//===---------------- SemaCodeComplete.cpp - Code Completion ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the code-completion semantic actions. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/Sema/CodeCompleteConsumer.h" #include "clang/AST/ExprCXX.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringExtras.h" #include #include #include using namespace clang; /// \brief Set the code-completion consumer for semantic analysis. void Sema::setCodeCompleteConsumer(CodeCompleteConsumer *CCC) { assert(((CodeCompleter != 0) != (CCC != 0)) && "Already set or cleared a code-completion consumer?"); CodeCompleter = CCC; } namespace { /// \brief A container of code-completion results. class ResultBuilder { public: /// \brief The type of a name-lookup filter, which can be provided to the /// name-lookup routines to specify which declarations should be included in /// the result set (when it returns true) and which declarations should be /// filtered out (returns false). typedef bool (ResultBuilder::*LookupFilter)(NamedDecl *) const; typedef CodeCompleteConsumer::Result Result; private: /// \brief The actual results we have found. std::vector Results; /// \brief A record of all of the declarations we have found and placed /// into the result set, used to ensure that no declaration ever gets into /// the result set twice. llvm::SmallPtrSet AllDeclsFound; /// \brief A mapping from declaration names to the declarations that have /// this name within a particular scope and their index within the list of /// results. typedef std::multimap > ShadowMap; /// \brief The semantic analysis object for which results are being /// produced. Sema &SemaRef; /// \brief If non-NULL, a filter function used to remove any code-completion /// results that are not desirable. LookupFilter Filter; /// \brief A list of shadow maps, which is used to model name hiding at /// different levels of, e.g., the inheritance hierarchy. std::list ShadowMaps; public: explicit ResultBuilder(Sema &SemaRef, LookupFilter Filter = 0) : SemaRef(SemaRef), Filter(Filter) { } /// \brief Set the filter used for code-completion results. void setFilter(LookupFilter Filter) { this->Filter = Filter; } typedef std::vector::iterator iterator; iterator begin() { return Results.begin(); } iterator end() { return Results.end(); } Result *data() { return Results.empty()? 0 : &Results.front(); } unsigned size() const { return Results.size(); } bool empty() const { return Results.empty(); } /// \brief Add a new result to this result set (if it isn't already in one /// of the shadow maps), or replace an existing result (for, e.g., a /// redeclaration). /// /// \param R the result to add (if it is unique). /// /// \param R the context in which this result will be named. void MaybeAddResult(Result R, DeclContext *CurContext = 0); /// \brief Enter into a new scope. void EnterNewScope(); /// \brief Exit from the current scope. void ExitScope(); /// \name Name lookup predicates /// /// These predicates can be passed to the name lookup functions to filter the /// results of name lookup. All of the predicates have the same type, so that /// //@{ bool IsOrdinaryName(NamedDecl *ND) const; bool IsNestedNameSpecifier(NamedDecl *ND) const; bool IsEnum(NamedDecl *ND) const; bool IsClassOrStruct(NamedDecl *ND) const; bool IsUnion(NamedDecl *ND) const; bool IsNamespace(NamedDecl *ND) const; bool IsNamespaceOrAlias(NamedDecl *ND) const; bool IsType(NamedDecl *ND) const; bool IsMember(NamedDecl *ND) const; //@} }; } /// \brief Determines whether the given hidden result could be found with /// some extra work, e.g., by qualifying the name. /// /// \param Hidden the declaration that is hidden by the currenly \p Visible /// declaration. /// /// \param Visible the declaration with the same name that is already visible. /// /// \returns true if the hidden result can be found by some mechanism, /// false otherwise. static bool canHiddenResultBeFound(const LangOptions &LangOpts, NamedDecl *Hidden, NamedDecl *Visible) { // In C, there is no way to refer to a hidden name. if (!LangOpts.CPlusPlus) return false; DeclContext *HiddenCtx = Hidden->getDeclContext()->getLookupContext(); // There is no way to qualify a name declared in a function or method. if (HiddenCtx->isFunctionOrMethod()) return false; return HiddenCtx != Visible->getDeclContext()->getLookupContext(); } /// \brief Compute the qualification required to get from the current context /// (\p CurContext) to the target context (\p TargetContext). /// /// \param Context the AST context in which the qualification will be used. /// /// \param CurContext the context where an entity is being named, which is /// typically based on the current scope. /// /// \param TargetContext the context in which the named entity actually /// resides. /// /// \returns a nested name specifier that refers into the target context, or /// NULL if no qualification is needed. static NestedNameSpecifier * getRequiredQualification(ASTContext &Context, DeclContext *CurContext, DeclContext *TargetContext) { llvm::SmallVector TargetParents; for (DeclContext *CommonAncestor = TargetContext; CommonAncestor && !CommonAncestor->Encloses(CurContext); CommonAncestor = CommonAncestor->getLookupParent()) { if (CommonAncestor->isTransparentContext() || CommonAncestor->isFunctionOrMethod()) continue; TargetParents.push_back(CommonAncestor); } NestedNameSpecifier *Result = 0; while (!TargetParents.empty()) { DeclContext *Parent = TargetParents.back(); TargetParents.pop_back(); if (NamespaceDecl *Namespace = dyn_cast(Parent)) Result = NestedNameSpecifier::Create(Context, Result, Namespace); else if (TagDecl *TD = dyn_cast(Parent)) Result = NestedNameSpecifier::Create(Context, Result, false, Context.getTypeDeclType(TD).getTypePtr()); else assert(Parent->isTranslationUnit()); } return Result; } void ResultBuilder::MaybeAddResult(Result R, DeclContext *CurContext) { assert(!ShadowMaps.empty() && "Must enter into a results scope"); if (R.Kind != Result::RK_Declaration) { // For non-declaration results, just add the result. Results.push_back(R); return; } // Skip unnamed entities. if (!R.Declaration->getDeclName()) return; // Look through using declarations. if (UsingDecl *Using = dyn_cast(R.Declaration)) MaybeAddResult(Result(Using->getTargetDecl(), R.Rank, R.Qualifier), CurContext); // Handle each declaration in an overload set separately. if (OverloadedFunctionDecl *Ovl = dyn_cast(R.Declaration)) { for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(), FEnd = Ovl->function_end(); F != FEnd; ++F) MaybeAddResult(Result(*F, R.Rank, R.Qualifier), CurContext); return; } Decl *CanonDecl = R.Declaration->getCanonicalDecl(); unsigned IDNS = CanonDecl->getIdentifierNamespace(); // Friend declarations and declarations introduced due to friends are never // added as results. if (isa(CanonDecl) || (IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend))) return; if (const IdentifierInfo *Id = R.Declaration->getIdentifier()) { // __va_list_tag is a freak of nature. Find it and skip it. if (Id->isStr("__va_list_tag") || Id->isStr("__builtin_va_list")) return; // Filter out names reserved for the implementation (C99 7.1.3, // C++ [lib.global.names]). Users don't need to see those. // // FIXME: Add predicate for this. if (Id->getLength() >= 2) { const char *Name = Id->getNameStart(); if (Name[0] == '_' && (Name[1] == '_' || (Name[1] >= 'A' && Name[1] <= 'Z'))) return; } } // C++ constructors are never found by name lookup. if (isa(CanonDecl)) return; // Filter out any unwanted results. if (Filter && !(this->*Filter)(R.Declaration)) return; ShadowMap &SMap = ShadowMaps.back(); ShadowMap::iterator I, IEnd; for (llvm::tie(I, IEnd) = SMap.equal_range(R.Declaration->getDeclName()); I != IEnd; ++I) { NamedDecl *ND = I->second.first; unsigned Index = I->second.second; if (ND->getCanonicalDecl() == CanonDecl) { // This is a redeclaration. Always pick the newer declaration. I->second.first = R.Declaration; Results[Index].Declaration = R.Declaration; // Pick the best rank of the two. Results[Index].Rank = std::min(Results[Index].Rank, R.Rank); // We're done. return; } } // This is a new declaration in this scope. However, check whether this // declaration name is hidden by a similarly-named declaration in an outer // scope. std::list::iterator SM, SMEnd = ShadowMaps.end(); --SMEnd; for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) { for (llvm::tie(I, IEnd) = SM->equal_range(R.Declaration->getDeclName()); I != IEnd; ++I) { // A tag declaration does not hide a non-tag declaration. if (I->second.first->getIdentifierNamespace() == Decl::IDNS_Tag && (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | Decl::IDNS_ObjCProtocol))) continue; // Protocols are in distinct namespaces from everything else. if (((I->second.first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) || (IDNS & Decl::IDNS_ObjCProtocol)) && I->second.first->getIdentifierNamespace() != IDNS) continue; // The newly-added result is hidden by an entry in the shadow map. if (canHiddenResultBeFound(SemaRef.getLangOptions(), R.Declaration, I->second.first)) { // Note that this result was hidden. R.Hidden = true; R.QualifierIsInformative = false; if (!R.Qualifier) R.Qualifier = getRequiredQualification(SemaRef.Context, CurContext, R.Declaration->getDeclContext()); } else { // This result was hidden and cannot be found; don't bother adding // it. return; } break; } } // Make sure that any given declaration only shows up in the result set once. if (!AllDeclsFound.insert(CanonDecl)) return; // If the filter is for nested-name-specifiers, then this result starts a // nested-name-specifier. if ((Filter == &ResultBuilder::IsNestedNameSpecifier) || (Filter == &ResultBuilder::IsMember && isa(R.Declaration) && cast(R.Declaration)->isInjectedClassName())) R.StartsNestedNameSpecifier = true; // If this result is supposed to have an informative qualifier, add one. if (R.QualifierIsInformative && !R.Qualifier && !R.StartsNestedNameSpecifier) { DeclContext *Ctx = R.Declaration->getDeclContext(); if (NamespaceDecl *Namespace = dyn_cast(Ctx)) R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, Namespace); else if (TagDecl *Tag = dyn_cast(Ctx)) R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, false, SemaRef.Context.getTypeDeclType(Tag).getTypePtr()); else R.QualifierIsInformative = false; } // Insert this result into the set of results and into the current shadow // map. SMap.insert(std::make_pair(R.Declaration->getDeclName(), std::make_pair(R.Declaration, Results.size()))); Results.push_back(R); } /// \brief Enter into a new scope. void ResultBuilder::EnterNewScope() { ShadowMaps.push_back(ShadowMap()); } /// \brief Exit from the current scope. void ResultBuilder::ExitScope() { ShadowMaps.pop_back(); } /// \brief Determines whether this given declaration will be found by /// ordinary name lookup. bool ResultBuilder::IsOrdinaryName(NamedDecl *ND) const { unsigned IDNS = Decl::IDNS_Ordinary; if (SemaRef.getLangOptions().CPlusPlus) IDNS |= Decl::IDNS_Tag; return ND->getIdentifierNamespace() & IDNS; } /// \brief Determines whether the given declaration is suitable as the /// start of a C++ nested-name-specifier, e.g., a class or namespace. bool ResultBuilder::IsNestedNameSpecifier(NamedDecl *ND) const { // Allow us to find class templates, too. if (ClassTemplateDecl *ClassTemplate = dyn_cast(ND)) ND = ClassTemplate->getTemplatedDecl(); return