//===--- ParseDeclCXX.cpp - C++ Declaration Parsing -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the C++ Declaration portions of the Parser interfaces. // //===----------------------------------------------------------------------===// #include "clang/Basic/OperatorKinds.h" #include "clang/Parse/Parser.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Parse/DeclSpec.h" #include "clang/Parse/Scope.h" #include "clang/Parse/Template.h" #include "RAIIObjectsForParser.h" using namespace clang; /// ParseNamespace - We know that the current token is a namespace keyword. This /// may either be a top level namespace or a block-level namespace alias. /// /// namespace-definition: [C++ 7.3: basic.namespace] /// named-namespace-definition /// unnamed-namespace-definition /// /// unnamed-namespace-definition: /// 'namespace' attributes[opt] '{' namespace-body '}' /// /// named-namespace-definition: /// original-namespace-definition /// extension-namespace-definition /// /// original-namespace-definition: /// 'namespace' identifier attributes[opt] '{' namespace-body '}' /// /// extension-namespace-definition: /// 'namespace' original-namespace-name '{' namespace-body '}' /// /// namespace-alias-definition: [C++ 7.3.2: namespace.alias] /// 'namespace' identifier '=' qualified-namespace-specifier ';' /// Parser::DeclPtrTy Parser::ParseNamespace(unsigned Context, SourceLocation &DeclEnd) { assert(Tok.is(tok::kw_namespace) && "Not a namespace!"); SourceLocation NamespaceLoc = ConsumeToken(); // eat the 'namespace'. if (Tok.is(tok::code_completion)) { Actions.CodeCompleteNamespaceDecl(CurScope); ConsumeToken(); } SourceLocation IdentLoc; IdentifierInfo *Ident = 0; Token attrTok; if (Tok.is(tok::identifier)) { Ident = Tok.getIdentifierInfo(); IdentLoc = ConsumeToken(); // eat the identifier. } // Read label attributes, if present. llvm::OwningPtr AttrList; if (Tok.is(tok::kw___attribute)) { attrTok = Tok; // FIXME: save these somewhere. AttrList.reset(ParseGNUAttributes()); } if (Tok.is(tok::equal)) { if (AttrList) Diag(attrTok, diag::err_unexpected_namespace_attributes_alias); return ParseNamespaceAlias(NamespaceLoc, IdentLoc, Ident, DeclEnd); } if (Tok.isNot(tok::l_brace)) { Diag(Tok, Ident ? diag::err_expected_lbrace : diag::err_expected_ident_lbrace); return DeclPtrTy(); } SourceLocation LBrace = ConsumeBrace(); // Enter a scope for the namespace. ParseScope NamespaceScope(this, Scope::DeclScope); DeclPtrTy NamespcDecl = Actions.ActOnStartNamespaceDef(CurScope, IdentLoc, Ident, LBrace, AttrList.get()); PrettyStackTraceActionsDecl CrashInfo(NamespcDecl, NamespaceLoc, Actions, PP.getSourceManager(), "parsing namespace"); while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) { CXX0XAttributeList Attr; if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) Attr = ParseCXX0XAttributes(); ParseExternalDeclaration(Attr); } // Leave the namespace scope. NamespaceScope.Exit(); SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBrace); Actions.ActOnFinishNamespaceDef(NamespcDecl, RBraceLoc); DeclEnd = RBraceLoc; return NamespcDecl; } /// ParseNamespaceAlias - Parse the part after the '=' in a namespace /// alias definition. /// Parser::DeclPtrTy Parser::ParseNamespaceAlias(SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, SourceLocation &DeclEnd) { assert(Tok.is(tok::equal) && "Not equal token"); ConsumeToken(); // eat the '='. if (Tok.is(tok::code_completion)) { Actions.CodeCompleteNamespaceAliasDecl(CurScope); ConsumeToken(); } CXXScopeSpec SS; // Parse (optional) nested-name-specifier. ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, false); if (SS.isInvalid() || Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_namespace_name); // Skip to end of the definition and eat the ';'. SkipUntil(tok::semi); return DeclPtrTy(); } // Parse identifier. IdentifierInfo *Ident = Tok.getIdentifierInfo(); SourceLocation IdentLoc = ConsumeToken(); // Eat the ';'. DeclEnd = Tok.getLocation(); ExpectAndConsume(tok::semi, diag::err_expected_semi_after_namespace_name, "", tok::semi); return Actions.ActOnNamespaceAliasDef(CurScope, NamespaceLoc, AliasLoc, Alias, SS, IdentLoc, Ident); } /// ParseLinkage - We know that the current token is a string_literal /// and just before that, that extern was seen. /// /// linkage-specification: [C++ 7.5p2: dcl.link] /// 'extern' string-literal '{' declaration-seq[opt] '}' /// 'extern' string-literal declaration /// Parser::DeclPtrTy Parser::ParseLinkage(ParsingDeclSpec &DS, unsigned Context) { assert(Tok.is(tok::string_literal) && "Not a string literal!"); llvm::SmallString<8> LangBuffer; // LangBuffer is guaranteed to be big enough. llvm::StringRef Lang = PP.getSpelling(Tok, LangBuffer); SourceLocation Loc = ConsumeStringToken(); ParseScope LinkageScope(this, Scope::DeclScope); DeclPtrTy LinkageSpec = Actions.ActOnStartLinkageSpecification(CurScope, /*FIXME: */SourceLocation(), Loc, Lang.data(), Lang.size(), Tok.is(tok::l_brace)? Tok.getLocation() : SourceLocation()); CXX0XAttributeList Attr; if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) { Attr = ParseCXX0XAttributes(); } if (Tok.isNot(tok::l_brace)) { ParseDeclarationOrFunctionDefinition(DS, Attr.AttrList); return Actions.ActOnFinishLinkageSpecification(CurScope, LinkageSpec, SourceLocation()); } DS.abort(); if (Attr.HasAttr) Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed) << Attr.Range; SourceLocation LBrace = ConsumeBrace(); while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) { CXX0XAttributeList Attr; if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) Attr = ParseCXX0XAttributes(); ParseExternalDeclaration(Attr); } SourceLocation RBrace = MatchRHSPunctuation(tok::r_brace, LBrace); return Actions.ActOnFinishLinkageSpecification(CurScope, LinkageSpec, RBrace); } /// ParseUsingDirectiveOrDeclaration - Parse C++ using using-declaration or /// using-directive. Assumes that current token is 'using'. Parser::DeclPtrTy Parser::ParseUsingDirectiveOrDeclaration(unsigned Context, SourceLocation &DeclEnd, CXX0XAttributeList Attr) { assert(Tok.is(tok::kw_using) && "Not using token"); // Eat 'using'. SourceLocation UsingLoc = ConsumeToken(); if (Tok.is(tok::code_completion)) { Actions.CodeCompleteUsing(CurScope); ConsumeToken(); } if (Tok.is(tok::kw_namespace)) // Next token after 'using' is 'namespace' so it must be using-directive return ParseUsingDirective(Context, UsingLoc, DeclEnd, Attr.AttrList); if (Attr.HasAttr) Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed) << Attr.Range; // Otherwise, it must be using-declaration. // Ignore illegal attributes (the caller should already have issued an error. return ParseUsingDeclaration(Context, UsingLoc, DeclEnd); } /// ParseUsingDirective - Parse C++ using-directive, assumes /// that current token is 'namespace' and 'using' was already parsed. /// /// using-directive: [C++ 7.3.p4: namespace.udir] /// 'using' 'namespace' ::[opt] nested-name-specifier[opt] /// namespace-name ; /// [GNU] using-directive: /// 'using' 'namespace' ::[opt] nested-name-specifier[opt] /// namespace-name attributes[opt] ; /// Parser::DeclPtrTy Parser::ParseUsingDirective(unsigned Context, SourceLocation UsingLoc, SourceLocation &DeclEnd, AttributeList *Attr) { assert(Tok.is(tok::kw_namespace) && "Not 'namespace' token"); // Eat 'namespace'. SourceLocation NamespcLoc = ConsumeToken(); if (Tok.is(tok::code_completion)) { Actions.CodeCompleteUsingDirective(CurScope); ConsumeToken(); } CXXScopeSpec SS; // Parse (optional) nested-name-specifier. ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, false); IdentifierInfo *NamespcName = 0; SourceLocation IdentLoc = SourceLocation(); // Parse namespace-name. if (SS.isInvalid() || Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_namespace_name); // If there was invalid namespace name, skip to end of decl, and eat ';'. SkipUntil(tok::semi); // FIXME: Are there cases, when we would like to call ActOnUsingDirective? return DeclPtrTy(); } // Parse identifier. NamespcName = Tok.getIdentifierInfo(); IdentLoc = ConsumeToken(); // Parse (optional) attributes (most likely GNU strong-using extension). bool GNUAttr = false; if (Tok.is(tok::kw___attribute)) { GNUAttr = true; Attr = addAttributeLists(Attr, ParseGNUAttributes()); } // Eat ';'. DeclEnd = Tok.getLocation(); ExpectAndConsume(tok::semi, GNUAttr ? diag::err_expected_semi_after_attribute_list : diag::err_expected_semi_after_namespace_name, "", tok::semi); return Actions.ActOnUsingDirective(CurScope, UsingLoc, NamespcLoc, SS, IdentLoc, NamespcName, Attr); } /// ParseUsingDeclaration - Parse C++ using-declaration. Assumes that /// 'using' was already seen. /// /// using-declaration: [C++ 7.3.p3: namespace.udecl] /// 'using' 'typename'[opt] ::[opt] nested-name-specifier /// unqualified-id /// 'using' :: unqualified-id /// Parser::DeclPtrTy Parser::ParseUsingDeclaration(unsigned Context, SourceLocation UsingLoc, SourceLocation &DeclEnd, AccessSpecifier AS) { CXXScopeSpec SS; SourceLocation TypenameLoc; bool IsTypeName; // Ignore optional 'typename'. // FIXME: This is wrong; we should parse this as a typename-specifier. if (Tok.is(tok::kw_typename)) { TypenameLoc = Tok.getLocation(); ConsumeToken(); IsTypeName = true; } else IsTypeName = false; // Parse nested-name-specifier. ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, false); // Check nested-name specifier. if (SS.isInvalid()) { SkipUntil(tok::semi); return DeclPtrTy(); } // Parse the unqualified-id. We allow parsing of both constructor and // destructor names and allow the action module to diagnose any semantic // errors. UnqualifiedId Name; if (ParseUnqualifiedId(SS, /*EnteringContext=*/false, /*AllowDestructorName=*/true, /*AllowConstructorName=*/true, /*ObjectType=*/0, Name)) { SkipUntil(tok::semi); return DeclPtrTy(); } // Parse (optional) attributes (most likely GNU strong-using extension). llvm::OwningPtr AttrList; if (Tok.is(tok::kw___attribute)) AttrList.reset(ParseGNUAttributes()); // Eat ';'. DeclEnd = Tok.getLocation(); ExpectAndConsume(tok::semi, diag::err_expected_semi_after, AttrList ? "attributes list" : "using declaration", tok::semi); return Actions.ActOnUsingDeclaration(CurScope, AS, true, UsingLoc, SS, Name, AttrList.get(), IsTypeName, TypenameLoc); } /// ParseStaticAssertDeclaration - Parse C++0x static_assert-declaratoion. /// /// static_assert-declaration: /// static_assert ( constant-expression , string-literal ) ; /// Parser::DeclPtrTy Parser::ParseStaticAssertDeclaration(SourceLocation &DeclEnd){ assert(Tok.is(tok::kw_static_assert) && "Not a static_assert declaration"); SourceLocation StaticAssertLoc = ConsumeToken(); if (Tok.isNot(tok::l_paren)) { Diag(Tok, diag::err_expected_lparen); return DeclPtrTy(); } SourceLocation LParenLoc = ConsumeParen(); OwningExprResult AssertExpr(ParseConstantExpression()); if (AssertExpr.isInvalid()) { SkipUntil(tok::semi); return DeclPtrTy(); } if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::semi)) return DeclPtrTy(); if (Tok.isNot(tok::string_literal)) { Diag(Tok, diag::err_expected_string_literal); SkipUntil(tok::semi); return DeclPtrTy(); } OwningExprResult AssertMessage(ParseStringLiteralExpression()); if (AssertMessage.isInvalid()) return DeclPtrTy(); MatchRHSPunctuation(tok::r_paren, LParenLoc); DeclEnd = Tok.getLocation(); ExpectAndConsume(tok::semi, diag::err_expected_semi_after_static_assert); return Actions.ActOnStaticAssertDeclaration(StaticAssertLoc, move(AssertExpr), move(AssertMessage)); } /// ParseDecltypeSpecifier - Parse a C++0x decltype specifier. /// /// 'decltype' ( expression ) /// void Parser::ParseDecltypeSpecifier(DeclSpec &DS) { assert(Tok.is(tok::kw_decltype) && "Not a decltype specifier"); SourceLocation StartLoc = ConsumeToken(); SourceLocation LParenLoc = Tok.getLocation(); if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "decltype")) { SkipUntil(tok::r_paren); return; } // Parse the expression // C++0x [dcl.type.simple]p4: // The operand of the decltype specifier is an unevaluated operand. EnterExpressionEvaluationContext Unevaluated(Actions, Action::Unevaluated); OwningExprResult Result = ParseExpression(); if (Result.isInvalid()) { SkipUntil(tok::r_paren); return; } // Match the ')' SourceLocation RParenLoc; if (Tok.is(tok::r_paren)) RParenLoc = ConsumeParen(); else MatchRHSPunctuation(tok::r_paren, LParenLoc); if (RParenLoc.isInvalid()) return; const char *PrevSpec = 0; unsigned DiagID; // Check for duplicate type specifiers (e.g. "int decltype(a)"). if (DS.SetTypeSpecType(DeclSpec::TST_decltype, StartLoc, PrevSpec, DiagID, Result.release())) Diag(StartLoc, DiagID) << PrevSpec; } /// ParseClassName - Parse a C++ class-name, which names a class. Note /// that we only check that the result names a type; semantic analysis /// will need to verify that the type names a class. The result is /// either a type or NULL, depending on whether a type name was /// found. /// /// class-name: [C++ 9.1] /// identifier /// simple-template-id /// Parser::TypeResult Parser::ParseClassName(SourceLocation &EndLocation, const CXXScopeSpec *SS) { // Check whether we have a template-id that names a type. if (Tok.is(tok::annot_template_id)) { TemplateIdAnnotation *TemplateId = static_cast(Tok.getAnnotationValue()); if (TemplateId->Kind == TNK_Type_template || TemplateId->Kind == TNK_Dependent_template_name) { AnnotateTemplateIdTokenAsType(SS); assert(Tok.is(tok::annot_typename) && "template-id -> type failed"); TypeTy *Type = Tok.getAnnotationValue(); EndLocation = Tok.getAnnotationEndLoc(); ConsumeToken(); if (Type) return Type; return true; } // Fall through to produce an error below. } if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_class_name); return true; } IdentifierInfo *Id = Tok.getIdentifierInfo(); SourceLocation IdLoc = ConsumeToken(); if (Tok.is(tok::less)) { // It looks the user intended to write a template-id here, but the // template-name was wrong. Try to fix that. TemplateNameKind TNK = TNK_Type_template; TemplateTy Template; if (!Actions.DiagnoseUnknownTemplateName(*Id, IdLoc, CurScope, SS, Template, TNK)) { Diag(IdLoc, diag::err_unknown_template_name) << Id; } if (!Template) return true; // Form the template name UnqualifiedId TemplateName; TemplateName.setIdentifier(Id, IdLoc); // Parse the full template-id, then turn it into a type. if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName, SourceLocation(), true)) return true; if (TNK == TNK_Dependent_template_name) AnnotateTemplateIdTokenAsType(SS); // If we didn't end up with a typename token, there's nothing more we // can do. if (Tok.isNot(tok::annot_typename)) return true; // Retrieve the type from the annotation token, consume that