPlusPlus) { DK = diag::err_excess_initializers_in_char_array_initializer; hadError = true; } // Special-case SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) << IList->getInit(Index)->getSourceRange(); } else if (!T->isIncompleteType()) { // Don't complain for incomplete types, since we'll get an error // elsewhere QualType CurrentObjectType = StructuredList->getType(); int initKind = CurrentObjectType->isArrayType()? 0 : CurrentObjectType->isVectorType()? 1 : CurrentObjectType->isScalarType()? 2 : CurrentObjectType->isUnionType()? 3 : 4; unsigned DK = diag::warn_excess_initializers; if (SemaRef.getLangOptions().CPlusPlus) { DK = diag::err_excess_initializers; hadError = true; } SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) << initKind << IList->getInit(Index)->getSourceRange(); } } if (T->isScalarType() && !TopLevelObject) SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init) << IList->getSourceRange() << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocStart())) << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocEnd())); } void InitListChecker::CheckListElementTypes(InitListExpr *IList, QualType &DeclType, bool SubobjectIsDesignatorContext, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool TopLevelObject) { if (DeclType->isScalarType()) { CheckScalarType(IList, DeclType, Index, StructuredList, StructuredIndex); } else if (DeclType->isVectorType()) { CheckVectorType(IList, DeclType, Index, StructuredList, StructuredIndex); } else if (DeclType->isAggregateType()) { if (DeclType->isRecordType()) { RecordDecl *RD = DeclType->getAsRecordType()->getDecl(); CheckStructUnionTypes(IList, DeclType, RD->field_begin(SemaRef.Context), SubobjectIsDesignatorContext, Index, StructuredList, StructuredIndex, TopLevelObject); } else if (DeclType->isArrayType()) { llvm::APSInt Zero( SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), false); CheckArrayType(IList, DeclType, Zero, SubobjectIsDesignatorContext, Index, StructuredList, StructuredIndex); } else assert(0 && "Aggregate that isn't a structure or array?!"); } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { // This type is invalid, issue a diagnostic. ++Index; SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) << DeclType; hadError = true; } else if (DeclType->isRecordType()) { // C++ [dcl.init]p14: // [...] If the class is an aggregate (8.5.1), and the initializer // is a brace-enclosed list, see 8.5.1. // // Note: 8.5.1 is handled below; here, we diagnose the case where // we have an initializer list and a destination type that is not // an aggregate. // FIXME: In C++0x, this is yet another form of initialization. SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list) << DeclType << IList->getSourceRange(); hadError = true; } else if (DeclType->isReferenceType()) { CheckReferenceType(IList, DeclType, Index, StructuredList, StructuredIndex); } else { // In C, all types are either scalars or aggregates, but // additional handling is needed here for C++ (and possibly others?). assert(0 && "Unsupported initializer type"); } } void InitListChecker::CheckSubElementType(InitListExpr *IList, QualType ElemType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex) { Expr *expr = IList->getInit(Index); if (InitListExpr *SubInitList = dyn_cast(expr)) { unsigned newIndex = 0; unsigned newStructuredIndex = 0; InitListExpr *newStructuredList = getStructuredSubobjectInit(IList, Index, ElemType, StructuredList, StructuredIndex, SubInitList->getSourceRange()); CheckExplicitInitList(SubInitList, ElemType, newIndex, newStructuredList, newStructuredIndex); ++StructuredIndex; ++Index; } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) { CheckStringInit(Str, ElemType, SemaRef); UpdateStructuredListElement(StructuredList, StructuredIndex, Str); ++Index; } else if (ElemType->isScalarType()) { CheckScalarType(IList, ElemType, Index, StructuredList, StructuredIndex); } else if (ElemType->isReferenceType()) { CheckReferenceType(IList, ElemType, Index, StructuredList, StructuredIndex); } else { if (SemaRef.getLangOptions().CPlusPlus) { // C++ [dcl.init.aggr]p12: // All implicit type conversions (clause 4) are considered when // initializing the aggregate member with an ini- tializer from // an initializer-list. If the initializer can initialize a // member, the member is initialized. [...] ImplicitConversionSequence ICS = SemaRef.TryCopyInitialization(expr, ElemType); if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion) { if (SemaRef.PerformImplicitConversion(expr, ElemType, ICS, "initializing")) hadError = true; UpdateStructuredListElement(StructuredList, StructuredIndex, expr); ++Index; return; } // Fall through for subaggregate initialization } else { // C99 6.7.8p13: // // The initializer for a structure or union object that has // automatic storage duration shall be either an initializer // list as described below, or