SemaRef.isAcceptableNestedNameSpecifier(ND); } /// \brief Determines whether the given declaration is an enumeration. bool ResultBuilder::IsEnum(NamedDecl *ND) const { return isa(ND); } /// \brief Determines whether the given declaration is a class or struct. bool ResultBuilder::IsClassOrStruct(NamedDecl *ND) const { // Allow us to find class templates, too. if (ClassTemplateDecl *ClassTemplate = dyn_cast(ND)) ND = ClassTemplate->getTemplatedDecl(); if (RecordDecl *RD = dyn_cast(ND)) return RD->getTagKind() == TagDecl::TK_class || RD->getTagKind() == TagDecl::TK_struct; return false; } /// \brief Determines whether the given declaration is a union. bool ResultBuilder::IsUnion(NamedDecl *ND) const { // Allow us to find class templates, too. if (ClassTemplateDecl *ClassTemplate = dyn_cast(ND)) ND = ClassTemplate->getTemplatedDecl(); if (RecordDecl *RD = dyn_cast(ND)) return RD->getTagKind() == TagDecl::TK_union; return false; } /// \brief Determines whether the given declaration is a namespace. bool ResultBuilder::IsNamespace(NamedDecl *ND) const { return isa(ND); } /// \brief Determines whether the given declaration is a namespace or /// namespace alias. bool ResultBuilder::IsNamespaceOrAlias(NamedDecl *ND) const { return isa(ND) || isa(ND); } /// \brief Brief determines whether the given declaration is a namespace or /// namespace alias. bool ResultBuilder::IsType(NamedDecl *ND) const { return isa(ND); } /// \brief Since every declaration found within a class is a member that we /// care about, always returns true. This predicate exists mostly to /// communicate to the result builder that we are performing a lookup for /// member access. bool ResultBuilder::IsMember(NamedDecl *ND) const { return true; } // Find the next outer declaration context corresponding to this scope. static DeclContext *findOuterContext(Scope *S) { for (S = S->getParent(); S; S = S->getParent()) if (S->getEntity()) return static_cast(S->getEntity())->getPrimaryContext(); return 0; } /// \brief Collect the results of searching for members within the given /// declaration context. /// /// \param Ctx the declaration context from which we will gather results. /// /// \param Rank the rank given to results in this declaration context. /// /// \param Visited the set of declaration contexts that have already been /// visited. Declaration contexts will only be visited once. /// /// \param Results the result set that will be extended with any results /// found within this declaration context (and, for a C++ class, its bases). /// /// \param InBaseClass whether we are in a base class. /// /// \returns the next higher rank value, after considering all of the /// names within this declaration context. static unsigned CollectMemberLookupResults(DeclContext *Ctx, unsigned Rank, DeclContext *CurContext, llvm::SmallPtrSet &Visited, ResultBuilder &Results, bool InBaseClass = false) { // Make sure we don't visit the same context twice. if (!Visited.insert(Ctx->getPrimaryContext())) return Rank; // Enumerate all of the results in this context. typedef CodeCompleteConsumer::Result Result; Results.EnterNewScope(); for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx; CurCtx = CurCtx->getNextContext()) { for (DeclContext::decl_iterator D = CurCtx->decls_begin(), DEnd = CurCtx->decls_end(); D != DEnd; ++D) { if (NamedDecl *ND = dyn_cast(*D)) Results.MaybeAddResult(Result(ND, Rank, 0, InBaseClass), CurContext); } } // Traverse the contexts of inherited classes. if (CXXRecordDecl *Record = dyn_cast(Ctx)) { for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(), BEnd = Record->bases_end(); B != BEnd; ++B) { QualType BaseType = B->getType(); // Don't look into dependent bases, because name lookup can't look // there anyway. if (BaseType->isDependentType()) continue; const RecordType *Record = BaseType->getAs(); if (!Record) continue; // FIXME: It would be nice to be able to determine whether referencing // a particular member would be ambiguous. For example, given // // struct A { int member; }; // struct B { int member; }; // struct C : A, B { }; // // void f(C *c) { c->### } // accessing 'member' would result in an ambiguity. However, code // completion could be smart enough to qualify the member with the // base class, e.g., // // c->B::member // // or // // c->A::member // Collect results from this base class (and its bases). CollectMemberLookupResults(Record->getDecl(), Rank, CurContext, Visited, Results, /*InBaseClass=*/true); } } // FIXME: Look into base classes in Objective-C! Results.ExitScope(); return Rank + 1; } /// \brief Collect the results of searching for members within the given /// declaration context. /// /// \param Ctx the declaration context from which we will gather results. /// /// \param InitialRank the initial rank given to results in this declaration /// context. Larger rank values will be used for, e.g., members found in /// base classes. /// /// \param Results the result set that will be extended with any results /// found within this declaration context (and, for a C++ class, its bases). /// /// \returns the next higher rank value, after considering all of the /// names within this declaration context. static unsigned CollectMemberLookupResults(DeclContext *Ctx, unsigned InitialRank, DeclContext *CurContext, ResultBuilder &Results) { llvm::SmallPtrSet Visited; return CollectMemberLookupResults(Ctx, InitialRank, CurContext, Visited, Results); } /// \brief Collect the results of searching for declarations within the given /// scope and its parent scopes. /// /// \param S the scope in which we will start looking for declarations. /// /// \param InitialRank the initial rank given to results in this scope. /// Larger rank values will be used for results found in parent scopes. /// /// \param CurContext the context from which lookup results will be found. /// /// \param Results the builder object that will receive each result. static unsigned CollectLookupResults(Scope *S, TranslationUnitDecl *TranslationUnit, unsigned InitialRank, DeclContext *CurContext, ResultBuilder &Results) { if (!S) return InitialRank; // FIXME: Using directives! unsigned NextRank = InitialRank; Results.EnterNewScope(); if (S->getEntity() && !