//===--- PPDirectives.cpp - Directive Handling for Preprocessor -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements # directive processing for the Preprocessor. // //===----------------------------------------------------------------------===// #include "clang/Lex/Preprocessor.h" #include "clang/Lex/LiteralSupport.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/LexDiagnostic.h" #include "clang/Basic/SourceManager.h" #include "llvm/ADT/APInt.h" using namespace clang; //===----------------------------------------------------------------------===// // Utility Methods for Preprocessor Directive Handling. //===----------------------------------------------------------------------===// MacroInfo *Preprocessor::AllocateMacroInfo(SourceLocation L) { MacroInfo *MI; if (!MICache.empty()) { MI = MICache.back(); MICache.pop_back(); } else MI = (MacroInfo*) BP.Allocate(); new (MI) MacroInfo(L); return MI; } /// ReleaseMacroInfo - Release the specified MacroInfo. This memory will /// be reused for allocating new MacroInfo objects. void Preprocessor::ReleaseMacroInfo(MacroInfo* MI) { MICache.push_back(MI); MI->FreeArgumentList(BP); } /// DiscardUntilEndOfDirective - Read and discard all tokens remaining on the /// current line until the tok::eom token is found. void Preprocessor::DiscardUntilEndOfDirective() { Token Tmp; do { LexUnexpandedToken(Tmp); } while (Tmp.isNot(tok::eom)); } /// ReadMacroName - Lex and validate a macro name, which occurs after a /// #define or #undef. This sets the token kind to eom and discards the rest /// of the macro line if the macro name is invalid. isDefineUndef is 1 if /// this is due to a a #define, 2 if #undef directive, 0 if it is something /// else (e.g. #ifdef). void Preprocessor::ReadMacroName(Token &MacroNameTok, char isDefineUndef) { // Read the token, don't allow macro expansion on it. LexUnexpandedToken(MacroNameTok); // Missing macro name? if (MacroNameTok.is(tok::eom)) { Diag(MacroNameTok, diag::err_pp_missing_macro_name); return; } IdentifierInfo *II = MacroNameTok.getIdentifierInfo(); if (II == 0) { std::string Spelling = getSpelling(MacroNameTok); const IdentifierInfo &Info = Identifiers.get(Spelling); if (Info.isCPlusPlusOperatorKeyword()) // C++ 2.5p2: Alternative tokens behave the same as its primary token // except for their spellings. Diag(MacroNameTok, diag::err_pp_operator_used_as_macro_name) << Spelling; else Diag(MacroNameTok, diag::err_pp_macro_not_identifier); // Fall through on error. } else if (isDefineUndef && II->getPPKeywordID() == tok::pp_defined) { // Error if defining "defined": C99 6.10.8.4. Diag(MacroNameTok, diag::err_defined_macro_name); } else if (isDefineUndef && II->hasMacroDefinition() && getMacroInfo(II)->isBuiltinMacro()) { // Error if defining "__LINE__" and other builtins: C99 6.10.8.4. if (isDefineUndef == 1) Diag(MacroNameTok, diag::pp_redef_builtin_macro); else Diag(MacroNameTok, diag::pp_undef_builtin_macro); } else { // Okay, we got a good identifier node. Return it. return; } // Invalid macro name, read and discard the rest of the line. Then set the // token kind to tok::eom. MacroNameTok.setKind(tok::eom); return DiscardUntilEndOfDirective(); } /// CheckEndOfDirective - Ensure that the next token is a tok::eom token. If /// not, emit a diagnostic and consume up until the eom. If EnableMacros is /// true, then we consider macros that expand to zero tokens as being ok. void Preprocessor::CheckEndOfDirective(const char *DirType, bool EnableMacros) { Token Tmp; // Lex unexpanded tokens for most directives: macros might expand to zero // tokens, causing us to miss diagnosing invalid lines. Some directives (like // #line) allow empty macros. if (EnableMacros) Lex(Tmp); else LexUnexpandedToken(Tmp); // There should be no tokens after the directive, but we allow them as an // extension. while (Tmp.is(tok::comment)) // Skip comments in -C mode. LexUnexpandedToken(Tmp); if (Tmp.isNot(tok::eom)) { // Add a fixit in GNU/C99/C++ mode. Don't offer a fixit for strict-C89, // because it is more trouble than it is worth to insert /**/ and check that // there is no /**/ in the range also. CodeModificationHint FixItHint; if (Features.GNUMode || Features.C99 || Features.CPlusPlus) FixItHint = CodeModificationHint::CreateInsertion(Tmp.getLocation(),"//"); Diag(Tmp, diag::ext_pp_extra_tokens_at_eol) << DirType << FixItHint; DiscardUntilEndOfDirective(); } } /// SkipExcludedConditionalBlock - We just read a #if or related directive and /// decided that the subsequent tokens are in the #if'd out portion of the /// file. Lex the rest of the file, until we see an #endif. If /// FoundNonSkipPortion is true, then we have already emitted code for part of /// this #if directive, so #else/#elif blocks should never be entered. If ElseOk /// is true, then #else directives are ok, if not, then we have already seen one /// so a #else directive is a duplicate. When this returns, the caller can lex /// the first valid token. void Preprocessor::SkipExcludedConditionalBlock(SourceLocation IfTokenLoc, bool