a single expression that has // compatible structure or union type. In the latter case, the // initial value of the object, including unnamed members, is // that of the expression. if (ElemType->isRecordType() && SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) { UpdateStructuredListElement(StructuredList, StructuredIndex, expr); ++Index; return; } // Fall through for subaggregate initialization } // C++ [dcl.init.aggr]p12: // // [...] Otherwise, if the member is itself a non-empty // subaggregate, brace elision is assumed and the initializer is // considered for the initialization of the first member of // the subaggregate. if (ElemType->isAggregateType() || ElemType->isVectorType()) { CheckImplicitInitList(IList, ElemType, Index, StructuredList, StructuredIndex); ++StructuredIndex; } else { // We cannot initialize this element, so let // PerformCopyInitialization produce the appropriate diagnostic. SemaRef.PerformCopyInitialization(expr, ElemType, "initializing"); hadError = true; ++Index; ++StructuredIndex; } } } void InitListChecker::CheckScalarType(InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex) { if (Index < IList->getNumInits()) { Expr *expr = IList->getInit(Index); if (isa(expr)) { SemaRef.Diag(IList->getLocStart(), diag::err_many_braces_around_scalar_init) << IList->getSourceRange(); hadError = true; ++Index; ++StructuredIndex; return; } else if (isa(expr)) { SemaRef.Diag(expr->getSourceRange().getBegin(), diag::err_designator_for_scalar_init) << DeclType << expr->getSourceRange(); hadError = true; ++Index; ++StructuredIndex; return; } Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer. if (CheckSingleInitializer(expr, DeclType, false, SemaRef)) hadError = true; // types weren't compatible. else if (savExpr != expr) { // The type was promoted, update initializer list. IList->setInit(Index, expr); } if (hadError) ++StructuredIndex; else UpdateStructuredListElement(StructuredList, StructuredIndex, expr); ++Index; } else { SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer) << IList->getSourceRange(); hadError = true; ++Index; ++StructuredIndex; return; } } void InitListChecker::CheckReferenceType(InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex) { if (Index < IList->getNumInits()) { Expr *expr = IList->getInit(Index); if (isa(expr)) { SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list) << DeclType << IList->getSourceRange(); hadError = true; ++Index; ++StructuredIndex; return; } Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer. if (SemaRef.CheckReferenceInit(expr, DeclType)) hadError = true; else if (savExpr != expr) { // The type was promoted, update initializer list. IList->setInit(Index, expr); } if (hadError) ++StructuredIndex; else UpdateStructuredListElement(StructuredList, StructuredIndex, expr); ++Index; } else { // FIXME: It would be wonderful if we could point at the actual member. In // general, it would be useful to pass location information down the stack, // so that we know the location (or decl) of the "current object" being // initialized. SemaRef.Diag(IList->getLocStart(), diag::err_init_reference_member_uninitialized) << DeclType << IList->getSourceRange(); hadError = true; ++Index; ++StructuredIndex; return; } } void InitListChecker::CheckVectorType(InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex) { if (Index < IList->getNumInits()) { const VectorType *VT = DeclType->getAsVectorType(); int maxElements = VT->getNumElements(); QualType elementType = VT->getElementType(); for (int i = 0; i < maxElements; ++i) { // Don't attempt to go past the end of the init list if (Index >= IList->getNumInits()) break; CheckSubElementType(IList, elementType, Index, StructuredList, StructuredIndex); } } } void InitListChecker::CheckArrayType(InitListExpr *IList, QualType &DeclType, llvm::APSInt elementIndex, bool SubobjectIsDesignatorContext, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex) { // Check for the special-case of initializing an array with a string. if (Index < IList->getNumInits()) { if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType, SemaRef.Context)) { CheckStringInit(Str, DeclType, SemaRef); // We place the string literal directly into the resulting // initializer list. This is the only place where the structure // of the structured initializer list doesn't match exactly, // because doing so would involve allocating one character // constant for each string. UpdateStructuredListElement(StructuredList, StructuredIndex, Str); StructuredList->resizeInits(SemaRef.Context, StructuredIndex); ++Index; return; } } if (const VariableArrayType *VAT = SemaRef.Context.getAsVariableArrayType(DeclType)) { // Check for VLAs; in standard C it would be possible to check this // earlier, but I don't know where clang accepts VLAs (gcc accepts // them in all sorts of strange