((DeclContext *)S->getEntity())->isFunctionOrMethod()) { // Look into this scope's declaration context, along with any of its // parent lookup contexts (e.g., enclosing classes), up to the point // where we hit the context stored in the next outer scope. DeclContext *Ctx = (DeclContext *)S->getEntity(); DeclContext *OuterCtx = findOuterContext(S); for (; Ctx && Ctx->getPrimaryContext() != OuterCtx; Ctx = Ctx->getLookupParent()) { if (Ctx->isFunctionOrMethod()) continue; NextRank = CollectMemberLookupResults(Ctx, NextRank + 1, CurContext, Results); } } else if (!S->getParent()) { // Look into the translation unit scope. We walk through the translation // unit's declaration context, because the Scope itself won't have all of // the declarations if we loaded a precompiled header. // FIXME: We would like the translation unit's Scope object to point to the // translation unit, so we don't need this special "if" branch. However, // doing so would force the normal C++ name-lookup code to look into the // translation unit decl when the IdentifierInfo chains would suffice. // Once we fix that problem (which is part of a more general "don't look // in DeclContexts unless we have to" optimization), we can eliminate the // TranslationUnit parameter entirely. NextRank = CollectMemberLookupResults(TranslationUnit, NextRank + 1, CurContext, Results); } else { // Walk through the declarations in this Scope. for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); D != DEnd; ++D) { if (NamedDecl *ND = dyn_cast((Decl *)((*D).get()))) Results.MaybeAddResult(CodeCompleteConsumer::Result(ND, NextRank), CurContext); } NextRank = NextRank + 1; } // Lookup names in the parent scope. NextRank = CollectLookupResults(S->getParent(), TranslationUnit, NextRank, CurContext, Results); Results.ExitScope(); return NextRank; } /// \brief Add type specifiers for the current language as keyword results. static void AddTypeSpecifierResults(const LangOptions &LangOpts, unsigned Rank, ResultBuilder &Results) { typedef CodeCompleteConsumer::Result Result; Results.MaybeAddResult(Result("short", Rank)); Results.MaybeAddResult(Result("long", Rank)); Results.MaybeAddResult(Result("signed", Rank)); Results.MaybeAddResult(Result("unsigned", Rank)); Results.MaybeAddResult(Result("void", Rank)); Results.MaybeAddResult(Result("char", Rank)); Results.MaybeAddResult(Result("int", Rank)); Results.MaybeAddResult(Result("float", Rank)); Results.MaybeAddResult(Result("double", Rank)); Results.MaybeAddResult(Result("enum", Rank)); Results.MaybeAddResult(Result("struct", Rank)); Results.MaybeAddResult(Result("union", Rank)); if (LangOpts.C99) { // C99-specific Results.MaybeAddResult(Result("_Complex", Rank)); Results.MaybeAddResult(Result("_Imaginary", Rank)); Results.MaybeAddResult(Result("_Bool", Rank)); } if (LangOpts.CPlusPlus) { // C++-specific Results.MaybeAddResult(Result("bool", Rank)); Results.MaybeAddResult(Result("class", Rank)); Results.MaybeAddResult(Result("typename", Rank)); Results.MaybeAddResult(Result("wchar_t", Rank)); if (LangOpts.CPlusPlus0x) { Results.MaybeAddResult(Result("char16_t", Rank)); Results.MaybeAddResult(Result("char32_t", Rank)); Results.MaybeAddResult(Result("decltype", Rank)); } } // GNU extensions if (LangOpts.GNUMode) { // FIXME: Enable when we actually support decimal floating point. // Results.MaybeAddResult(Result("_Decimal32", Rank)); // Results.MaybeAddResult(Result("_Decimal64", Rank)); // Results.MaybeAddResult(Result("_Decimal128", Rank)); Results.MaybeAddResult(Result("typeof", Rank)); } } /// \brief Add function parameter chunks to the given code completion string. static void AddFunctionParameterChunks(ASTContext &Context, FunctionDecl *Function, CodeCompletionString *Result) { CodeCompletionString *CCStr = Result; for (unsigned P = 0, N = Function->getNumParams(); P != N; ++P) { ParmVarDecl *Param = Function->getParamDecl(P); if (Param->hasDefaultArg()) { // When we see an optional default argument, put that argument and // the remaining default arguments into a new, optional string. CodeCompletionString *Opt = new CodeCompletionString; CCStr->AddOptionalChunk(std::auto_ptr(Opt)); CCStr = Opt; } if (P != 0) CCStr->AddTextChunk(", "); // Format the placeholder string. std::string PlaceholderStr; if (Param->getIdentifier()) PlaceholderStr = Param->getIdentifier()->getName(); Param->getType().getAsStringInternal(PlaceholderStr, Context.PrintingPolicy); // Add the placeholder string. CCStr->AddPlaceholderChunk(PlaceholderStr.c_str()); } if (const FunctionProtoType *Proto = Function->getType()->getAs()) if (Proto->isVariadic()) CCStr->AddPlaceholderChunk(", ..."); } /// \brief Add template parameter chunks to the given code completion string. static void AddTemplateParameterChunks(ASTContext &Context, TemplateDecl *Template, CodeCompletionString *Result, unsigned MaxParameters = 0) { CodeCompletionString *CCStr = Result; bool FirstParameter = true; TemplateParameterList *Params = Template->getTemplateParameters(); TemplateParameterList::iterator PEnd = Params->end(); if (MaxParameters) PEnd = Params->begin() + MaxParameters; for (TemplateParameterList::iterator P = Params->begin(); P != PEnd; ++P) { bool HasDefaultArg = false; std::string PlaceholderStr; if (TemplateTypeParmDecl *TTP = dyn_cast(*P)) { if (TTP->wasDeclaredWithTypename()) PlaceholderStr = "typename"; else PlaceholderStr = "class"; if (TTP->getIdentifier()) { PlaceholderStr += ' '; PlaceholderStr += TTP->getIdentifier()->getName(); } HasDefaultArg = TTP->hasDefaultArgument(); } else if (NonTypeTemplateParmDecl *NTTP = dyn_cast(*P)) { if (NTTP->getIdentifier()) PlaceholderStr = NTTP->getIdentifier()->getName(); NTTP->getType().getAsStringInternal(PlaceholderStr, Context.PrintingPolicy); HasDefaultArg = NTTP->hasDefaultArgument(); } else { assert(isa(*P)); TemplateTemplateParmDecl *TTP = cast(*P); // Since putting the template argument list into the placeholder would // be very, very long, we just use an abbreviation. PlaceholderStr = "template<...