FoundNonSkipPortion, bool FoundElse) { ++NumSkipped; assert(CurTokenLexer == 0 && CurPPLexer && "Lexing a macro, not a file?"); CurPPLexer->pushConditionalLevel(IfTokenLoc, /*isSkipping*/false, FoundNonSkipPortion, FoundElse); if (CurPTHLexer) { PTHSkipExcludedConditionalBlock(); return; } // Enter raw mode to disable identifier lookup (and thus macro expansion), // disabling warnings, etc. CurPPLexer->LexingRawMode = true; Token Tok; while (1) { if (CurLexer) CurLexer->Lex(Tok); else CurPTHLexer->Lex(Tok); // If this is the end of the buffer, we have an error. if (Tok.is(tok::eof)) { // Emit errors for each unterminated conditional on the stack, including // the current one. while (!CurPPLexer->ConditionalStack.empty()) { Diag(CurPPLexer->ConditionalStack.back().IfLoc, diag::err_pp_unterminated_conditional); CurPPLexer->ConditionalStack.pop_back(); } // Just return and let the caller lex after this #include. break; } // If this token is not a preprocessor directive, just skip it. if (Tok.isNot(tok::hash) || !Tok.isAtStartOfLine()) continue; // We just parsed a # character at the start of a line, so we're in // directive mode. Tell the lexer this so any newlines we see will be // converted into an EOM token (this terminates the macro). CurPPLexer->ParsingPreprocessorDirective = true; if (CurLexer) CurLexer->SetCommentRetentionState(false); // Read the next token, the directive flavor. LexUnexpandedToken(Tok); // If this isn't an identifier directive (e.g. is "# 1\n" or "#\n", or // something bogus), skip it. if (Tok.isNot(tok::identifier)) { CurPPLexer->ParsingPreprocessorDirective = false; // Restore comment saving mode. if (CurLexer) CurLexer->SetCommentRetentionState(KeepComments); continue; } // If the first letter isn't i or e, it isn't intesting to us. We know that // this is safe in the face of spelling differences, because there is no way // to spell an i/e in a strange way that is another letter. Skipping this // allows us to avoid looking up the identifier info for #define/#undef and // other common directives. const char *RawCharData = SourceMgr.getCharacterData(Tok.getLocation()); char FirstChar = RawCharData[0]; if (FirstChar >= 'a' && FirstChar <= 'z' && FirstChar != 'i' && FirstChar != 'e') { CurPPLexer->ParsingPreprocessorDirective = false; // Restore comment saving mode. if (CurLexer) CurLexer->SetCommentRetentionState(KeepComments); continue; } // Get the identifier name without trigraphs or embedded newlines. Note // that we can't use Tok.getIdentifierInfo() because its lookup is disabled // when skipping. // TODO: could do this with zero copies in the no-clean case by using // strncmp below. char Directive[20]; unsigned IdLen; if (!Tok.needsCleaning() && Tok.getLength() < 20) { IdLen = Tok.getLength(); memcpy(Directive, RawCharData, IdLen); Directive[IdLen] = 0; } else { std::string DirectiveStr = getSpelling(Tok); IdLen = DirectiveStr.size(); if (IdLen >= 20) { CurPPLexer->ParsingPreprocessorDirective = false; // Restore comment saving mode. if (CurLexer) CurLexer->SetCommentRetentionState(KeepComments); continue; } memcpy(Directive, &DirectiveStr[0], IdLen); Directive[IdLen] = 0; FirstChar = Directive[0]; } if (FirstChar == 'i' && Directive[1] == 'f') { if ((IdLen == 2) || // "if" (IdLen == 5 && !strcmp(Directive+2, "def")) || // "ifdef" (IdLen == 6 && !strcmp(Directive+2, "ndef"))) { // "ifndef" // We know the entire #if/#ifdef/#ifndef block will be skipped, don't // bother parsing the condition. DiscardUntilEndOfDirective(); CurPPLexer->pushConditionalLevel(Tok.getLocation(), /*wasskipping*/true, /*foundnonskip*/false, /*fnddelse*/false); } } else if (FirstChar == 'e') { if (IdLen == 5 && !strcmp(Directive+1, "ndif")) { // "endif" CheckEndOfDirective("endif"); PPConditionalInfo CondInfo; CondInfo.WasSkipping = true; // Silence bogus warning. bool InCond = CurPPLexer->popConditionalLevel(CondInfo); InCond = InCond; // Silence warning in no-asserts mode. assert(!InCond && "Can't be skipping if not in a conditional!"); // If we popped the outermost skipping block, we're done skipping! if (!CondInfo.WasSkipping) break; } else if (IdLen == 4 && !strcmp(Directive+1, "lse")) { // "else". // #else directive in a skipping conditional. If not in some other // skipping conditional, and if #else hasn't already been seen, enter it // as a non-skipping conditional. DiscardUntilEndOfDirective(); // C99 6.10p4. PPConditionalInfo &CondInfo = CurPPLexer->peekConditionalLevel(); // If this is a #else with a #else before it, report the error. if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_else_after_else); // Note that we've seen a #else in this conditional. CondInfo.FoundElse = true; // If the conditional is at the top level, and the #if block wasn't // entered, enter the #else block now. if (!CondInfo.WasSkipping && !CondInfo.FoundNonSkip) { CondInfo.FoundNonSkip = true; break; } } else if (IdLen == 4 && !strcmp(Directive+1, "lif")) { // "elif". PPConditionalInfo &CondInfo = CurPPLexer->peekConditionalLevel(); bool ShouldEnter; // If this is in a