places). SemaRef.Diag(VAT->getSizeExpr()->getLocStart(), diag::err_variable_object_no_init) << VAT->getSizeExpr()->getSourceRange(); hadError = true; ++Index; ++StructuredIndex; return; } // We might know the maximum number of elements in advance. llvm::APSInt maxElements(elementIndex.getBitWidth(), elementIndex.isUnsigned()); bool maxElementsKnown = false; if (const ConstantArrayType *CAT = SemaRef.Context.getAsConstantArrayType(DeclType)) { maxElements = CAT->getSize(); elementIndex.extOrTrunc(maxElements.getBitWidth()); elementIndex.setIsUnsigned(maxElements.isUnsigned()); maxElementsKnown = true; } QualType elementType = SemaRef.Context.getAsArrayType(DeclType) ->getElementType(); while (Index < IList->getNumInits()) { Expr *Init = IList->getInit(Index); if (DesignatedInitExpr *DIE = dyn_cast(Init)) { // If we're not the subobject that matches up with the '{' for // the designator, we shouldn't be handling the // designator. Return immediately. if (!SubobjectIsDesignatorContext) return; // Handle this designated initializer. elementIndex will be // updated to be the next array element we'll initialize. if (CheckDesignatedInitializer(IList, DIE, 0, DeclType, 0, &elementIndex, Index, StructuredList, StructuredIndex, true, false)) { hadError = true; continue; } if (elementIndex.getBitWidth() > maxElements.getBitWidth()) maxElements.extend(elementIndex.getBitWidth()); else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) elementIndex.extend(maxElements.getBitWidth()); elementIndex.setIsUnsigned(maxElements.isUnsigned()); // If the array is of incomplete type, keep track of the number of // elements in the initializer. if (!maxElementsKnown && elementIndex > maxElements) maxElements = elementIndex; continue; } // If we know the maximum number of elements, and we've already // hit it, stop consuming elements in the initializer list. if (maxElementsKnown && elementIndex == maxElements) break; // Check this element. CheckSubElementType(IList, elementType, Index, StructuredList, StructuredIndex); ++elementIndex; // If the array is of incomplete type, keep track of the number of // elements in the initializer. if (!maxElementsKnown && elementIndex > maxElements) maxElements = elementIndex; } if (!hadError && DeclType->isIncompleteArrayType()) { // If this is an incomplete array type, the actual type needs to // be calculated here. llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); if (maxElements == Zero) { // Sizing an array implicitly to zero is not allowed by ISO C, // but is supported by GNU. SemaRef.Diag(IList->getLocStart(), diag::ext_typecheck_zero_array_size); } DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, ArrayType::Normal, 0); } } void InitListChecker::CheckStructUnionTypes(InitListExpr *IList, QualType DeclType, RecordDecl::field_iterator Field, bool SubobjectIsDesignatorContext, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool TopLevelObject) { RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl(); // If the record is invalid, some of it's members are invalid. To avoid // confusion, we forgo checking the intializer for the entire record. if (structDecl->isInvalidDecl()) { hadError = true; return; } if (DeclType->isUnionType() && IList->getNumInits() == 0) { // Value-initialize the first named member of the union. RecordDecl *RD = DeclType->getAsRecordType()->getDecl(); for (RecordDecl::field_iterator FieldEnd = RD->field_end(SemaRef.Context); Field != FieldEnd; ++Field) { if (Field->getDeclName()) { StructuredList->setInitializedFieldInUnion(*Field); break; } } return; } // If structDecl is a forward declaration, this loop won't do // anything except look at designated initializers; That's okay, // because an error should get printed out elsewhere. It might be // worthwhile to skip over the rest of the initializer, though. RecordDecl *RD = DeclType->getAsRecordType()->getDecl(); RecordDecl::field_iterator FieldEnd = RD->field_end(SemaRef.Context); bool InitializedSomething = false; while (Index < IList->getNumInits()) { Expr *Init = IList->getInit(Index); if (DesignatedInitExpr *DIE = dyn_cast(Init)) { // If we're not the subobject that matches up with the '{' for // the designator, we shouldn't be handling the // designator. Return immediately. if (!SubobjectIsDesignatorContext) return; // Handle this designated initializer. Field will be updated to // the next field that we'll be initializing. if (CheckDesignatedInitializer(IList, DIE, 0, DeclType, &Field, 0, Index, StructuredList, StructuredIndex, true, TopLevelObject)) hadError = true; InitializedSomething = true; continue; } if (Field == FieldEnd) { // We've run out of fields. We're done. break; } // We've already initialized a member of a union. We're done. if (InitializedSomething && DeclType->isUnionType()) break; // If we've hit the flexible array member at the end, we're done. if (Field->getType()->isIncompleteArrayType()) break; if (Field->isUnnamedBitfield()) { // Don't