> class"; if (TTP->getIdentifier()) { PlaceholderStr += ' '; PlaceholderStr += TTP->getIdentifier()->getName(); } HasDefaultArg = TTP->hasDefaultArgument(); } if (HasDefaultArg) { // When we see an optional default argument, put that argument and // the remaining default arguments into a new, optional string. CodeCompletionString *Opt = new CodeCompletionString; CCStr->AddOptionalChunk(std::auto_ptr(Opt)); CCStr = Opt; } if (FirstParameter) FirstParameter = false; else CCStr->AddTextChunk(", "); // Add the placeholder string. CCStr->AddPlaceholderChunk(PlaceholderStr.c_str()); } } /// \brief Add a qualifier to the given code-completion string, if the /// provided nested-name-specifier is non-NULL. void AddQualifierToCompletionString(CodeCompletionString *Result, NestedNameSpecifier *Qualifier, bool QualifierIsInformative, ASTContext &Context) { if (!Qualifier) return; std::string PrintedNNS; { llvm::raw_string_ostream OS(PrintedNNS); Qualifier->print(OS, Context.PrintingPolicy); } if (QualifierIsInformative) Result->AddInformativeChunk(PrintedNNS.c_str()); else Result->AddTextChunk(PrintedNNS.c_str()); } /// \brief If possible, create a new code completion string for the given /// result. /// /// \returns Either a new, heap-allocated code completion string describing /// how to use this result, or NULL to indicate that the string or name of the /// result is all that is needed. CodeCompletionString * CodeCompleteConsumer::Result::CreateCodeCompletionString(Sema &S) { if (Kind == RK_Keyword) return 0; if (Kind == RK_Macro) { MacroInfo *MI = S.PP.getMacroInfo(Macro); if (!MI || !MI->isFunctionLike()) return 0; // Format a function-like macro with placeholders for the arguments. CodeCompletionString *Result = new CodeCompletionString; Result->AddTextChunk(Macro->getName().str().c_str()); Result->AddTextChunk("("); for (MacroInfo::arg_iterator A = MI->arg_begin(), AEnd = MI->arg_end(); A != AEnd; ++A) { if (A != MI->arg_begin()) Result->AddTextChunk(", "); if (!MI->isVariadic() || A != AEnd - 1) { // Non-variadic argument. Result->AddPlaceholderChunk((*A)->getName().str().c_str()); continue; } // Variadic argument; cope with the different between GNU and C99 // variadic macros, providing a single placeholder for the rest of the // arguments. if ((*A)->isStr("__VA_ARGS__")) Result->AddPlaceholderChunk("..."); else { std::string Arg = (*A)->getName(); Arg += "..."; Result->AddPlaceholderChunk(Arg.c_str()); } } Result->AddTextChunk(")"); return Result; } assert(Kind == RK_Declaration && "Missed a macro kind?"); NamedDecl *ND = Declaration; if (FunctionDecl *Function = dyn_cast(ND)) { CodeCompletionString *Result = new CodeCompletionString; AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, S.Context); Result->AddTextChunk(Function->getNameAsString().c_str()); Result->AddTextChunk("("); AddFunctionParameterChunks(S.Context, Function, Result); Result->AddTextChunk(")"); return Result; } if (FunctionTemplateDecl *FunTmpl = dyn_cast(ND)) { CodeCompletionString *Result = new CodeCompletionString; AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, S.Context); FunctionDecl *Function = FunTmpl->getTemplatedDecl(); Result->AddTextChunk(Function->getNameAsString().c_str()); // Figure out which template parameters are deduced (or have default // arguments). llvm::SmallVector Deduced; S.MarkDeducedTemplateParameters(FunTmpl, Deduced); unsigned LastDeducibleArgument; for (LastDeducibleArgument = Deduced.size(); LastDeducibleArgument > 0; --LastDeducibleArgument) { if (!Deduced[LastDeducibleArgument - 1]) { // C++0x: Figure out if the template argument has a default. If so, // the user doesn't need to type this argument. // FIXME: We need to abstract template parameters better! bool HasDefaultArg = false; NamedDecl *Param = FunTmpl->getTemplateParameters()->getParam( LastDeducibleArgument - 1); if (TemplateTypeParmDecl *TTP = dyn_cast(Param)) HasDefaultArg = TTP->hasDefaultArgument(); else if (NonTypeTemplateParmDecl *NTTP = dyn_cast(Param)) HasDefaultArg = NTTP->hasDefaultArgument(); else { assert(isa(Param)); HasDefaultArg = cast(Param)->hasDefaultArgument(); } if (!HasDefaultArg) break; } } if (LastDeducibleArgument) { // Some of the function template arguments cannot be deduced from a // function call, so we introduce an explicit template argument list // containing all of the arguments up to the first deducible argument. Result->AddTextChunk("<"); AddTemplateParameterChunks(S.Context, FunTmpl, Result, LastDeducibleArgument); Result->AddTextChunk(">"); } // Add the function parameters Result->AddTextChunk("("); AddFunctionParameterChunks(S.Context, Function, Result); Result->AddTextChunk(")"); return Result; } if (TemplateDecl *Template = dyn_cast(ND)) { CodeCompletionString *Result = new CodeCompletionString; AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, S.Context); Result->AddTextChunk(Template->getNameAsString().c_str()); Result->AddTextChunk("<"); AddTemplateParameterChunks(S.Context, Template, Result); Result->AddTextChunk(">"); return