skipping block or if we're already handled this #if // block, don't bother parsing the condition. if (CondInfo.WasSkipping || CondInfo.FoundNonSkip) { DiscardUntilEndOfDirective(); ShouldEnter = false; } else { // Restore the value of LexingRawMode so that identifiers are // looked up, etc, inside the #elif expression. assert(CurPPLexer->LexingRawMode && "We have to be skipping here!"); CurPPLexer->LexingRawMode = false; IdentifierInfo *IfNDefMacro = 0; ShouldEnter = EvaluateDirectiveExpression(IfNDefMacro); CurPPLexer->LexingRawMode = true; } // If this is a #elif with a #else before it, report the error. if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_elif_after_else); // If this condition is true, enter it! if (ShouldEnter) { CondInfo.FoundNonSkip = true; break; } } } CurPPLexer->ParsingPreprocessorDirective = false; // Restore comment saving mode. if (CurLexer) CurLexer->SetCommentRetentionState(KeepComments); } // Finally, if we are out of the conditional (saw an #endif or ran off the end // of the file, just stop skipping and return to lexing whatever came after // the #if block. CurPPLexer->LexingRawMode = false; } void Preprocessor::PTHSkipExcludedConditionalBlock() { while(1) { assert(CurPTHLexer); assert(CurPTHLexer->LexingRawMode == false); // Skip to the next '#else', '#elif', or #endif. if (CurPTHLexer->SkipBlock()) { // We have reached an #endif. Both the '#' and 'endif' tokens // have been consumed by the PTHLexer. Just pop off the condition level. PPConditionalInfo CondInfo; bool InCond = CurPTHLexer->popConditionalLevel(CondInfo); InCond = InCond; // Silence warning in no-asserts mode. assert(!InCond && "Can't be skipping if not in a conditional!"); break; } // We have reached a '#else' or '#elif'. Lex the next token to get // the directive flavor. Token Tok; LexUnexpandedToken(Tok); // We can actually look up the IdentifierInfo here since we aren't in // raw mode. tok::PPKeywordKind K = Tok.getIdentifierInfo()->getPPKeywordID(); if (K == tok::pp_else) { // #else: Enter the else condition. We aren't in a nested condition // since we skip those. We're always in the one matching the last // blocked we skipped. PPConditionalInfo &CondInfo = CurPTHLexer->peekConditionalLevel(); // Note that we've seen a #else in this conditional. CondInfo.FoundElse = true; // If the #if block wasn't entered then enter the #else block now. if (!CondInfo.FoundNonSkip) { CondInfo.FoundNonSkip = true; // Scan until the eom token. CurPTHLexer->ParsingPreprocessorDirective = true; DiscardUntilEndOfDirective(); CurPTHLexer->ParsingPreprocessorDirective = false; break; } // Otherwise skip this block. continue; } assert(K == tok::pp_elif); PPConditionalInfo &CondInfo = CurPTHLexer->peekConditionalLevel(); // If this is a #elif with a #else before it, report the error. if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_elif_after_else); // If this is in a skipping block or if we're already handled this #if // block, don't bother parsing the condition. We just skip this block. if (CondInfo.FoundNonSkip) continue; // Evaluate the condition of the #elif. IdentifierInfo *IfNDefMacro = 0; CurPTHLexer->ParsingPreprocessorDirective = true; bool ShouldEnter = EvaluateDirectiveExpression(IfNDefMacro); CurPTHLexer->ParsingPreprocessorDirective = false; // If this condition is true, enter it! if (ShouldEnter) { CondInfo.FoundNonSkip = true; break; } // Otherwise, skip this block and go to the next one. continue; } } /// LookupFile - Given a "foo" or reference, look up the indicated file, /// return null on failure. isAngled indicates whether the file reference is /// for system #include's or not (i.e. using <> instead of ""). const FileEntry *Preprocessor::LookupFile(const char *FilenameStart, const char *FilenameEnd, bool isAngled, const DirectoryLookup *FromDir, const DirectoryLookup *&CurDir) { // If the header lookup mechanism may be relative to the current file, pass in // info about where the current file is. const FileEntry *CurFileEnt = 0; if (!FromDir) { FileID FID = getCurrentFileLexer()->getFileID(); CurFileEnt = SourceMgr.getFileEntryForID(FID); // If there is no file entry associated with this file, it must be the // predefines buffer. Any other file is not lexed with a normal lexer, so // it won't be scanned for preprocessor directives. If we have the // predefines buffer, resolve #include references (which come from the // -include command line argument) as if they came from the main file, this // affects file lookup etc. if (CurFileEnt == 0) { FID = SourceMgr.getMainFileID(); CurFileEnt = SourceMgr.getFileEntryForID(FID); } } // Do a standard file entry lookup. CurDir = CurDirLookup; const FileEntry *FE = HeaderInfo.LookupFile(FilenameStart, FilenameEnd, isAngled, FromDir, CurDir, CurFileEnt); if (FE) return FE; // Otherwise, see if this is a subframework header. If so, this is relative // to one of the headers on the #include stack. Walk the list of the current // headers on the #include stack and pass them to HeaderInfo. if (IsFileLexer()) { if ((CurFileEnt = SourceMgr.getFileEntryForID(CurPPLexer->getFileID()))) if ((FE = HeaderInfo.LookupSubframeworkHeader(FilenameStart, FilenameEnd, CurFileEnt))) return FE; } for (unsigned i = 0, e = IncludeMacroStack.size(); i != e; ++i) { IncludeStackInfo &ISEntry = IncludeMacroStack[e-i-1]; if (IsFileLexer(ISEntry)) { if ((CurFileEnt = SourceMgr.getFileEntryForID(ISEntry.ThePPLexer->getFileID()))) if ((FE = HeaderInfo.LookupSubframeworkHeader(FilenameStart, FilenameEnd, CurFileEnt))) return FE; } } // Otherwise, we really couldn't find the file. return 0; } //===----------------------------------------------------------------------===// // Preprocessor Directive Handling. //===----------------------------------------------------------------------===// /// HandleDirective - This callback is invoked when the lexer sees a # token /// at the start of a line. This consumes the directive, modifies the /// lexer/preprocessor state, and advances the lexer(s) so that the next token /// read is the correct one. void Preprocessor::HandleDirective(Token &Result) { // FIXME: Traditional: # with whitespace before it not recognized by K&R? // We just parsed a # character at the start of a line, so we're in directive // mode. Tell the lexer this so any newlines we see will be converted into an // EOM token (which terminates the directive). CurPPLexer->ParsingPreprocessorDirective = true; ++NumDirectives; // We are about to read a token. For the multiple-include optimization FA to // work, we have to remember if we had read any tokens *before* this // pp-directive. bool ReadAnyTokensBeforeDirective = CurPPLexer->MIOpt.getHasReadAnyTokensVal(); // Save the '#' token in case we need to return it later. Token SavedHash = Result; // Read the next token, the directive flavor. This isn't expanded due to // C99 6.10.3p8. LexUnexpandedToken(Result); // C99 6.10.3p11: Is this preprocessor directive in macro invocation? e.g.: // #define A(x) #x // A(abc // #warning blah // def) // If so, the user is relying on non-portable behavior, emit a diagnostic. if (InMacroArgs) Diag(Result, diag::ext_embedded_directive); TryAgain: switch (Result.getKind()) { case tok::eom: return; // null directive. case tok::comment: // Handle stuff like "# /*foo*/ define X" in -E -C mode. LexUnexpandedToken(Result); goto TryAgain; case tok::numeric_constant: // # 7 GNU line marker directive. if (getLangOptions().AsmPreprocessor) break; // # 4 is not a preprocessor directive in .S files. return HandleDigitDirective(Result); default: IdentifierInfo *II = Result.getIdentifierInfo(); if (II == 0) break; // Not an identifier. // Ask what the preprocessor keyword ID is. switch (II->getPPKeywordID()) { default: break; // C99 6.10.1 - Conditional Inclusion. case tok::pp_if: return HandleIfDirective(Result, ReadAnyTokensBeforeDirective); case tok::pp_ifdef: return HandleIfdefDirective(Result, false, true/*not valid for miopt*/); case tok::pp_ifndef: return HandleIfdefDirective(Result, true, ReadAnyTokensBeforeDirective); case tok::pp_elif: return HandleElifDirective(Result); case tok::pp_else: return HandleElseDirective(Result); case tok::pp_endif: return HandleEndifDirective(Result); // C99 6.10.2 - Source File Inclusion. case tok::pp_include: return HandleIncludeDirective(Result); // Handle #include. case tok::pp___include_macros: return HandleIncludeMacrosDirective(Result); // Handle -imacros. // C99 6.10.3 - Macro Replacement. case tok::pp_define: return HandleDefineDirective(Result); case tok::pp_undef: return HandleUndefDirective(Result); // C99 6.10.4 - Line Control. case tok::pp_line: return HandleLineDirective(Result); // C99 6.10.5 - Error Directive. case tok::pp_error: return HandleUserDiagnosticDirective(Result, false); // C99 6.10.6 - Pragma Directive. case tok::pp_pragma: return HandlePragmaDirective(); // GNU Extensions. case tok::pp_import: return HandleImportDirective(Result); case tok::pp_include_next: return HandleIncludeNextDirective(Result); case tok::pp_warning: Diag(Result, diag::ext_pp_warning_directive); return HandleUserDiagnosticDirective(Result, true); case tok::pp_ident: return HandleIdentSCCSDirective(Result); case tok::pp_sccs: return HandleIdentSCCSDirective(Result); case tok::pp_assert: //isExtension = true; // FIXME: implement #assert break; case tok::pp_unassert: //isExtension = true; // FIXME: implement #unassert break; } break; } // If this is a .S file, treat unknown # directives as non-preprocessor // directives. This is important because # may be a comment or introduce // various pseudo-ops. Just return the # token and push back the following // token to be lexed next time. if (getLangOptions().AsmPreprocessor) { Token *Toks = new Token[2](); // Return the # and the token after it. Toks[0] = SavedHash; Toks[1] = Result; // Enter this token stream so that we re-lex the tokens. Make sure to // enable macro expansion, in case the token after the # is an identifier // that is expanded. EnterTokenStream(Toks, 2, false, true); return; } // If we reached here, the preprocessing token is not