token, and // return. EndLocation = Tok.getAnnotationEndLoc(); TypeTy *Type = Tok.getAnnotationValue(); ConsumeToken(); return Type; } // We have an identifier; check whether it is actually a type. TypeTy *Type = Actions.getTypeName(*Id, IdLoc, CurScope, SS, true); if (!Type) { Diag(IdLoc, diag::err_expected_class_name); return true; } // Consume the identifier. EndLocation = IdLoc; return Type; } /// ParseClassSpecifier - Parse a C++ class-specifier [C++ class] or /// elaborated-type-specifier [C++ dcl.type.elab]; we can't tell which /// until we reach the start of a definition or see a token that /// cannot start a definition. If SuppressDeclarations is true, we do know. /// /// class-specifier: [C++ class] /// class-head '{' member-specification[opt] '}' /// class-head '{' member-specification[opt] '}' attributes[opt] /// class-head: /// class-key identifier[opt] base-clause[opt] /// class-key nested-name-specifier identifier base-clause[opt] /// class-key nested-name-specifier[opt] simple-template-id /// base-clause[opt] /// [GNU] class-key attributes[opt] identifier[opt] base-clause[opt] /// [GNU] class-key attributes[opt] nested-name-specifier /// identifier base-clause[opt] /// [GNU] class-key attributes[opt] nested-name-specifier[opt] /// simple-template-id base-clause[opt] /// class-key: /// 'class' /// 'struct' /// 'union' /// /// elaborated-type-specifier: [C++ dcl.type.elab] /// class-key ::[opt] nested-name-specifier[opt] identifier /// class-key ::[opt] nested-name-specifier[opt] 'template'[opt] /// simple-template-id /// /// Note that the C++ class-specifier and elaborated-type-specifier, /// together, subsume the C99 struct-or-union-specifier: /// /// struct-or-union-specifier: [C99 6.7.2.1] /// struct-or-union identifier[opt] '{' struct-contents '}' /// struct-or-union identifier /// [GNU] struct-or-union attributes[opt] identifier[opt] '{' struct-contents /// '}' attributes[opt] /// [GNU] struct-or-union attributes[opt] identifier /// struct-or-union: /// 'struct' /// 'union' void Parser::ParseClassSpecifier(tok::TokenKind TagTokKind, SourceLocation StartLoc, DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, bool SuppressDeclarations){ DeclSpec::TST TagType; if (TagTokKind == tok::kw_struct) TagType = DeclSpec::TST_struct; else if (TagTokKind == tok::kw_class) TagType = DeclSpec::TST_class; else { assert(TagTokKind == tok::kw_union && "Not a class specifier"); TagType = DeclSpec::TST_union; } if (Tok.is(tok::code_completion)) { // Code completion for a struct, class, or union name. Actions.CodeCompleteTag(CurScope, TagType); ConsumeToken(); } AttributeList *AttrList = 0; // If attributes exist after tag, parse them. if (Tok.is(tok::kw___attribute)) AttrList = ParseGNUAttributes(); // If declspecs exist after tag, parse them. if (Tok.is(tok::kw___declspec)) AttrList = ParseMicrosoftDeclSpec(AttrList); // If C++0x attributes exist here, parse them. // FIXME: Are we consistent with the ordering of parsing of different // styles of attributes? if (isCXX0XAttributeSpecifier()) AttrList = addAttributeLists(AttrList, ParseCXX0XAttributes().AttrList); if (TagType == DeclSpec::TST_struct && Tok.is(tok::kw___is_pod)) { // GNU libstdc++ 4.2 uses __is_pod as the name of a struct template, but // __is_pod is a keyword in GCC >= 4.3. Therefore, when we see the // token sequence "struct __is_pod", make __is_pod into a normal // identifier rather than a keyword, to allow libstdc++ 4.2 to work // properly. Tok.getIdentifierInfo()->setTokenID(tok::identifier); Tok.setKind(tok::identifier); } if (TagType == DeclSpec::TST_struct && Tok.is(tok::kw___is_empty)) { // GNU libstdc++ 4.2 uses __is_empty as the name of a struct template, but // __is_empty is a keyword in GCC >= 4.3. Therefore, when we see the // token sequence "struct __is_empty", make __is_empty into a normal // identifier rather than a keyword, to allow libstdc++ 4.2 to work // properly. Tok.getIdentifierInfo()->setTokenID(tok::identifier); Tok.setKind(tok::identifier); } // Parse the (optional) nested-name-specifier. CXXScopeSpec &SS = DS.getTypeSpecScope(); if (getLang().CPlusPlus) { // "FOO : BAR" is not a potential typo for "FOO::BAR". ColonProtectionRAIIObject X(*this); ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, true); if (SS.isSet()) if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id)) Diag(Tok, diag::err_expected_ident); } TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams; // Parse the (optional) class name or simple-template-id. IdentifierInfo *Name = 0; SourceLocation NameLoc; TemplateIdAnnotation *TemplateId = 0; if (Tok.is(tok::identifier)) { Name = Tok.getIdentifierInfo(); NameLoc = ConsumeToken(); if (Tok.is(tok::less)) { // The name was supposed to refer to a template, but didn't. // Eat the template argument list and try to continue parsing this as // a class (or template thereof). TemplateArgList TemplateArgs; SourceLocation LAngleLoc, RAngleLoc; if (ParseTemplateIdAfterTemplateName(TemplateTy(), NameLoc, &SS, true, LAngleLoc, TemplateArgs, RAngleLoc)) { // We couldn't parse the template argument list at all, so don't // try to give any location information for the list. LAngleLoc = RAngleLoc = SourceLocation(); } Diag(NameLoc, diag::err_explicit_spec_non_template) << (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) << (TagType == DeclSpec::TST_class? 0 : TagType == DeclSpec::TST_struct? 1 : 2) << Name << SourceRange(LAngleLoc, RAngleLoc); // Strip off the last template parameter list if it was empty, since // we've removed its template argument list. if (TemplateParams && TemplateInfo.LastParameterListWasEmpty) { if (TemplateParams && TemplateParams->size() > 1) { TemplateParams->pop_back(); } else { TemplateParams = 0; const_cast(TemplateInfo).Kind = ParsedTemplateInfo::NonTemplate; } } else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) { // Pretend this is just a forward declaration. TemplateParams = 0; const_cast(TemplateInfo).Kind = ParsedTemplateInfo::NonTemplate; const_cast(TemplateInfo).TemplateLoc = SourceLocation(); const_cast(TemplateInfo).ExternLoc = SourceLocation(); } } } else if (Tok.is(tok::annot_template_id)) { TemplateId = static_cast(Tok.getAnnotationValue()); NameLoc = ConsumeToken(); if (TemplateId->Kind != TNK_Type_template) { // The template-name in the simple-template-id refers to // something other than a class template. Give an appropriate // error message and skip to the ';'. SourceRange Range(NameLoc); if (SS.isNotEmpty()) Range.setBegin(SS.getBeginLoc()); Diag(TemplateId->LAngleLoc, diag::err_template_spec_syntax_non_template) << Name << static_cast(TemplateId->Kind) << Range; DS.SetTypeSpecError(); SkipUntil(tok::semi, false, true); TemplateId->Destroy(); return; } } // There are four options here. If we have 'struct foo;', then this // is either a forward declaration or a friend declaration, which // have to be treated differently. If we have 'struct foo {...' or // 'struct foo :...' then this is a definition. Otherwise we have // something like 'struct foo xyz', a reference. // However, in some contexts, things look like declarations but are just // references, e.g. // new struct s; // or // &T::operator struct s; // For these, SuppressDeclarations is true. Action::TagUseKind TUK; if (SuppressDeclarations) TUK = Action::TUK_Reference; else