Result; } if (Qualifier || StartsNestedNameSpecifier) { CodeCompletionString *Result = new CodeCompletionString; AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, S.Context); Result->AddTextChunk(ND->getNameAsString().c_str()); if (StartsNestedNameSpecifier) Result->AddTextChunk("::"); return Result; } return 0; } CodeCompletionString * CodeCompleteConsumer::OverloadCandidate::CreateSignatureString( unsigned CurrentArg, Sema &S) const { CodeCompletionString *Result = new CodeCompletionString; FunctionDecl *FDecl = getFunction(); const FunctionProtoType *Proto = dyn_cast(getFunctionType()); if (!FDecl && !Proto) { // Function without a prototype. Just give the return type and a // highlighted ellipsis. const FunctionType *FT = getFunctionType(); Result->AddTextChunk( FT->getResultType().getAsString(S.Context.PrintingPolicy).c_str()); Result->AddTextChunk("("); Result->AddPlaceholderChunk("..."); Result->AddTextChunk("("); return Result; } if (FDecl) Result->AddTextChunk(FDecl->getNameAsString().c_str()); else Result->AddTextChunk( Proto->getResultType().getAsString(S.Context.PrintingPolicy).c_str()); Result->AddTextChunk("("); unsigned NumParams = FDecl? FDecl->getNumParams() : Proto->getNumArgs(); for (unsigned I = 0; I != NumParams; ++I) { if (I) Result->AddTextChunk(", "); std::string ArgString; QualType ArgType; if (FDecl) { ArgString = FDecl->getParamDecl(I)->getNameAsString(); ArgType = FDecl->getParamDecl(I)->getOriginalType(); } else { ArgType = Proto->getArgType(I); } ArgType.getAsStringInternal(ArgString, S.Context.PrintingPolicy); if (I == CurrentArg) Result->AddPlaceholderChunk(ArgString.c_str()); else Result->AddTextChunk(ArgString.c_str()); } if (Proto && Proto->isVariadic()) { Result->AddTextChunk(", "); if (CurrentArg < NumParams) Result->AddTextChunk("..."); else Result->AddPlaceholderChunk("..."); } Result->AddTextChunk(")"); return Result; } namespace { struct SortCodeCompleteResult { typedef CodeCompleteConsumer::Result Result; bool isEarlierDeclarationName(DeclarationName X, DeclarationName Y) const { if (X.getNameKind() != Y.getNameKind()) return X.getNameKind() < Y.getNameKind(); return llvm::LowercaseString(X.getAsString()) < llvm::LowercaseString(Y.getAsString()); } bool operator()(const Result &X, const Result &Y) const { // Sort first by rank. if (X.Rank < Y.Rank) return true; else if (X.Rank > Y.Rank) return false; // Result kinds are ordered by decreasing importance. if (X.Kind < Y.Kind) return true; else if (X.Kind > Y.Kind) return false; // Non-hidden names precede hidden names. if (X.Hidden != Y.Hidden) return !X.Hidden; // Non-nested-name-specifiers precede nested-name-specifiers. if (X.StartsNestedNameSpecifier != Y.StartsNestedNameSpecifier) return !X.StartsNestedNameSpecifier; // Ordering depends on the kind of result. switch (X.Kind) { case Result::RK_Declaration: // Order based on the declaration names. return isEarlierDeclarationName(X.Declaration->getDeclName(), Y.Declaration->getDeclName()); case Result::RK_Keyword: return strcmp(X.Keyword, Y.Keyword) < 0; case Result::RK_Macro: return llvm::LowercaseString(X.Macro->getName()) < llvm::LowercaseString(Y.Macro->getName()); } // Silence GCC warning. return false; } }; } // Add all of the known macros as code-completion results. static void AddMacroResults(Preprocessor &PP, unsigned Rank, ResultBuilder &Results) { Results.EnterNewScope(); for (Preprocessor::macro_iterator M = PP.macro_begin(), MEnd = PP.macro_end(); M != MEnd; ++M) Results.MaybeAddResult(CodeCompleteConsumer::Result(M->first, Rank)); Results.ExitScope(); } static void HandleCodeCompleteResults(CodeCompleteConsumer *CodeCompleter, CodeCompleteConsumer::Result *Results, unsigned NumResults) { // Sort the results by rank/kind/etc. std::stable_sort(Results, Results + NumResults, SortCodeCompleteResult()); if (CodeCompleter) CodeCompleter->ProcessCodeCompleteResults(Results, NumResults); } void Sema::CodeCompleteOrdinaryName(Scope *S) { ResultBuilder Results(*this, &ResultBuilder::IsOrdinaryName); unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext, Results); AddMacroResults(PP, NextRank, Results); HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); } void Sema::CodeCompleteMemberReferenceExpr(Scope *S, ExprTy *BaseE, SourceLocation OpLoc, bool IsArrow) { if (!BaseE || !CodeCompleter) return; typedef CodeCompleteConsumer::Result Result; Expr *Base = static_cast(BaseE); QualType BaseType = Base->getType(); if (IsArrow) { if (const PointerType *Ptr = BaseType->getAs()) BaseType = Ptr->getPointeeType(); else if (BaseType->isObjCObjectPointerType()) /*Do nothing*/ ; else return; } ResultBuilder Results(*this, &ResultBuilder::IsMember); unsigned NextRank = 0; if (const RecordType *Record = BaseType->getAs()) { NextRank = CollectMemberLookupResults(Record->getDecl(), NextRank, Record->getDecl(), Results); if (getLangOptions().CPlusPlus) { if (!Results.empty()) { // The "template" keyword can follow "->" or "." in the grammar. // However, we only want to suggest the template keyword if something // is dependent. bool IsDependent = BaseType->isDependentType(); if (!IsDependent) { for (Scope *DepScope = S; DepScope; DepScope = DepScope->getParent()) if (DeclContext *Ctx = (DeclContext *)DepScope->getEntity()) { IsDependent = Ctx->isDependentContext(); break; } } if (IsDependent) Results.MaybeAddResult(Result("template", NextRank++)); } // We could have the start of a nested-name-specifier. Add those // results as well. Results.setFilter(&ResultBuilder::IsNestedNameSpecifier); CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank, CurContext, Results); } // Add