initialize unnamed bitfields, e.g. "int : 20;" ++Field; continue; } CheckSubElementType(IList, Field->getType(), Index, StructuredList, StructuredIndex); InitializedSomething = true; if (DeclType->isUnionType()) { // Initialize the first field within the union. StructuredList->setInitializedFieldInUnion(*Field); } ++Field; } if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || Index >= IList->getNumInits()) return; // Handle GNU flexible array initializers. if (!TopLevelObject && (!isa(IList->getInit(Index)) || cast(IList->getInit(Index))->getNumInits() > 0)) { SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(), diag::err_flexible_array_init_nonempty) << IList->getInit(Index)->getSourceRange().getBegin(); SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) << *Field; hadError = true; ++Index; return; } else { SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(), diag::ext_flexible_array_init) << IList->getInit(Index)->getSourceRange().getBegin(); SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) << *Field; } if (isa(IList->getInit(Index))) CheckSubElementType(IList, Field->getType(), Index, StructuredList, StructuredIndex); else CheckImplicitInitList(IList, Field->getType(), Index, StructuredList, StructuredIndex); } /// \brief Expand a field designator that refers to a member of an /// anonymous struct or union into a series of field designators that /// refers to the field within the appropriate subobject. /// /// Field/FieldIndex will be updated to point to the (new) /// currently-designated field. static void ExpandAnonymousFieldDesignator(Sema &SemaRef, DesignatedInitExpr *DIE, unsigned DesigIdx, FieldDecl *Field, RecordDecl::field_iterator &FieldIter, unsigned &FieldIndex) { typedef DesignatedInitExpr::Designator Designator; // Build the path from the current object to the member of the // anonymous struct/union (backwards). llvm::SmallVector Path; SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path); // Build the replacement designators. llvm::SmallVector Replacements; for (llvm::SmallVector::reverse_iterator FI = Path.rbegin(), FIEnd = Path.rend(); FI != FIEnd; ++FI) { if (FI + 1 == FIEnd) Replacements.push_back(Designator((IdentifierInfo *)0, DIE->getDesignator(DesigIdx)->getDotLoc(), DIE->getDesignator(DesigIdx)->getFieldLoc())); else Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(), SourceLocation())); Replacements.back().setField(*FI); } // Expand the current designator into the set of replacement // designators, so we have a full subobject path down to where the // member of the anonymous struct/union is actually stored. DIE->ExpandDesignator(DesigIdx, &Replacements[0], &Replacements[0] + Replacements.size()); // Update FieldIter/FieldIndex; RecordDecl *Record = cast(Path.back()->getDeclContext()); FieldIter = Record->field_begin(SemaRef.Context); FieldIndex = 0; for (RecordDecl::field_iterator FEnd = Record->field_end(SemaRef.Context); FieldIter != FEnd; ++FieldIter) { if (FieldIter->isUnnamedBitfield()) continue; if (*FieldIter == Path.back()) return; ++FieldIndex; } assert(false && "Unable to find anonymous struct/union field"); } /// @brief Check the well-formedness of a C99 designated initializer. /// /// Determines whether the designated initializer @p DIE, which /// resides at the given @p Index within the initializer list @p /// IList, is well-formed for a current object of type @p DeclType /// (C99 6.7.8). The actual subobject that this designator refers to /// within the current subobject is returned in either /// @p NextField or @p NextElementIndex (whichever is appropriate). /// /// @param IList The initializer list in which this designated /// initializer occurs. /// /// @param DIE The designated initializer expression. /// /// @param DesigIdx The index of the current designator. /// /// @param DeclType The type of the "current object" (C99 6.7.8p17), /// into which the designation in @p DIE should refer. /// /// @param NextField If non-NULL and the first designator in @p DIE is /// a field, this will be set to the field declaration corresponding /// to the field named by the designator. /// /// @param NextElementIndex If non-NULL and the first designator in @p /// DIE is an array designator or GNU array-range designator, this /// will be set to the last index initialized by this designator. /// /// @param Index Index into @p IList where the designated initializer /// @p DIE occurs. /// /// @param StructuredList The initializer list expression that /// describes all of the subobject initializers in the order they'll /// actually be initialized. /// /// @returns true if there was an error, false otherwise. bool InitListChecker::CheckDesignatedInitializer(InitListExpr *IList, DesignatedInitExpr *DIE, unsigned DesigIdx, QualType &CurrentObjectType, RecordDecl::field_iterator *NextField, llvm::APSInt *NextElementIndex, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool FinishSubobjectInit, bool TopLevelObject) { if (DesigIdx == DIE->size()) { // Check the actual initialization for the designated object type. bool prevHadError = hadError; // Temporarily remove the designator expression from the // initializer list that the child calls see, so that we don't try // to re-process the designator. unsigned OldIndex = Index; IList->setInit(OldIndex, DIE->getInit()); CheckSubElementType(IList, CurrentObjectType, Index, StructuredList, StructuredIndex); // Restore the designated initializer expression in the syntactic // form of the initializer list. if (IList->getInit(OldIndex) != DIE->getInit()) DIE->setInit(IList->getInit(OldIndex)); IList->setInit(OldIndex, DIE); return hadError && !prevHadError; } bool IsFirstDesignator = (DesigIdx == 0); assert((IsFirstDesignator || StructuredList) && "Need a non-designated initializer list to start from"); DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); // Determine the structural initializer list that corresponds to the // current subobject. StructuredList = IsFirstDesignator? SyntacticToSemantic[IList] : getStructuredSubobjectInit(IList, Index, CurrentObjectType, StructuredList, StructuredIndex, SourceRange(D->getStartLocation(), DIE->getSourceRange().getEnd())); assert(StructuredList && "Expected a structured initializer list"); if (D->isFieldDesignator()) { // C99 6.7.8p7: // // If a designator has the form // // . identifier // // then the current object (defined below) shall have // structure or union type and the identifier shall be the // name of a member of that type. const RecordType *RT = CurrentObjectType->getAsRecordType(); if (!RT) { SourceLocation Loc = D->getDotLoc(); if (Loc.isInvalid()) Loc = D->getFieldLoc(); SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType; ++Index; return true; } // Note: we perform a linear search of the fields here, despite // the fact that we have a faster lookup method, because we always // need to compute the field's index. FieldDecl *KnownField = D->getField(); IdentifierInfo *FieldName = D->getFieldName(); unsigned FieldIndex = 0; RecordDecl::field_iterator Field = RT->getDecl()->field_begin(SemaRef.Context), FieldEnd = RT->getDecl()->field_end(SemaRef.Context); for (; Field != FieldEnd; ++Field) { if (Field->isUnnamedBitfield()) continue; if (KnownField == *Field || Field->getIdentifier() == FieldName) break; ++FieldIndex; } if (Field == FieldEnd) { // There was no normal field in the struct with the designated // name. Perform another lookup for this name, which may find // something that we can't designate (e.g., a member function), // may find nothing, or may find a member of an anonymous // struct/union. DeclContext::lookup_result Lookup = RT->getDecl()->lookup(SemaRef.Context, FieldName); if (Lookup.first == Lookup.second) { // Name lookup didn't find anything. SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) << FieldName << CurrentObjectType; ++Index; return true; } else if (!KnownField && isa(*Lookup.first) && cast((*Lookup.first)->getDeclContext()) ->isAnonymousStructOrUnion()) { // Handle an field designator that refers to a member of an // anonymous struct or union. ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, cast(*Lookup.first), Field, FieldIndex); D = DIE->getDesignator(DesigIdx); } else { // Name lookup found something, but it wasn't a field. SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) << FieldName; SemaRef.Diag((*Lookup.first)->getLocation(), diag::note_field_designator_found); ++Index; return true; } } else if (!KnownField && cast((*Field)->getDeclContext()) ->isAnonymousStructOrUnion()) { ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field, Field, FieldIndex); D = DIE->getDesignator(DesigIdx); } // All of the fields of a union are located at the same place in // the initializer list. if (RT->getDecl()->isUnion()) { FieldIndex = 0; StructuredList->setInitializedFieldInUnion(*Field); } // Update the designator with the field declaration. D->setField(*Field); // Make sure that our non-designated initializer list has space // for a subobject corresponding to this field. if (FieldIndex >= StructuredList->getNumInits()) StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); // This designator names a flexible array member. if (Field->getType()->isIncompleteArrayType()) { bool Invalid = false; if ((DesigIdx + 1) != DIE->size()) { // We can't designate an object within the flexible array // member (because GCC doesn't allow it). DesignatedInitExpr::Designator *NextD = DIE->getDesignator(DesigIdx + 1); SemaRef.Diag(NextD->getStartLocation(), diag::err_designator_into_flexible_array_member) << SourceRange(NextD->getStartLocation(), DIE->getSourceRange().getEnd()); SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) << *Field; Invalid = true; } if (!hadError && !isa(DIE->getInit())) { // The