valid! Diag(Result, diag::err_pp_invalid_directive); // Read the rest of the PP line. DiscardUntilEndOfDirective(); // Okay, we're done parsing the directive. } /// GetLineValue - Convert a numeric token into an unsigned value, emitting /// Diagnostic DiagID if it is invalid, and returning the value in Val. static bool GetLineValue(Token &DigitTok, unsigned &Val, unsigned DiagID, Preprocessor &PP) { if (DigitTok.isNot(tok::numeric_constant)) { PP.Diag(DigitTok, DiagID); if (DigitTok.isNot(tok::eom)) PP.DiscardUntilEndOfDirective(); return true; } llvm::SmallString<64> IntegerBuffer; IntegerBuffer.resize(DigitTok.getLength()); const char *DigitTokBegin = &IntegerBuffer[0]; unsigned ActualLength = PP.getSpelling(DigitTok, DigitTokBegin); // Verify that we have a simple digit-sequence, and compute the value. This // is always a simple digit string computed in decimal, so we do this manually // here. Val = 0; for (unsigned i = 0; i != ActualLength; ++i) { if (!isdigit(DigitTokBegin[i])) { PP.Diag(PP.AdvanceToTokenCharacter(DigitTok.getLocation(), i), diag::err_pp_line_digit_sequence); PP.DiscardUntilEndOfDirective(); return true; } unsigned NextVal = Val*10+(DigitTokBegin[i]-'0'); if (NextVal < Val) { // overflow. PP.Diag(DigitTok, DiagID); PP.DiscardUntilEndOfDirective(); return true; } Val = NextVal; } // Reject 0, this is needed both by #line numbers and flags. if (Val == 0) { PP.Diag(DigitTok, DiagID); PP.DiscardUntilEndOfDirective(); return true; } if (DigitTokBegin[0] == '0') PP.Diag(DigitTok.getLocation(), diag::warn_pp_line_decimal); return false; } /// HandleLineDirective - Handle #line directive: C99 6.10.4. The two /// acceptable forms are: /// # line digit-sequence /// # line digit-sequence "s-char-sequence" void Preprocessor::HandleLineDirective(Token &Tok) { // Read the line # and string argument. Per C99 6.10.4p5, these tokens are // expanded. Token DigitTok; Lex(DigitTok); // Validate the number and convert it to an unsigned. unsigned LineNo; if (GetLineValue(DigitTok, LineNo, diag::err_pp_line_requires_integer,*this)) return; // Enforce C99 6.10.4p3: "The digit sequence shall not specify ... a // number greater than 2147483647". C90 requires that the line # be <= 32767. unsigned LineLimit = Features.C99 ? 2147483648U : 32768U; if (LineNo >= LineLimit) Diag(DigitTok, diag::ext_pp_line_too_big) << LineLimit; int FilenameID = -1; Token StrTok; Lex(StrTok); // If the StrTok is "eom", then it wasn't present. Otherwise, it must be a // string followed by eom. if (StrTok.is(tok::eom)) ; // ok else if (StrTok.isNot(tok::string_literal)) { Diag(StrTok, diag::err_pp_line_invalid_filename); DiscardUntilEndOfDirective(); return; } else { // Parse and validate the string, converting it into a unique ID. StringLiteralParser Literal(&StrTok, 1, *this); assert(!Literal.AnyWide && "Didn't allow wide strings in"); if (Literal.hadError) return DiscardUntilEndOfDirective(); if (Literal.Pascal) { Diag(StrTok, diag::err_pp_linemarker_invalid_filename); return DiscardUntilEndOfDirective(); } FilenameID = SourceMgr.getLineTableFilenameID(Literal.GetString(), Literal.GetStringLength()); // Verify that there is nothing after the string, other than EOM. Because // of C99 6.10.4p5, macros that expand to empty tokens are ok. CheckEndOfDirective("line", true); } SourceMgr.AddLineNote(DigitTok.getLocation(), LineNo, FilenameID); if (Callbacks) Callbacks->FileChanged(DigitTok.getLocation(), PPCallbacks::RenameFile, SrcMgr::C_User); } /// ReadLineMarkerFlags - Parse and validate any flags at the end of a GNU line /// marker directive. static bool ReadLineMarkerFlags(bool &IsFileEntry, bool &IsFileExit, bool &IsSystemHeader, bool &IsExternCHeader, Preprocessor &PP) { unsigned FlagVal; Token FlagTok; PP.Lex(FlagTok); if (FlagTok.is(tok::eom)) return false; if (GetLineValue(FlagTok, FlagVal, diag::err_pp_linemarker_invalid_flag, PP)) return true; if (FlagVal == 1) { IsFileEntry = true; PP.Lex(FlagTok); if (FlagTok.is(tok::eom)) return false; if (GetLineValue(FlagTok, FlagVal, diag::err_pp_linemarker_invalid_flag,PP)) return true; } else if (FlagVal == 2) { IsFileExit = true; SourceManager &SM = PP.getSourceManager(); // If we are leaving the current presumed file, check to make sure the // presumed include stack isn't empty! FileID CurFileID = SM.getDecomposedInstantiationLoc(FlagTok.getLocation()).first; PresumedLoc PLoc = SM.getPresumedLoc(FlagTok.getLocation()); // If there is no include loc (main file) or if the include loc is in a // different physical file, then we aren't in a "1" line marker flag region. SourceLocation IncLoc = PLoc.getIncludeLoc(); if (IncLoc.isInvalid() || SM.getDecomposedInstantiationLoc(IncLoc).first != CurFileID) { PP.Diag(FlagTok, diag::err_pp_linemarker_invalid_pop); PP.DiscardUntilEndOfDirective(); return true; } PP.Lex(FlagTok); if (FlagTok.is(tok::eom)) return false; if (GetLineValue(FlagTok, FlagVal, diag::err_pp_linemarker_invalid_flag,PP)) return true; } // We must have 3 if there are still flags. if (FlagVal != 