if (Tok.is(tok::l_brace) || (getLang().CPlusPlus && Tok.is(tok::colon))){ if (DS.isFriendSpecified()) { // C++ [class.friend]p2: // A class shall not be defined in a friend declaration. Diag(Tok.getLocation(), diag::err_friend_decl_defines_class) << SourceRange(DS.getFriendSpecLoc()); // Skip everything up to the semicolon, so that this looks like a proper // friend class (or template thereof) declaration. SkipUntil(tok::semi, true, true); TUK = Action::TUK_Friend; } else { // Okay, this is a class definition. TUK = Action::TUK_Definition; } } else if (Tok.is(tok::semi)) TUK = DS.isFriendSpecified() ? Action::TUK_Friend : Action::TUK_Declaration; else TUK = Action::TUK_Reference; if (!Name && !TemplateId && TUK != Action::TUK_Definition) { // We have a declaration or reference to an anonymous class. Diag(StartLoc, diag::err_anon_type_definition) << DeclSpec::getSpecifierName(TagType); SkipUntil(tok::comma, true); if (TemplateId) TemplateId->Destroy(); return; } // Create the tag portion of the class or class template. Action::DeclResult TagOrTempResult = true; // invalid Action::TypeResult TypeResult = true; // invalid // FIXME: When TUK == TUK_Reference and we have a template-id, we need // to turn that template-id into a type. bool Owned = false; if (TemplateId) { // Explicit specialization, class template partial specialization, // or explicit instantiation. ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateId->getTemplateArgs(), TemplateId->NumArgs); if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation && TUK == Action::TUK_Declaration) { // This is an explicit instantiation of a class template. TagOrTempResult = Actions.ActOnExplicitInstantiation(CurScope, TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, TagType, StartLoc, SS, TemplateTy::make(TemplateId->Template), TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc, AttrList); } else if (TUK == Action::TUK_Reference) { TypeResult = Actions.ActOnTemplateIdType(TemplateTy::make(TemplateId->Template), TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc); TypeResult = Actions.ActOnTagTemplateIdType(TypeResult, TUK, TagType, StartLoc); } else { // This is an explicit specialization or a class template // partial specialization. TemplateParameterLists FakedParamLists; if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) { // This looks like an explicit instantiation, because we have // something like // // template class Foo // // but it actually has a definition. Most likely, this was // meant to be an explicit specialization, but the user forgot // the '<>' after 'template'. assert(TUK == Action::TUK_Definition && "Expected a definition here"); SourceLocation LAngleLoc = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc); Diag(TemplateId->TemplateNameLoc, diag::err_explicit_instantiation_with_definition) << SourceRange(TemplateInfo.TemplateLoc) << CodeModificationHint::CreateInsertion(LAngleLoc, "<>"); // Create a fake template parameter list that contains only // "template<>", so that we treat this construct as a class // template specialization. FakedParamLists.push_back( Actions.ActOnTemplateParameterList(0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, 0, 0, LAngleLoc)); TemplateParams = &FakedParamLists; } // Build the class template specialization. TagOrTempResult = Actions.ActOnClassTemplateSpecialization(CurScope, TagType, TUK, StartLoc, SS, TemplateTy::make(TemplateId->Template), TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc, AttrList, Action::MultiTemplateParamsArg(Actions, TemplateParams? &(*TemplateParams)[0] : 0, TemplateParams? TemplateParams->size() : 0)); } TemplateId->Destroy(); } else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation && TUK == Action::TUK_Declaration) { // Explicit instantiation of a member of a class template // specialization, e.g., // // template struct Outer::Inner; // TagOrTempResult = Actions.ActOnExplicitInstantiation(CurScope, TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, TagType, StartLoc, SS, Name, NameLoc, AttrList); } else { if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation && TUK == Action::TUK_Definition) { // FIXME: Diagnose this particular error. } bool IsDependent = false; // Declaration or definition of a class type TagOrTempResult = Actions.ActOnTag(CurScope, TagType, TUK, StartLoc, SS, Name, NameLoc, AttrList, AS, Action::MultiTemplateParamsArg(Actions, TemplateParams? &(*TemplateParams)[0] : 0, TemplateParams? TemplateParams->size() : 0), Owned, IsDependent); // If ActOnTag said the type was dependent, try again with the // less common call. if (IsDependent) TypeResult = Actions.ActOnDependentTag(CurScope, TagType, TUK, SS, Name, StartLoc, NameLoc); } // If there is a body, parse it and inform the actions module. if (TUK == Action::TUK_Definition) { assert(Tok.is(tok::l_brace) || (getLang().CPlusPlus && Tok.is(tok::colon))); if (getLang().CPlusPlus) ParseCXXMemberSpecification(StartLoc, TagType, TagOrTempResult.get()); else ParseStructUnionBody(StartLoc, TagType, TagOrTempResult.get()); } void *Result; if (!TypeResult.isInvalid()) { TagType = DeclSpec::TST_typename; Result = TypeResult.get(); Owned = false; } else if (!TagOrTempResult.isInvalid()) { Result = TagOrTempResult.get().getAs(); } else { DS.SetTypeSpecError(); return; } const char *PrevSpec = 0; unsigned DiagID; // FIXME: The DeclSpec should keep the locations of both the keyword and the // name (if there is one). SourceLocation TSTLoc = NameLoc.isValid()? NameLoc : StartLoc; if (DS.SetTypeSpecType(TagType, TSTLoc, PrevSpec, DiagID, Result, Owned)) Diag(StartLoc, DiagID) << PrevSpec; // At this point, we've successfully parsed a class-specifier in 'definition' // form (e.g. "struct foo { int x; }". While we could just return here, we're // going to look at what comes after it to improve error recovery. If an // impossible token occurs next, we assume that the programmer forgot a ; at // the end of the declaration and recover that way. // // This switch enumerates the valid "follow" set for definition. if (TUK == Action::TUK_Definition) { bool ExpectedSemi = true; switch (Tok.getKind()) { default: break; case tok::semi: // struct foo {...} ; case tok::star: // struct foo {...} * P; case tok::amp: // struct foo {...} & R = ... case tok::identifier: // struct foo {...} V ; case tok::r_paren: //(struct foo {...} ) {4} case tok::annot_cxxscope: // struct foo {...} a:: b; case tok::annot_typename: // struct foo {...} a ::b; case tok::annot_template_id: // struct foo {...} a ::b; case tok::l_paren: // struct foo {...} ( x); case tok::comma: // __builtin_offsetof(struct foo{...} , ExpectedSemi = false; break; // Type qualifiers case tok::kw_const: // struct foo {...} const x; case tok::kw_volatile: // struct foo {...} volatile x; case tok::kw_restrict: // struct foo {...} restrict x; case tok::kw_inline: // struct foo {...} inline foo() {}; // Storage-class specifiers case tok::kw_static: // struct foo {...} static x; case tok::kw_extern: // struct foo {...} extern x; case tok::kw_typedef: // struct foo {...} typedef x; case tok::kw_register: // struct foo {...} register x; case tok::kw_auto: // struct foo {...