initializer is not an initializer list. SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(), diag::err_flexible_array_init_needs_braces) << DIE->getInit()->getSourceRange(); SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) << *Field; Invalid = true; } // Handle GNU flexible array initializers. if (!Invalid && !TopLevelObject && cast(DIE->getInit())->getNumInits() > 0) { SemaRef.Diag(DIE->getSourceRange().getBegin(), diag::err_flexible_array_init_nonempty) << DIE->getSourceRange().getBegin(); SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) << *Field; Invalid = true; } if (Invalid) { ++Index; return true; } // Initialize the array. bool prevHadError = hadError; unsigned newStructuredIndex = FieldIndex; unsigned OldIndex = Index; IList->setInit(Index, DIE->getInit()); CheckSubElementType(IList, Field->getType(), Index, StructuredList, newStructuredIndex); IList->setInit(OldIndex, DIE); if (hadError && !prevHadError) { ++Field; ++FieldIndex; if (NextField) *NextField = Field; StructuredIndex = FieldIndex; return true; } } else { // Recurse to check later designated subobjects. QualType FieldType = (*Field)->getType(); unsigned newStructuredIndex = FieldIndex; if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, FieldType, 0, 0, Index, StructuredList, newStructuredIndex, true, false)) return true; } // Find the position of the next field to be initialized in this // subobject. ++Field; ++FieldIndex; // If this the first designator, our caller will continue checking // the rest of this struct/class/union subobject. if (IsFirstDesignator) { if (NextField) *NextField = Field; StructuredIndex = FieldIndex; return false; } if (!FinishSubobjectInit) return false; // We've already initialized something in the union; we're done. if (RT->getDecl()->isUnion()) return hadError; // Check the remaining fields within this class/struct/union subobject. bool prevHadError = hadError; CheckStructUnionTypes(IList, CurrentObjectType, Field, false, Index, StructuredList, FieldIndex); return hadError && !prevHadError; } // C99 6.7.8p6: // // If a designator has the form // // [ constant-expression ] // // then the current object (defined below) shall have array // type and the expression shall be an integer constant // expression. If the array is of unknown size, any // nonnegative value is valid. // // Additionally, cope with the GNU extension that permits // designators of the form // // [ constant-expression ... constant-expression ] const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); if (!AT) { SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) << CurrentObjectType; ++Index; return true; } Expr *IndexExpr = 0; llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; if (D->isArrayDesignator()) { IndexExpr = DIE->getArrayIndex(*D); DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context); DesignatedEndIndex = DesignatedStartIndex; } else { assert(D->isArrayRangeDesignator() && "Need array-range designator"); DesignatedStartIndex = DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context); DesignatedEndIndex = DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context); IndexExpr = DIE->getArrayRangeEnd(*D); if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue()) FullyStructuredList->sawArrayRangeDesignator(); } if (isa(AT)) { llvm::APSInt MaxElements(cast(AT)->getSize(), false); DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); if (DesignatedEndIndex >= MaxElements) { SemaRef.Diag(IndexExpr->getSourceRange().getBegin(), diag::err_array_designator_too_large) << DesignatedEndIndex.toString(10) << MaxElements.toString(10) << IndexExpr->getSourceRange(); ++Index; return true; } } else { // Make sure the bit-widths and signedness match. if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth()) DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth()); else if (DesignatedStartIndex.getBitWidth() < DesignatedEndIndex.getBitWidth()) DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth()); DesignatedStartIndex.setIsUnsigned(true); DesignatedEndIndex.setIsUnsigned(true); } // Make sure that our non-designated initializer list has space // for a subobject corresponding to this array element. if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) StructuredList->resizeInits(SemaRef.Context, DesignatedEndIndex.getZExtValue() + 1); // Repeatedly perform subobject initializations in the range // [DesignatedStartIndex, DesignatedEndIndex]. // Move to the next designator unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); unsigned OldIndex = Index; while (DesignatedStartIndex <= DesignatedEndIndex) { // Recurse to check later designated subobjects. QualType ElementType = AT->getElementType(); Index = OldIndex; if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, ElementType, 0, 0, Index, StructuredList, ElementIndex, (DesignatedStartIndex == DesignatedEndIndex), false)) return