macros AddMacroResults(PP, NextRank, Results); // Hand off the results found for code completion. HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); // We're done! return; } } void Sema::CodeCompleteTag(Scope *S, unsigned TagSpec) { if (!CodeCompleter) return; typedef CodeCompleteConsumer::Result Result; ResultBuilder::LookupFilter Filter = 0; switch ((DeclSpec::TST)TagSpec) { case DeclSpec::TST_enum: Filter = &ResultBuilder::IsEnum; break; case DeclSpec::TST_union: Filter = &ResultBuilder::IsUnion; break; case DeclSpec::TST_struct: case DeclSpec::TST_class: Filter = &ResultBuilder::IsClassOrStruct; break; default: assert(false && "Unknown type specifier kind in CodeCompleteTag"); return; } ResultBuilder Results(*this, Filter); unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext, Results); if (getLangOptions().CPlusPlus) { // We could have the start of a nested-name-specifier. Add those // results as well. Results.setFilter(&ResultBuilder::IsNestedNameSpecifier); NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank, CurContext, Results); } AddMacroResults(PP, NextRank, Results); HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); } void Sema::CodeCompleteCase(Scope *S) { if (getSwitchStack().empty() || !CodeCompleter) return; SwitchStmt *Switch = getSwitchStack().back(); if (!Switch->getCond()->getType()->isEnumeralType()) return; // Code-complete the cases of a switch statement over an enumeration type // by providing the list of EnumDecl *Enum = Switch->getCond()->getType()->getAs()->getDecl(); // Determine which enumerators we have already seen in the switch statement. // FIXME: Ideally, we would also be able to look *past* the code-completion // token, in case we are code-completing in the middle of the switch and not // at the end. However, we aren't able to do so at the moment. llvm::SmallPtrSet EnumeratorsSeen; NestedNameSpecifier *Qualifier = 0; for (SwitchCase *SC = Switch->getSwitchCaseList(); SC; SC = SC->getNextSwitchCase()) { CaseStmt *Case = dyn_cast(SC); if (!Case) continue; Expr *CaseVal = Case->getLHS()->IgnoreParenCasts(); if (DeclRefExpr *DRE = dyn_cast(CaseVal)) if (EnumConstantDecl *Enumerator = dyn_cast(DRE->getDecl())) { // We look into the AST of the case statement to determine which // enumerator was named. Alternatively, we could compute the value of // the integral constant expression, then compare it against the // values of each enumerator. However, value-based approach would not // work as well with C++ templates where enumerators declared within a // template are type- and value-dependent. EnumeratorsSeen.insert(Enumerator); // If this is a qualified-id, keep track of the nested-name-specifier // so that we can reproduce it as part of code completion, e.g., // // switch (TagD.getKind()) { // case TagDecl::TK_enum: // break; // case XXX // // At the XXX, our completions are TagDecl::TK_union, // TagDecl::TK_struct, and TagDecl::TK_class, rather than TK_union, // TK_struct, and TK_class. Qualifier = DRE->getQualifier(); } } if (getLangOptions().CPlusPlus && !Qualifier && EnumeratorsSeen.empty()) { // If there are no prior enumerators in C++, check whether we have to // qualify the names of the enumerators that we suggest, because they // may not be visible in this scope. Qualifier = getRequiredQualification(Context, CurContext, Enum->getDeclContext()); // FIXME: Scoped enums need to start with "EnumDecl" as the context! } // Add any enumerators that have not yet been mentioned. ResultBuilder Results(*this); Results.EnterNewScope(); for (EnumDecl::enumerator_iterator E = Enum->enumerator_begin(), EEnd = Enum->enumerator_end(); E != EEnd; ++E) { if (EnumeratorsSeen.count(*E)) continue; Results.MaybeAddResult(CodeCompleteConsumer::Result(*E, 0, Qualifier)); } Results.ExitScope(); AddMacroResults(PP, 1, Results); HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); } namespace { struct IsBetterOverloadCandidate { Sema &S; public: explicit IsBetterOverloadCandidate(Sema &S) : S(S) { } bool operator()(const OverloadCandidate &X, const OverloadCandidate &Y) const { return S.isBetterOverloadCandidate(X, Y); } }; } void Sema::CodeCompleteCall(Scope *S, ExprTy *FnIn, ExprTy **ArgsIn, unsigned NumArgs) { if (!CodeCompleter) return; Expr *Fn = (Expr *)FnIn; Expr **Args = (Expr **)ArgsIn; // Ignore type-dependent call expressions entirely. if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(Args, NumArgs)) return; NamedDecl *Function; DeclarationName UnqualifiedName; NestedNameSpecifier *Qualifier; SourceRange QualifierRange; bool ArgumentDependentLookup; bool HasExplicitTemplateArgs; const TemplateArgumentLoc *ExplicitTemplateArgs; unsigned NumExplicitTemplateArgs; DeconstructCallFunction(Fn, Function, UnqualifiedName, Qualifier, QualifierRange, ArgumentDependentLookup, HasExplicitTemplateArgs, ExplicitTemplateArgs, NumExplicitTemplateArgs); // FIXME: What if we're calling something that isn't a function declaration? // FIXME: What if we're calling a pseudo-destructor? // FIXME: What if we're calling a member function? // Build an overload candidate set based on the functions we find. OverloadCandidateSet CandidateSet; AddOverloadedCallCandidates(Function, UnqualifiedName, ArgumentDependentLookup, HasExplicitTemplateArgs, ExplicitTemplateArgs, NumExplicitTemplateArgs, Args, NumArgs, CandidateSet, /*PartialOverloading=*/true); // Sort the overload candidate set by placing the best overloads first. std::stable_sort(CandidateSet.begin(), CandidateSet.end(), IsBetterOverloadCandidate(*this)); // Add the remaining viable overload candidates as code-completion reslults. typedef CodeCompleteConsumer::OverloadCandidate ResultCandidate; llvm::SmallVector