} auto x; // As shown above, type qualifiers and storage class specifiers absolutely // can occur after class specifiers according to the grammar. However, // almost noone actually writes code like this. If we see one of these, // it is much more likely that someone missed a semi colon and the // type/storage class specifier we're seeing is part of the *next* // intended declaration, as in: // // struct foo { ... } // typedef int X; // // We'd really like to emit a missing semicolon error instead of emitting // an error on the 'int' saying that you can't have two type specifiers in // the same declaration of X. Because of this, we look ahead past this // token to see if it's a type specifier. If so, we know the code is // otherwise invalid, so we can produce the expected semi error. if (!isKnownToBeTypeSpecifier(NextToken())) ExpectedSemi = false; break; case tok::r_brace: // struct bar { struct foo {...} } // Missing ';' at end of struct is accepted as an extension in C mode. if (!getLang().CPlusPlus) ExpectedSemi = false; break; } if (ExpectedSemi) { ExpectAndConsume(tok::semi, diag::err_expected_semi_after_tagdecl, TagType == DeclSpec::TST_class ? "class" : TagType == DeclSpec::TST_struct? "struct" : "union"); // Push this token back into the preprocessor and change our current token // to ';' so that the rest of the code recovers as though there were an // ';' after the definition. PP.EnterToken(Tok); Tok.setKind(tok::semi); } } } /// ParseBaseClause - Parse the base-clause of a C++ class [C++ class.derived]. /// /// base-clause : [C++ class.derived] /// ':' base-specifier-list /// base-specifier-list: /// base-specifier '...'[opt] /// base-specifier-list ',' base-specifier '...'[opt] void Parser::ParseBaseClause(DeclPtrTy ClassDecl) { assert(Tok.is(tok::colon) && "Not a base clause"); ConsumeToken(); // Build up an array of parsed base specifiers. llvm::SmallVector BaseInfo; while (true) { // Parse a base-specifier. BaseResult Result = ParseBaseSpecifier(ClassDecl); if (Result.isInvalid()) { // Skip the rest of this base specifier, up until the comma or // opening brace. SkipUntil(tok::comma, tok::l_brace, true, true); } else { // Add this to our array of base specifiers. BaseInfo.push_back(Result.get()); } // If the next token is a comma, consume it and keep reading // base-specifiers. if (Tok.isNot(tok::comma)) break; // Consume the comma. ConsumeToken(); } // Attach the base specifiers Actions.ActOnBaseSpecifiers(ClassDecl, BaseInfo.data(), BaseInfo.size()); } /// ParseBaseSpecifier - Parse a C++ base-specifier. A base-specifier is /// one entry in the base class list of a class specifier, for example: /// class foo : public bar, virtual private baz { /// 'public bar' and 'virtual private baz' are each base-specifiers. /// /// base-specifier: [C++ class.derived] /// ::[opt] nested-name-specifier[opt] class-name /// 'virtual' access-specifier[opt] ::[opt] nested-name-specifier[opt] /// class-name /// access-specifier 'virtual'[opt] ::[opt] nested-name-specifier[opt] /// class-name Parser::BaseResult Parser::ParseBaseSpecifier(DeclPtrTy ClassDecl) { bool IsVirtual = false; SourceLocation StartLoc = Tok.getLocation(); // Parse the 'virtual' keyword. if (Tok.is(tok::kw_virtual)) { ConsumeToken(); IsVirtual = true; } // Parse an (optional) access specifier. AccessSpecifier Access = getAccessSpecifierIfPresent(); if (Access != AS_none) ConsumeToken(); // Parse the 'virtual' keyword (again!), in case it came after the // access specifier. if (Tok.is(tok::kw_virtual)) { SourceLocation VirtualLoc = ConsumeToken(); if (IsVirtual) { // Complain about duplicate 'virtual' Diag(VirtualLoc, diag::err_dup_virtual) << CodeModificationHint::CreateRemoval(VirtualLoc); } IsVirtual = true; } // Parse optional '::' and optional nested-name-specifier. CXXScopeSpec SS; ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, /*EnteringContext=*/false); // The location of the base class itself. SourceLocation BaseLoc = Tok.getLocation(); // Parse the class-name. SourceLocation EndLocation; TypeResult BaseType = ParseClassName(EndLocation, &SS); if (BaseType.isInvalid()) return true; // Find the complete source range for the base-specifier. SourceRange Range(StartLoc, EndLocation); // Notify semantic analysis that we have parsed a complete // base-specifier. return Actions.ActOnBaseSpecifier(ClassDecl, Range, IsVirtual, Access, BaseType.get(), BaseLoc); } /// getAccessSpecifierIfPresent - Determine whether the next token is /// a C++ access-specifier. /// /// access-specifier: [C++ class.derived] /// 'private' /// 'protected' /// 'public' AccessSpecifier Parser::getAccessSpecifierIfPresent() const { switch (Tok.getKind()) { default: return AS_none; case tok::kw_private: return AS_private; case tok::kw_protected: return AS_protected; case tok::kw_public: return AS_public; } } void Parser::HandleMemberFunctionDefaultArgs(Declarator& DeclaratorInfo, DeclPtrTy ThisDecl) { // We just declared a member function. If this member function // has any default arguments, we'll need to parse them later. LateParsedMethodDeclaration *LateMethod = 0; DeclaratorChunk::FunctionTypeInfo &FTI = DeclaratorInfo.getTypeObject(0).Fun; for (unsigned ParamIdx = 0; ParamIdx < FTI.NumArgs; ++ParamIdx) { if (LateMethod || FTI.ArgInfo[ParamIdx].DefaultArgTokens) { if (!LateMethod) { // Push this method onto the stack of late-parsed method // declarations. getCurrentClass().MethodDecls.push_back( LateParsedMethodDeclaration(ThisDecl)); LateMethod = &getCurrentClass().MethodDecls.back(); LateMethod->TemplateScope = CurScope->isTemplateParamScope(); // Add all of the parameters prior to this one (they don't // have default arguments). LateMethod->DefaultArgs.reserve(FTI.NumArgs); for (unsigned I = 0; I < ParamIdx; ++I) LateMethod->DefaultArgs.push_back( LateParsedDefaultArgument(FTI.ArgInfo[I].Param)); } // Add this parameter to the list of parameters (it or may // not have a default argument). LateMethod->DefaultArgs.push_back( LateParsedDefaultArgument(FTI.ArgInfo[ParamIdx].Param, FTI.ArgInfo[ParamIdx].DefaultArgTokens)); } } } /// ParseCXXClassMemberDeclaration - Parse a C++ class member declaration. /// /// member-declaration: /// decl-specifier-seq[opt] member-declarator-list[opt] ';' /// function-definition ';'[opt] /// ::[opt] nested-name-specifier template[opt] unqualified-id ';'[TODO] /// using-declaration [TODO] /// [C++0x] static_assert-declaration /// template-declaration /// [GNU] '__extension__' member-declaration /// /// member-declarator-list: /// member-declarator /// member-declarator-list ',' member-declarator /// /// member-declarator: /// declarator pure-specifier[opt] /// declarator constant-initializer[opt] /// identifier[opt] ':' constant-expression /// /// pure-specifier: /// '= 0' /// /// constant-initializer: /// '=' constant-expression /// void Parser::ParseCXXClassMemberDeclaration(AccessSpecifier AS, const ParsedTemplateInfo &TemplateInfo) { // Access declarations. if (!TemplateInfo.Kind && (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) && !TryAnnotateCXXScopeToken() && Tok.is(tok::annot_cxxscope)) { bool isAccessDecl = false; if (NextToken().is(tok::identifier)) isAccessDecl = GetLookAheadToken(2).is(tok::semi); else isAccessDecl = NextToken().is(tok::kw_operator); if (isAccessDecl) { // Collect the scope specifier token we annotated earlier. CXXScopeSpec SS; ParseOptionalCXXScopeSpecifier(SS, /*ObjectType*/ 0, false); // Try to parse an