true; // Move to the next index in the array that we'll be initializing. ++DesignatedStartIndex; ElementIndex = DesignatedStartIndex.getZExtValue(); } // If this the first designator, our caller will continue checking // the rest of this array subobject. if (IsFirstDesignator) { if (NextElementIndex) *NextElementIndex = DesignatedStartIndex; StructuredIndex = ElementIndex; return false; } if (!FinishSubobjectInit) return false; // Check the remaining elements within this array subobject. bool prevHadError = hadError; CheckArrayType(IList, CurrentObjectType, DesignatedStartIndex, false, Index, StructuredList, ElementIndex); return hadError && !prevHadError; } // Get the structured initializer list for a subobject of type // @p CurrentObjectType. InitListExpr * InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, QualType CurrentObjectType, InitListExpr *StructuredList, unsigned StructuredIndex, SourceRange InitRange) { Expr *ExistingInit = 0; if (!StructuredList) ExistingInit = SyntacticToSemantic[IList]; else if (StructuredIndex < StructuredList->getNumInits()) ExistingInit = StructuredList->getInit(StructuredIndex); if (InitListExpr *Result = dyn_cast_or_null(ExistingInit)) return Result; if (ExistingInit) { // We are creating an initializer list that initializes the // subobjects of the current object, but there was already an // initialization that completely initialized the current // subobject, e.g., by a compound literal: // // struct X { int a, b; }; // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; // // Here, xs[0].a == 0 and xs[0].b == 3, since the second, // designated initializer re-initializes the whole // subobject [0], overwriting previous initializers. SemaRef.Diag(InitRange.getBegin(), diag::warn_subobject_initializer_overrides) << InitRange; SemaRef.Diag(ExistingInit->getSourceRange().getBegin(), diag::note_previous_initializer) << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange(); } InitListExpr *Result = new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0, InitRange.getEnd()); Result->setType(CurrentObjectType); // Pre-allocate storage for the structured initializer list. unsigned NumElements = 0; unsigned NumInits = 0; if (!StructuredList) NumInits = IList->getNumInits(); else if (Index < IList->getNumInits()) { if (InitListExpr *SubList = dyn_cast(IList->getInit(Index))) NumInits = SubList->getNumInits(); } if (const ArrayType *AType = SemaRef.Context.getAsArrayType(CurrentObjectType)) { if (const ConstantArrayType *CAType = dyn_cast(AType)) { NumElements = CAType->getSize().getZExtValue(); // Simple heuristic so that we don't allocate a very large // initializer with many empty entries at the end. if (NumInits && NumElements > NumInits) NumElements = 0; } } else if (const VectorType *VType = CurrentObjectType->getAsVectorType()) NumElements = VType->getNumElements(); else if (const RecordType *RType = CurrentObjectType->getAsRecordType()) { RecordDecl *RDecl = RType->getDecl(); if (RDecl->isUnion()) NumElements = 1; else NumElements = std::distance(RDecl->field_begin(SemaRef.Context), RDecl->field_end(SemaRef.Context)); } if (NumElements < NumInits) NumElements = IList->getNumInits(); Result->reserveInits(NumElements); // Link this new initializer list into the structured initializer // lists. if (StructuredList) StructuredList->updateInit(StructuredIndex, Result); else { Result->setSyntacticForm(IList); SyntacticToSemantic[IList] = Result; } return Result; } /// Update the initializer at index @p StructuredIndex within the /// structured initializer list to the value @p expr. void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, unsigned &StructuredIndex, Expr *expr) { // No structured initializer list to update if (!StructuredList) return; if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) { // This initializer overwrites a previous initializer. Warn. SemaRef.Diag(expr->getSourceRange().getBegin(), diag::warn_initializer_overrides) << expr->getSourceRange(); SemaRef.Diag(PrevInit->getSourceRange().getBegin(), diag::note_previous_initializer) << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange(); } ++StructuredIndex; } /// Check that the given Index expression is a valid array designator /// value. This is essentailly just a wrapper around /// VerifyIntegerConstantExpression that also checks for negative values /// and produces a reasonable diagnostic if there is a /// failure. Returns true if there was an error, false otherwise. If /// everything went okay, Value will receive the value of the constant /// expression. static bool CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { SourceLocation Loc = Index->getSourceRange().getBegin(); // Make sure this is an integer constant expression. if (S.VerifyIntegerConstantExpression(Index, &Value)) return true; if (Value.isSigned() && Value.isNegative()) return