3) { PP.Diag(FlagTok, diag::err_pp_linemarker_invalid_flag); PP.DiscardUntilEndOfDirective(); return true; } IsSystemHeader = true; PP.Lex(FlagTok); if (FlagTok.is(tok::eom)) return false; if (GetLineValue(FlagTok, FlagVal, diag::err_pp_linemarker_invalid_flag, PP)) return true; // We must have 4 if there is yet another flag. if (FlagVal != 4) { PP.Diag(FlagTok, diag::err_pp_linemarker_invalid_flag); PP.DiscardUntilEndOfDirective(); return true; } IsExternCHeader = true; PP.Lex(FlagTok); if (FlagTok.is(tok::eom)) return false; // There are no more valid flags here. PP.Diag(FlagTok, diag::err_pp_linemarker_invalid_flag); PP.DiscardUntilEndOfDirective(); return true; } /// HandleDigitDirective - Handle a GNU line marker directive, whose syntax is /// one of the following forms: /// /// # 42 /// # 42 "file" ('1' | '2')? /// # 42 "file" ('1' | '2')? '3' '4'? /// void Preprocessor::HandleDigitDirective(Token &DigitTok) { // Validate the number and convert it to an unsigned. GNU does not have a // line # limit other than it fit in 32-bits. unsigned LineNo; if (GetLineValue(DigitTok, LineNo, diag::err_pp_linemarker_requires_integer, *this)) return; Token StrTok; Lex(StrTok); bool IsFileEntry = false, IsFileExit = false; bool IsSystemHeader = false, IsExternCHeader = false; int FilenameID = -1; // If the StrTok is "eom", then it wasn't present. Otherwise, it must be a // string followed by eom. if (StrTok.is(tok::eom)) ; // ok else if (StrTok.isNot(tok::string_literal)) { Diag(StrTok, diag::err_pp_linemarker_invalid_filename); return DiscardUntilEndOfDirective(); } else { // Parse and validate the string, converting it into a unique ID. StringLiteralParser Literal(&StrTok, 1, *this); assert(!Literal.AnyWide && "Didn't allow wide strings in"); if (Literal.hadError) return DiscardUntilEndOfDirective(); if (Literal.Pascal) { Diag(StrTok, diag::err_pp_linemarker_invalid_filename); return DiscardUntilEndOfDirective(); } FilenameID = SourceMgr.getLineTableFilenameID(Literal.GetString(), Literal.GetStringLength()); // If a filename was present, read any flags that are present. if (ReadLineMarkerFlags(IsFileEntry, IsFileExit, IsSystemHeader, IsExternCHeader, *this)) return; } // Create a line note with this information. SourceMgr.AddLineNote(DigitTok.getLocation(), LineNo, FilenameID, IsFileEntry, IsFileExit, IsSystemHeader, IsExternCHeader); // If the preprocessor has callbacks installed, notify them of the #line // change. This is used so that the line marker comes out in -E mode for // example. if (Callbacks) { PPCallbacks::FileChangeReason Reason = PPCallbacks::RenameFile; if (IsFileEntry) Reason = PPCallbacks::EnterFile; else if (IsFileExit) Reason = PPCallbacks::ExitFile; SrcMgr::CharacteristicKind FileKind = SrcMgr::C_User; if (IsExternCHeader) FileKind = SrcMgr::C_ExternCSystem; else if (IsSystemHeader) FileKind = SrcMgr::C_System; Callbacks->FileChanged(DigitTok.getLocation(), Reason, FileKind); } } /// HandleUserDiagnosticDirective - Handle a #warning or #error directive. /// void Preprocessor::HandleUserDiagnosticDirective(Token &Tok, bool isWarning) { // PTH doesn't emit #warning or #error directives. if (CurPTHLexer) return CurPTHLexer->DiscardToEndOfLine(); // Read the rest of the line raw. We do this because we don't want macros // to be expanded and we don't require that the tokens be valid preprocessing // tokens. For example, this is allowed: "#warning ` 'foo". GCC does // collapse multiple consequtive white space between tokens, but this isn't // specified by the standard. std::string Message = CurLexer->ReadToEndOfLine(); if (isWarning) Diag(Tok, diag::pp_hash_warning) << Message; else Diag(Tok, diag::err_pp_hash_error) << Message; } /// HandleIdentSCCSDirective - Handle a #ident/#sccs directive. /// void Preprocessor::HandleIdentSCCSDirective(Token &Tok) { // Yes, this directive is an extension. Diag(Tok, diag::ext_pp_ident_directive); // Read the string argument. Token StrTok; Lex(StrTok); // If the token kind isn't a string, it's a malformed directive. if (StrTok.isNot(tok::string_literal) && StrTok.isNot(tok::wide_string_literal)) { Diag(StrTok, diag::err_pp_malformed_ident); if (StrTok.isNot(tok::eom)) DiscardUntilEndOfDirective(); return; } // Verify that there is nothing after the string, other than EOM. CheckEndOfDirective("ident"); if (Callbacks) Callbacks->Ident(Tok.getLocation(), getSpelling(StrTok)); } //===----------------------------------------------------------------------===// // Preprocessor Include Directive Handling. //===----------------------------------------------------------------------===// /// GetIncludeFilenameSpelling - Turn the specified lexer token into a fully /// checked and spelled filename, e.g. as an operand of #include. This returns /// true if the input filename was in <>'s or false if it were in ""'s. The /// caller is expected to provide a buffer that is large enough to hold the /// spelling of the filename, but is also expected to handle the case when /// this method decides to use a different buffer. bool Preprocessor::GetIncludeFilenameSpelling(SourceLocation