unqualified-id. UnqualifiedId Name; if (ParseUnqualifiedId(SS, false, true, true, /*ObjectType*/ 0, Name)) { SkipUntil(tok::semi); return; } // TODO: recover from mistakenly-qualified operator declarations. if (ExpectAndConsume(tok::semi, diag::err_expected_semi_after, "access declaration", tok::semi)) return; Actions.ActOnUsingDeclaration(CurScope, AS, false, SourceLocation(), SS, Name, /* AttrList */ 0, /* IsTypeName */ false, SourceLocation()); return; } } // static_assert-declaration if (Tok.is(tok::kw_static_assert)) { // FIXME: Check for templates SourceLocation DeclEnd; ParseStaticAssertDeclaration(DeclEnd); return; } if (Tok.is(tok::kw_template)) { assert(!TemplateInfo.TemplateParams && "Nested template improperly parsed?"); SourceLocation DeclEnd; ParseDeclarationStartingWithTemplate(Declarator::MemberContext, DeclEnd, AS); return; } // Handle: member-declaration ::= '__extension__' member-declaration if (Tok.is(tok::kw___extension__)) { // __extension__ silences extension warnings in the subexpression. ExtensionRAIIObject O(Diags); // Use RAII to do this. ConsumeToken(); return ParseCXXClassMemberDeclaration(AS, TemplateInfo); } // Don't parse FOO:BAR as if it were a typo for FOO::BAR, in this context it // is a bitfield. ColonProtectionRAIIObject X(*this); CXX0XAttributeList AttrList; // Optional C++0x attribute-specifier if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) AttrList = ParseCXX0XAttributes(); if (Tok.is(tok::kw_using)) { // FIXME: Check for template aliases if (AttrList.HasAttr) Diag(AttrList.Range.getBegin(), diag::err_attributes_not_allowed) << AttrList.Range; // Eat 'using'. SourceLocation UsingLoc = ConsumeToken(); if (Tok.is(tok::kw_namespace)) { Diag(UsingLoc, diag::err_using_namespace_in_class); SkipUntil(tok::semi, true, true); } else { SourceLocation DeclEnd; // Otherwise, it must be using-declaration. ParseUsingDeclaration(Declarator::MemberContext, UsingLoc, DeclEnd, AS); } return; } SourceLocation DSStart = Tok.getLocation(); // decl-specifier-seq: // Parse the common declaration-specifiers piece. ParsingDeclSpec DS(*this); DS.AddAttributes(AttrList.AttrList); ParseDeclarationSpecifiers(DS, TemplateInfo, AS, DSC_class); Action::MultiTemplateParamsArg TemplateParams(Actions, TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->data() : 0, TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->size() : 0); if (Tok.is(tok::semi)) { ConsumeToken(); Actions.ParsedFreeStandingDeclSpec(CurScope, DS); return; } ParsingDeclarator DeclaratorInfo(*this, DS, Declarator::MemberContext); if (Tok.isNot(tok::colon)) { // Don't parse FOO:BAR as if it were a typo for FOO::BAR. ColonProtectionRAIIObject X(*this); // Parse the first declarator. ParseDeclarator(DeclaratorInfo); // Error parsing the declarator? if (!DeclaratorInfo.hasName()) { // If so, skip until the semi-colon or a }. SkipUntil(tok::r_brace, true); if (Tok.is(tok::semi)) ConsumeToken(); return; } // If attributes exist after the declarator, but before an '{', parse them. if (Tok.is(tok::kw___attribute)) { SourceLocation Loc; AttributeList *AttrList = ParseGNUAttributes(&Loc); DeclaratorInfo.AddAttributes(AttrList, Loc); } // function-definition: if (Tok.is(tok::l_brace) || (DeclaratorInfo.isFunctionDeclarator() && (Tok.is(tok::colon) || Tok.is(tok::kw_try)))) { if (!DeclaratorInfo.isFunctionDeclarator()) { Diag(Tok, diag::err_func_def_no_params); ConsumeBrace(); SkipUntil(tok::r_brace, true); return; } if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { Diag(Tok, diag::err_function_declared_typedef); // This recovery skips the entire function body. It would be nice // to simply call ParseCXXInlineMethodDef() below, however Sema // assumes the declarator represents a function, not a typedef. ConsumeBrace(); SkipUntil(tok::r_brace, true); return; } ParseCXXInlineMethodDef(AS, DeclaratorInfo, TemplateInfo); return; } } // member-declarator-list: // member-declarator // member-declarator-list ',' member-declarator llvm::SmallVector DeclsInGroup; OwningExprResult BitfieldSize(Actions); OwningExprResult Init(Actions); bool Deleted = false; while (1) { // member-declarator: // declarator pure-specifier[opt] // declarator constant-initializer[opt] // identifier[opt] ':' constant-expression if (Tok.is(tok::colon)) { ConsumeToken(); BitfieldSize = ParseConstantExpression(); if (BitfieldSize.isInvalid()) SkipUntil(tok::comma, true, true); } // pure-specifier: // '= 0' // // constant-initializer: // '=' constant-expression // // defaulted/deleted function-definition: // '=' 'default' [TODO] // '=' 'delete' if (Tok.is(tok::equal)) { ConsumeToken(); if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) { ConsumeToken(); Deleted = true; } else { Init = ParseInitializer(); if (Init.isInvalid()) SkipUntil(tok::comma, true, true); } } // If attributes exist after the declarator, parse them. if (Tok.is(tok::kw___attribute)) { SourceLocation Loc; AttributeList *AttrList = ParseGNUAttributes(&Loc); DeclaratorInfo.AddAttributes(AttrList, Loc); } // NOTE: If Sema is the Action module and declarator is an instance field, // this call will *not* return the created decl; It will return null. // See Sema::ActOnCXXMemberDeclarator for details. DeclPtrTy ThisDecl; if (DS.isFriendSpecified()) { // TODO: handle initializers, bitfields, 'delete' ThisDecl = Actions.ActOnFriendFunctionDecl(CurScope, DeclaratorInfo, /*IsDefinition*/ false, move(TemplateParams)); } else { ThisDecl = Actions.ActOnCXXMemberDeclarator(CurScope, AS, DeclaratorInfo, move(TemplateParams), BitfieldSize.release(), Init.release(), /*IsDefinition*/Deleted, Deleted); } if (ThisDecl) DeclsInGroup.push_back(ThisDecl); if (DeclaratorInfo.isFunctionDeclarator() && DeclaratorInfo.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef) { HandleMemberFunctionDefaultArgs(DeclaratorInfo, ThisDecl); } DeclaratorInfo.complete(ThisDecl); // If we don't have a comma, it is either the end of the list (a ';') // or an error, bail out. if (Tok.isNot(tok::comma)) break; // Consume the comma. ConsumeToken(); // Parse the next declarator. DeclaratorInfo.clear(); BitfieldSize = 0; Init = 0; Deleted = false; // Attributes are only allowed on the second declarator. if (Tok.is(tok::kw___attribute)) { SourceLocation Loc; AttributeList *AttrList = ParseGNUAttributes(&Loc); DeclaratorInfo.AddAttributes(AttrList, Loc); } if (Tok.isNot(tok::colon)) ParseDeclarator(DeclaratorInfo); } if (ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list)) { // Skip to end of block or statement. SkipUntil(tok::r_brace, true, true); // If we stopped at a ';', eat it. if (Tok.is(tok::semi)) ConsumeToken(); return; } Actions.FinalizeDeclaratorGroup(CurScope, DS, DeclsInGroup.data(), DeclsInGroup.size()); } /// ParseCXXMemberSpecification - Parse the class definition. /// /// member-specification: /// member-declaration member-specification[opt] /// access-specifier ':' member-specification[opt] /// void Parser::ParseCXXMemberSpecification(SourceLocation RecordLoc, unsigned TagType, DeclPtrTy TagDecl) { assert((TagType == DeclSpec::TST_struct || TagType == DeclSpec::TST_union || TagType == DeclSpec::TST_class) && "Invalid TagType!"); PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions, PP.getSourceManager(), "parsing struct/union/class body"); // Determine whether this is a non-nested class. Note that local // classes are *not* considered to be nested classes. bool NonNestedClass = true; if (!ClassStack.empty()) { for (const Scope *S = CurScope; S; S = S->getParent()) { if (S->isClassScope()) { // We're inside a class scope, so this is a nested class. NonNestedClass = false; break; } if ((S->getFlags() & Scope::FnScope)) { // If we're in a function or function template declared in the // body of a class, then this is a local class rather than a // nested class. const Scope *Parent = S->getParent(); if (Parent->isTemplateParamScope()) Parent = Parent->getParent(); if (Parent->isClassScope()) break; } } } // Enter a scope for the class. ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope); // Note that we are parsing a new (potentially-nested) class definition. ParsingClassDefinition ParsingDef(*this, TagDecl, NonNestedClass); if (TagDecl) Actions.ActOnTagStartDefinition(CurScope, TagDecl); if (Tok.is(tok::colon)) { ParseBaseClause(TagDecl); if (!Tok.is(tok::l_brace)) { Diag(Tok, diag::err_expected_lbrace_after_base_specifiers); return; } } assert(Tok.is(tok::l_brace)); SourceLocation LBraceLoc = ConsumeBrace(); if (!TagDecl) { SkipUntil(tok::r_brace, false, false); return; } Actions.ActOnStartCXXMemberDeclarations(CurScope, TagDecl, LBraceLoc); // C++ 11p3: Members of a class defined with the keyword class are private // by default. Members of a class defined with the keywords struct or union // are public by default. AccessSpecifier CurAS; if (TagType == DeclSpec::TST_class) CurAS = AS_private; else CurAS = AS_public; // While we still have something to read, read the member-declarations. while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) { // Each iteration of this loop reads one member-declaration. // Check for extraneous top-level semicolon. if (Tok.is(tok::semi)) { Diag(Tok, diag::ext_extra_struct_semi) << CodeModificationHint::CreateRemoval(Tok.getLocation()); ConsumeToken(); continue; } AccessSpecifier AS = getAccessSpecifierIfPresent(); if (AS != AS_none) { // Current token is a C++ access specifier. CurAS = AS; ConsumeToken(); ExpectAndConsume(tok::colon, diag::err_expected_colon); continue; } // FIXME: Make sure we don't have a template here. // Parse all the comma separated declarators. ParseCXXClassMemberDeclaration(CurAS); } SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc); // If attributes exist after class contents, parse them. llvm::OwningPtr AttrList; if (Tok.is(tok::kw___attribute)) AttrList.reset(ParseGNUAttributes()); // FIXME: where should I put them? Actions.ActOnFinishCXXMemberSpecification(CurScope, RecordLoc, TagDecl, LBraceLoc, RBraceLoc); // C++ 9.2p2: Within the class member-specification, the class is regarded as // complete within function bodies, default arguments, // exception-specifications, and constructor ctor-initializers (including // such things in nested classes). // // FIXME: Only function bodies and constructor ctor-initializers are // parsed correctly, fix the rest. if (NonNestedClass) { // We are not inside a nested class. This class and its nested classes // are complete and we can parse the delayed portions of method // declarations and the lexed inline method definitions. ParseLexedMethodDeclarations(getCurrentClass()); ParseLexedMethodDefs(getCurrentClass()); } // Leave the class scope. ParsingDef.Pop(); ClassScope.Exit(); Actions.ActOnTagFinishDefinition(CurScope, TagDecl, RBraceLoc); } /// ParseConstructorInitializer - Parse a C++ constructor initializer, /// which explicitly initializes the members or base classes of a /// class (C++ [class.base.init]). For example, the three initializers /// after the ':' in the Derived constructor below: /// /// @code /// class Base { }; /// class Derived : Base { /// int x; /// float f; /// public: /// Derived(float f) : Base(), x(17), f(f) { } /// }; /// @endcode /// /// [C++] ctor-initializer: /// ':' mem-initializer-list /// /// [C++] mem-initializer-list: /// mem-initializer /// mem-initializer , mem-initializer-list void Parser::ParseConstructorInitializer(DeclPtrTy ConstructorDecl) { assert(Tok.is(tok::colon) && "Constructor initializer always starts with ':'"); SourceLocation ColonLoc = ConsumeToken(); llvm::SmallVector MemInitializers; bool AnyErrors = false; do { MemInitResult MemInit = ParseMemInitializer(ConstructorDecl); if (!MemInit.isInvalid()) MemInitializers.push_back(MemInit.get()); else AnyErrors = true; if (Tok.is(tok::comma)) ConsumeToken(); else if (Tok.is(tok::l_brace)) break; else { // Skip over garbage, until we get to '{'. Don't eat the '{'. Diag(Tok.getLocation(), diag::err_expected_lbrace_or_comma); SkipUntil(tok::l_brace, true, true); break; } } while (true); Actions.ActOnMemInitializers(ConstructorDecl, ColonLoc, MemInitializers.data(), MemInitializers.size(), AnyErrors); } /// ParseMemInitializer - Parse a C++ member initializer, which is /// part of a constructor initializer that explicitly initializes one /// member or base class (C++ [class.base.init]). See /// ParseConstructorInitializer for an example. /// /// [C++] mem-initializer: /// mem-initializer-id '(' expression-list[opt] ')' /// /// [C++] mem-initializer-id: /// '::'[opt] nested-name-specifier[opt] class-name /// identifier Parser::MemInitResult Parser::ParseMemInitializer(DeclPtrTy ConstructorDecl) { // parse '::'[opt] nested-name-specifier[opt] CXXScopeSpec SS; ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, false); TypeTy *TemplateTypeTy = 0; if (Tok.is(tok::annot_template_id)) { TemplateIdAnnotation *TemplateId = static_cast(Tok.getAnnotationValue()); if (TemplateId->Kind == TNK_Type_template || TemplateId->Kind == TNK_Dependent_template_name) { AnnotateTemplateIdTokenAsType(&SS); assert(Tok.is(tok::annot_typename) && "template-id -> type failed"); TemplateTypeTy = Tok.getAnnotationValue(); } } if (!TemplateTypeTy && Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_member_or_base_name); return true; } // Get the identifier. This may be a member name or a class name, // but we'll let the semantic analysis determine which it is. IdentifierInfo *II = Tok.is(tok::identifier) ? Tok.getIdentifierInfo() : 0; SourceLocation IdLoc = ConsumeToken(); // Parse the '('. if (Tok.isNot(tok::l_paren)) { Diag(Tok, diag::err_expected_lparen); return true; } SourceLocation LParenLoc = ConsumeParen(); // Parse the optional expression-list. ExprVector ArgExprs(Actions); CommaLocsTy CommaLocs; if (Tok.isNot(tok::r_paren) && ParseExpressionList(ArgExprs, CommaLocs)) { SkipUntil(tok::r_paren); return true; } SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc); return Actions.ActOnMemInitializer(ConstructorDecl, CurScope, SS, II, TemplateTypeTy, IdLoc, LParenLoc, ArgExprs.take(), ArgExprs.size(), CommaLocs.data(), RParenLoc); } /// ParseExceptionSpecification - Parse a C++ exception-specification /// (C++ [except.spec]). /// /// exception-specification: /// 'throw' '(' type-id-list [opt] ')' /// [MS] 'throw' '(' '...' ')' /// /// type-id-list: /// type-id /// type-id-list ',' type-id /// bool Parser::ParseExceptionSpecification(SourceLocation &EndLoc, llvm::SmallVector &Exceptions, llvm::SmallVector &Ranges, bool &hasAnyExceptionSpec) { assert(Tok.is(tok::kw_throw) && "expected throw"); SourceLocation ThrowLoc = ConsumeToken(); if (!Tok.is(tok::l_paren)) { return