Results; for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), CandEnd = CandidateSet.end(); Cand != CandEnd; ++Cand) { if (Cand->Viable) Results.push_back(ResultCandidate(Cand->Function)); } CodeCompleter->ProcessOverloadCandidates(NumArgs, Results.data(), Results.size()); } void Sema::CodeCompleteQualifiedId(Scope *S, const CXXScopeSpec &SS, bool EnteringContext) { if (!SS.getScopeRep() || !CodeCompleter) return; DeclContext *Ctx = computeDeclContext(SS, EnteringContext); if (!Ctx) return; ResultBuilder Results(*this); unsigned NextRank = CollectMemberLookupResults(Ctx, 0, Ctx, Results); // The "template" keyword can follow "::" in the grammar, but only // put it into the grammar if the nested-name-specifier is dependent. NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); if (!Results.empty() && NNS->isDependent()) Results.MaybeAddResult(CodeCompleteConsumer::Result("template", NextRank)); AddMacroResults(PP, NextRank + 1, Results); HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); } void Sema::CodeCompleteUsing(Scope *S) { if (!CodeCompleter) return; ResultBuilder Results(*this, &ResultBuilder::IsNestedNameSpecifier); Results.EnterNewScope(); // If we aren't in class scope, we could see the "namespace" keyword. if (!S->isClassScope()) Results.MaybeAddResult(CodeCompleteConsumer::Result("namespace", 0)); // After "using", we can see anything that would start a // nested-name-specifier. unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext, Results); Results.ExitScope(); AddMacroResults(PP, NextRank, Results); HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); } void Sema::CodeCompleteUsingDirective(Scope *S) { if (!CodeCompleter) return; // After "using namespace", we expect to see a namespace name or namespace // alias. ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias); Results.EnterNewScope(); unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext, Results); Results.ExitScope(); AddMacroResults(PP, NextRank, Results); HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); } void Sema::CodeCompleteNamespaceDecl(Scope *S) { if (!CodeCompleter) return; ResultBuilder Results(*this, &ResultBuilder::IsNamespace); DeclContext *Ctx = (DeclContext *)S->getEntity(); if (!S->getParent()) Ctx = Context.getTranslationUnitDecl(); if (Ctx && Ctx->isFileContext()) { // We only want to see those namespaces that have already been defined // within this scope, because its likely that the user is creating an // extended namespace declaration. Keep track of the most recent // definition of each namespace. std::map OrigToLatest; for (DeclContext::specific_decl_iterator NS(Ctx->decls_begin()), NSEnd(Ctx->decls_end()); NS != NSEnd; ++NS) OrigToLatest[NS->getOriginalNamespace()] = *NS; // Add the most recent definition (or extended definition) of each // namespace to the list of results. Results.EnterNewScope(); for (std::map::iterator NS = OrigToLatest.begin(), NSEnd = OrigToLatest.end(); NS != NSEnd; ++NS) Results.MaybeAddResult(CodeCompleteConsumer::Result(NS->second, 0), CurContext); Results.ExitScope(); } AddMacroResults(PP, 1, Results); HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); } void Sema::CodeCompleteNamespaceAliasDecl(Scope *S) { if (!CodeCompleter) return; // After "namespace", we expect to see a namespace or alias. ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias); unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext, Results); AddMacroResults(PP, NextRank, Results); HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); } void Sema::CodeCompleteOperatorName(Scope *S) { if (!CodeCompleter) return; typedef CodeCompleteConsumer::Result Result; ResultBuilder Results(*this, &ResultBuilder::IsType); Results.EnterNewScope(); // Add the names of overloadable operators. #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ if (std::strcmp(Spelling, "?")) \ Results.MaybeAddResult(Result(Spelling, 0)); #include "clang/Basic/OperatorKinds.def" // Add any type names visible from the current scope unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext, Results); // Add any type specifiers AddTypeSpecifierResults(getLangOptions(), 0, Results); // Add any nested-name-specifiers Results.setFilter(&ResultBuilder::IsNestedNameSpecifier); NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank + 1, CurContext, Results); Results.ExitScope(); AddMacroResults(PP, NextRank, Results); HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); } void Sema::CodeCompleteObjCProperty(Scope *S, ObjCDeclSpec &ODS) { if (!CodeCompleter) return; unsigned Attributes = ODS.getPropertyAttributes(); typedef CodeCompleteConsumer::Result Result; ResultBuilder Results(*this); Results.EnterNewScope(); if (!(Attributes & ObjCDeclSpec::DQ_PR_readonly)) Results.MaybeAddResult(CodeCompleteConsumer::Result("readonly", 0)); if (!(Attributes & ObjCDeclSpec::DQ_PR_assign)) Results.MaybeAddResult(CodeCompleteConsumer::Result("assign", 0)); if (!(Attributes & ObjCDeclSpec::DQ_PR_readwrite)) Results.MaybeAddResult(CodeCompleteConsumer::Result("readwrite", 0)); if (!(Attributes & ObjCDeclSpec::DQ_PR_retain)) Results.MaybeAddResult(CodeCompleteConsumer::Result("retain", 0)); if (!(Attributes & ObjCDeclSpec::DQ_PR_copy)) Results.MaybeAddResult(CodeCompleteConsumer::Result("copy", 0)); if (!(Attributes & ObjCDeclSpec::DQ_PR_nonatomic)) Results.MaybeAddResult(CodeCompleteConsumer::Result("nonatomic", 0)); if (!(Attributes & ObjCDeclSpec::DQ_PR_setter)) Results.MaybeAddResult(CodeCompleteConsumer::Result("setter", 0)); if (!(Attributes & ObjCDeclSpec::DQ_PR_getter)) Results.MaybeAddResult(CodeCompleteConsumer::Result("getter", 0)); Results.ExitScope(); HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size()); }