Loc, const char *&BufStart, const char *&BufEnd) { // Get the text form of the filename. assert(BufStart != BufEnd && "Can't have tokens with empty spellings!"); // Make sure the filename is or "x". bool isAngled; if (BufStart[0] == '<') { if (BufEnd[-1] != '>') { Diag(Loc, diag::err_pp_expects_filename); BufStart = 0; return true; } isAngled = true; } else if (BufStart[0] == '"') { if (BufEnd[-1] != '"') { Diag(Loc, diag::err_pp_expects_filename); BufStart = 0; return true; } isAngled = false; } else { Diag(Loc, diag::err_pp_expects_filename); BufStart = 0; return true; } // Diagnose #include "" as invalid. if (BufEnd-BufStart <= 2) { Diag(Loc, diag::err_pp_empty_filename); BufStart = 0; return ""; } // Skip the brackets. ++BufStart; --BufEnd; return isAngled; } /// ConcatenateIncludeName - Handle cases where the #include name is expanded /// from a macro as multiple tokens, which need to be glued together. This /// occurs for code like: /// #define FOO /// #include FOO /// because in this case, "" is returned as 7 tokens, not one. /// /// This code concatenates and consumes tokens up to the '>' token. It returns /// false if the > was found, otherwise it returns true if it finds and consumes /// the EOM marker. static bool ConcatenateIncludeName(llvm::SmallVector &FilenameBuffer, Preprocessor &PP) { Token CurTok; PP.Lex(CurTok); while (CurTok.isNot(tok::eom)) { // Append the spelling of this token to the buffer. If there was a space // before it, add it now. if (CurTok.hasLeadingSpace()) FilenameBuffer.push_back(' '); // Get the spelling of the token, directly into FilenameBuffer if possible. unsigned PreAppendSize = FilenameBuffer.size(); FilenameBuffer.resize(PreAppendSize+CurTok.getLength()); const char *BufPtr = &FilenameBuffer[PreAppendSize]; unsigned ActualLen = PP.getSpelling(CurTok, BufPtr); // If the token was spelled somewhere else, copy it into FilenameBuffer. if (BufPtr != &FilenameBuffer[PreAppendSize]) memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen); // Resize FilenameBuffer to the correct size. if (CurTok.getLength() != ActualLen) FilenameBuffer.resize(PreAppendSize+ActualLen); // If we found the '>' marker, return success. if (CurTok.is(tok::greater)) return false; PP.Lex(CurTok); } // If we hit the eom marker, emit an error and return true so that the caller // knows the EOM has been read. PP.Diag(CurTok.getLocation(), diag::err_pp_expects_filename); return true; } /// HandleIncludeDirective - The "#include" tokens have just been read, read the /// file to be included from the lexer, then include it! This is a common /// routine with functionality shared between #include, #include_next and /// #import. LookupFrom is set when this is a #include_next directive, it /// specifies the file to start searching from. void Preprocessor::HandleIncludeDirective(Token &IncludeTok, const DirectoryLookup *LookupFrom, bool isImport) { Token FilenameTok; CurPPLexer->LexIncludeFilename(FilenameTok); // Reserve a buffer to get the spelling. llvm::SmallVector FilenameBuffer; const char *FilenameStart, *FilenameEnd; switch (FilenameTok.getKind()) { case tok::eom: // If the token kind is EOM, the error has already been diagnosed. return; case tok::angle_string_literal: case tok::string_literal: { FilenameBuffer.resize(FilenameTok.getLength()); FilenameStart = &FilenameBuffer[0]; unsigned Len = getSpelling(FilenameTok, FilenameStart); FilenameEnd = FilenameStart+Len; break; } case tok::less: // This could be a file coming from a macro expansion. In this // case, glue the tokens together into FilenameBuffer and interpret those. FilenameBuffer.push_back('<'); if (ConcatenateIncludeName(FilenameBuffer, *this)) return; // Found but no ">"? Diagnostic already emitted. FilenameStart = FilenameBuffer.data(); FilenameEnd = FilenameStart + FilenameBuffer.size(); break; default: Diag(FilenameTok.getLocation(), diag::err_pp_expects_filename); DiscardUntilEndOfDirective(); return; } bool isAngled = GetIncludeFilenameSpelling(FilenameTok.getLocation(), FilenameStart, FilenameEnd); // If GetIncludeFilenameSpelling set the start ptr to null, there was an // error. if (FilenameStart == 0) { DiscardUntilEndOfDirective(); return; } // Verify that there is nothing after the filename, other than EOM. Note that // we allow macros that expand to nothing after the filename, because this // falls into the category of "#include pp-tokens new-line" specified in // C99 6.10.2p4. CheckEndOfDirective(IncludeTok.getIdentifierInfo()->getName(), true); // Check that we don't have infinite #include recursion. if (IncludeMacroStack.size() == MaxAllowedIncludeStackDepth-1) { Diag(FilenameTok, diag::err_pp_include_too_deep); return; } // Search include directories. const DirectoryLookup *CurDir; const FileEntry *File = LookupFile(FilenameStart, FilenameEnd, isAngled, LookupFrom, CurDir); if (File == 0) { Diag(FilenameTok, diag::err_pp_file_not_found) << std::string(FilenameStart, FilenameEnd); return; } // Ask HeaderInfo if we should enter this #include file. If