Diag(Tok, diag::err_expected_lparen_after) << "throw"; } SourceLocation LParenLoc = ConsumeParen(); // Parse throw(...), a Microsoft extension that means "this function // can throw anything". if (Tok.is(tok::ellipsis)) { hasAnyExceptionSpec = true; SourceLocation EllipsisLoc = ConsumeToken(); if (!getLang().Microsoft) Diag(EllipsisLoc, diag::ext_ellipsis_exception_spec); EndLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc); return false; } // Parse the sequence of type-ids. SourceRange Range; while (Tok.isNot(tok::r_paren)) { TypeResult Res(ParseTypeName(&Range)); if (!Res.isInvalid()) { Exceptions.push_back(Res.get()); Ranges.push_back(Range); } if (Tok.is(tok::comma)) ConsumeToken(); else break; } EndLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc); return false; } /// \brief We have just started parsing the definition of a new class, /// so push that class onto our stack of classes that is currently /// being parsed. void Parser::PushParsingClass(DeclPtrTy ClassDecl, bool NonNestedClass) { assert((NonNestedClass || !ClassStack.empty()) && "Nested class without outer class"); ClassStack.push(new ParsingClass(ClassDecl, NonNestedClass)); } /// \brief Deallocate the given parsed class and all of its nested /// classes. void Parser::DeallocateParsedClasses(Parser::ParsingClass *Class) { for (unsigned I = 0, N = Class->NestedClasses.size(); I != N; ++I) DeallocateParsedClasses(Class->NestedClasses[I]); delete Class; } /// \brief Pop the top class of the stack of classes that are /// currently being parsed. /// /// This routine should be called when we have finished parsing the /// definition of a class, but have not yet popped the Scope /// associated with the class's definition. /// /// \returns true if the class we've popped is a top-level class, /// false otherwise. void Parser::PopParsingClass() { assert(!ClassStack.empty() && "Mismatched push/pop for class parsing"); ParsingClass *Victim = ClassStack.top(); ClassStack.pop(); if (Victim->TopLevelClass) { // Deallocate all of the nested classes of this class, // recursively: we don't need to keep any of this information. DeallocateParsedClasses(Victim); return; } assert(!ClassStack.empty() && "Missing top-level class?"); if (Victim->MethodDecls.empty() && Victim->MethodDefs.empty() && Victim->NestedClasses.empty()) { // The victim is a nested class, but we will not need to perform // any processing after the definition of this class since it has // no members whose handling was delayed. Therefore, we can just // remove this nested class. delete Victim; return; } // This nested class has some members that will need to be processed // after the top-level class is completely defined. Therefore, add // it to the list of nested classes within its parent. assert(CurScope->isClassScope() && "Nested class outside of class scope?"); ClassStack.top()->NestedClasses.push_back(Victim); Victim->TemplateScope = CurScope->getParent()->isTemplateParamScope(); } /// ParseCXX0XAttributes - Parse a C++0x attribute-specifier. Currently only /// parses standard attributes. /// /// [C++0x] attribute-specifier: /// '[' '[' attribute-list ']' ']' /// /// [C++0x] attribute-list: /// attribute[opt] /// attribute-list ',' attribute[opt] /// /// [C++0x] attribute: /// attribute-token attribute-argument-clause[opt] /// /// [C++0x] attribute-token: /// identifier /// attribute-scoped-token /// /// [C++0x] attribute-scoped-token: /// attribute-namespace '::' identifier /// /// [C++0x] attribute-namespace: /// identifier /// /// [C++0x] attribute-argument-clause: /// '(' balanced-token-seq ')' /// /// [C++0x] balanced-token-seq: /// balanced-token /// balanced-token-seq balanced-token /// /// [C++0x] balanced-token: /// '(' balanced-token-seq ')' /// '[' balanced-token-seq ']' /// '{' balanced-token-seq '}' /// any token but '(', ')', '[', ']', '{', or '}' CXX0XAttributeList Parser::ParseCXX0XAttributes(SourceLocation *EndLoc) { assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square) && "Not a C++0x attribute list"); SourceLocation StartLoc = Tok.getLocation(), Loc; AttributeList *CurrAttr = 0; ConsumeBracket(); ConsumeBracket(); if (Tok.is(tok::comma)) { Diag(Tok.getLocation(), diag::err_expected_ident); ConsumeToken(); } while (Tok.is(tok::identifier) || Tok.is(tok::comma)) { // attribute not present if (Tok.is(tok::comma)) { ConsumeToken(); continue; } IdentifierInfo *ScopeName = 0, *AttrName = Tok.getIdentifierInfo(); SourceLocation ScopeLoc, AttrLoc = ConsumeToken(); // scoped attribute if (Tok.is(tok::coloncolon)) { ConsumeToken(); if (!Tok.is(tok::identifier)) { Diag(Tok.getLocation(), diag::err_expected_ident); SkipUntil(tok::r_square, tok::comma, true, true); continue; } ScopeName = AttrName; ScopeLoc = AttrLoc; AttrName = Tok.getIdentifierInfo(); AttrLoc = ConsumeToken(); } bool AttrParsed = false; // No scoped names are supported; ideally we could put all non-standard // attributes into namespaces. if (!ScopeName) { switch(AttributeList::getKind(AttrName)) { // No arguments case AttributeList::AT_base_check: case AttributeList::AT_carries_dependency: case AttributeList::AT_final: case AttributeList::AT_hiding: case AttributeList::AT_noreturn: case AttributeList::AT_override: { if (Tok.is(tok::l_paren)) { Diag(Tok.getLocation(), diag::err_cxx0x_attribute_forbids_arguments) << AttrName->getName(); break; } CurrAttr = new AttributeList(AttrName, AttrLoc, 0, AttrLoc, 0, SourceLocation(), 0, 0, CurrAttr, false, true); AttrParsed = true; break; } // One argument; must be a type-id or assignment-expression case AttributeList::AT_aligned: { if (Tok.isNot(tok::l_paren)) { Diag(Tok.getLocation(), diag::err_cxx0x_attribute_requires_arguments) << AttrName->getName(); break; } SourceLocation ParamLoc = ConsumeParen(); OwningExprResult ArgExpr = ParseCXX0XAlignArgument(ParamLoc); MatchRHSPunctuation(tok::r_paren, ParamLoc); ExprVector ArgExprs(Actions); ArgExprs.push_back(ArgExpr.release()); CurrAttr = new AttributeList(AttrName, AttrLoc, 0, AttrLoc, 0, ParamLoc, ArgExprs.take(), 1, CurrAttr, false, true); AttrParsed = true; break; } // Silence warnings default: break; } } // Skip the entire parameter clause, if any if (!AttrParsed && Tok.is(tok::l_paren)) { ConsumeParen(); // SkipUntil maintains the balancedness of tokens. SkipUntil(tok::r_paren, false); } } if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare)) SkipUntil(tok::r_square, false); Loc = Tok.getLocation(); if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare)) SkipUntil(tok::r_square, false); CXX0XAttributeList Attr (CurrAttr, SourceRange(StartLoc, Loc), true); return Attr; } /// ParseCXX0XAlignArgument - Parse the argument to C++0x's [[align]] /// attribute. /// /// FIXME: Simply returns an alignof() expression if the argument is a /// type. Ideally, the type should be propagated directly into Sema. /// /// [C++0x] 'align' '(' type-id ')' /// [C++0x] 'align' '(' assignment-expression ')' Parser::OwningExprResult Parser::ParseCXX0XAlignArgument(SourceLocation Start) { if (isTypeIdInParens()) { EnterExpressionEvaluationContext Unevaluated(Actions, Action::Unevaluated); SourceLocation TypeLoc = Tok.getLocation(); TypeTy *Ty = ParseTypeName().get(); SourceRange TypeRange(Start, Tok.getLocation()); return Actions.ActOnSizeOfAlignOfExpr(TypeLoc, false, true, Ty, TypeRange); } else return ParseConstantExpression(); }