S.Diag(Loc, diag::err_array_designator_negative) << Value.toString(10) << Index->getSourceRange(); Value.setIsUnsigned(true); return false; } Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, SourceLocation Loc, bool GNUSyntax, OwningExprResult Init) { typedef DesignatedInitExpr::Designator ASTDesignator; bool Invalid = false; llvm::SmallVector Designators; llvm::SmallVector InitExpressions; // Build designators and check array designator expressions. for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { const Designator &D = Desig.getDesignator(Idx); switch (D.getKind()) { case Designator::FieldDesignator: Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), D.getFieldLoc())); break; case Designator::ArrayDesignator: { Expr *Index = static_cast(D.getArrayIndex()); llvm::APSInt IndexValue; if (!Index->isTypeDependent() && !Index->isValueDependent() && CheckArrayDesignatorExpr(*this, Index, IndexValue)) Invalid = true; else { Designators.push_back(ASTDesignator(InitExpressions.size(), D.getLBracketLoc(), D.getRBracketLoc())); InitExpressions.push_back(Index); } break; } case Designator::ArrayRangeDesignator: { Expr *StartIndex = static_cast(D.getArrayRangeStart()); Expr *EndIndex = static_cast(D.getArrayRangeEnd()); llvm::APSInt StartValue; llvm::APSInt EndValue; bool StartDependent = StartIndex->isTypeDependent() || StartIndex->isValueDependent(); bool EndDependent = EndIndex->isTypeDependent() || EndIndex->isValueDependent(); if ((!StartDependent && CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) || (!EndDependent && CheckArrayDesignatorExpr(*this, EndIndex, EndValue))) Invalid = true; else { // Make sure we're comparing values with the same bit width. if (StartDependent || EndDependent) { // Nothing to compute. } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) EndValue.extend(StartValue.getBitWidth()); else if (StartValue.getBitWidth() < EndValue.getBitWidth()) StartValue.extend(EndValue.getBitWidth()); if (!StartDependent && !EndDependent && EndValue < StartValue) { Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) << StartValue.toString(10) << EndValue.toString(10) << StartIndex->getSourceRange() << EndIndex->getSourceRange(); Invalid = true; } else { Designators.push_back(ASTDesignator(InitExpressions.size(), D.getLBracketLoc(), D.getEllipsisLoc(), D.getRBracketLoc())); InitExpressions.push_back(StartIndex); InitExpressions.push_back(EndIndex); } } break; } } } if (Invalid || Init.isInvalid()) return ExprError(); // Clear out the expressions within the designation. Desig.ClearExprs(*this); DesignatedInitExpr *DIE = DesignatedInitExpr::Create(Context, Designators.data(), Designators.size(), InitExpressions.data(), InitExpressions.size(), Loc, GNUSyntax, Init.takeAs()); return Owned(DIE); } bool Sema::CheckInitList(InitListExpr *&InitList, QualType &DeclType) { InitListChecker CheckInitList(*this, InitList, DeclType); if (!CheckInitList.HadError()) InitList = CheckInitList.getFullyStructuredList(); return CheckInitList.HadError(); } /// \brief Diagnose any semantic errors with value-initialization of /// the given type. /// /// Value-initialization effectively zero-initializes any types /// without user-declared constructors, and calls the default /// constructor for a for any type that has a user-declared /// constructor (C++ [dcl.init]p5). Value-initialization can fail when /// a type with a user-declared constructor does not have an /// accessible, non-deleted default constructor. In C, everything can /// be value-initialized, which corresponds to C's notion of /// initializing objects with static storage duration when no /// initializer is provided for that object. /// /// \returns true if there was an error, false otherwise. bool Sema::CheckValueInitialization(QualType Type, SourceLocation Loc) { // C++ [dcl.init]p5: // // To value-initialize an object of type T means: // -- if T is an array type, then each element is value-initialized; if (const ArrayType *AT = Context.getAsArrayType(Type)) return CheckValueInitialization(AT->getElementType(), Loc); if (const RecordType *RT = Type->getAsRecordType()) { if (CXXRecordDecl *ClassDecl = dyn_cast(RT->getDecl())) { // -- if T is a class type (clause 9) with a user-declared // constructor (12.1), then the default constructor for T is // called (and the initialization is ill-formed if T has no // accessible default constructor); if (ClassDecl->hasUserDeclaredConstructor()) // FIXME: Eventually, we'll need to put the constructor decl into the // AST. return PerformInitializationByConstructor(Type, 0, 0, Loc, SourceRange(Loc), DeclarationName(), IK_Direct); } } if (Type->isReferenceType()) { // C++ [dcl.init]p5: // [...] A program that calls for default-initialization or // value-initialization of an entity of reference type is // ill-formed. [...] // FIXME: Once we have code that goes through this path, add an actual // diagnostic :) } return false; }