not, #including // this file will have no effect. if (!HeaderInfo.ShouldEnterIncludeFile(File, isImport)) return; // The #included file will be considered to be a system header if either it is // in a system include directory, or if the #includer is a system include // header. SrcMgr::CharacteristicKind FileCharacter = std::max(HeaderInfo.getFileDirFlavor(File), SourceMgr.getFileCharacteristic(FilenameTok.getLocation())); // Look up the file, create a File ID for it. FileID FID = SourceMgr.createFileID(File, FilenameTok.getLocation(), FileCharacter); if (FID.isInvalid()) { Diag(FilenameTok, diag::err_pp_file_not_found) << std::string(FilenameStart, FilenameEnd); return; } // Finally, if all is good, enter the new file! EnterSourceFile(FID, CurDir); } /// HandleIncludeNextDirective - Implements #include_next. /// void Preprocessor::HandleIncludeNextDirective(Token &IncludeNextTok) { Diag(IncludeNextTok, diag::ext_pp_include_next_directive); // #include_next is like #include, except that we start searching after // the current found directory. If we can't do this, issue a // diagnostic. const DirectoryLookup *Lookup = CurDirLookup; if (isInPrimaryFile()) { Lookup = 0; Diag(IncludeNextTok, diag::pp_include_next_in_primary); } else if (Lookup == 0) { Diag(IncludeNextTok, diag::pp_include_next_absolute_path); } else { // Start looking up in the next directory. ++Lookup; } return HandleIncludeDirective(IncludeNextTok, Lookup); } /// HandleImportDirective - Implements #import. /// void Preprocessor::HandleImportDirective(Token &ImportTok) { if (!Features.ObjC1) // #import is standard for ObjC. Diag(ImportTok, diag::ext_pp_import_directive); return HandleIncludeDirective(ImportTok, 0, true); } /// HandleIncludeMacrosDirective - The -imacros command line option turns into a /// pseudo directive in the predefines buffer. This handles it by sucking all /// tokens through the preprocessor and discarding them (only keeping the side /// effects on the preprocessor). void Preprocessor::HandleIncludeMacrosDirective(Token &IncludeMacrosTok) { // This directive should only occur in the predefines buffer. If not, emit an // error and reject it. SourceLocation Loc = IncludeMacrosTok.getLocation(); if (strcmp(SourceMgr.getBufferName(Loc), "") != 0) { Diag(IncludeMacrosTok.getLocation(), diag::pp_include_macros_out_of_predefines); DiscardUntilEndOfDirective(); return; } // Treat this as a normal #include for checking purposes. If this is // successful, it will push a new lexer onto the include stack. HandleIncludeDirective(IncludeMacrosTok, 0, false); Token TmpTok; do { Lex(TmpTok); assert(TmpTok.isNot(tok::eof) && "Didn't find end of -imacros!"); } while (TmpTok.isNot(tok::hashhash)); } //===----------------------------------------------------------------------===// // Preprocessor Macro Directive Handling. //===----------------------------------------------------------------------===// /// ReadMacroDefinitionArgList - The ( starting an argument list of a macro /// definition has just been read. Lex the rest of the arguments and the /// closing ), updating MI with what we learn. Return true if an error occurs /// parsing the arg list. bool Preprocessor::ReadMacroDefinitionArgList(MacroInfo *MI) { llvm::SmallVector Arguments; Token Tok; while (1) { LexUnexpandedToken(Tok); switch (Tok.getKind()) { case tok::r_paren: // Found the end of the argument list. if (Arguments.empty()) // #define FOO() return false; // Otherwise we have #define FOO(A,) Diag(Tok, diag::err_pp_expected_ident_in_arg_list); return true; case tok::ellipsis: // #define X(... -> C99 varargs // Warn if use of C99 feature in non-C99 mode. if (!Features.C99) Diag(Tok, diag::ext_variadic_macro); // Lex the token after the identifier. LexUnexpandedToken(Tok); if (Tok.isNot(tok::r_paren)) { Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); return true; } // Add the __VA_ARGS__ identifier as an argument. Arguments.push_back(Ident__VA_ARGS__); MI->setIsC99Varargs(); MI->setArgumentList(&Arguments[0], Arguments.size(), BP); return false; case tok::eom: // #define X( Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); return true; default: // Handle keywords and identifiers here to accept things like // #define Foo(for) for. IdentifierInfo *II = Tok.getIdentifierInfo(); if (II == 0) { // #define X(1 Diag(Tok, diag::err_pp_invalid_tok_in_arg_list); return true; } // If this is already used as an argument, it is used multiple times (e.g. // #define X(A,A. if (std::find(Arguments.begin(), Arguments.end(), II) != Arguments.end()) { // C99 6.10.3p6 Diag(Tok, diag::err_pp_duplicate_name_in_arg_list) << II; return true; } // Add the argument to the macro info. Arguments.push_back(II); // Lex the token after the identifier. LexUnexpandedToken(Tok); switch (Tok.getKind()) { default: // #define X(A B Diag(Tok, diag::err_pp_expected_comma_in_arg_list); return true; case tok::r_paren: // #define X(A) MI->setArgumentList(&Arguments[0], Arguments.size(), BP); return false; case tok::comma: // #define X(A, break; case tok::ellipsis: // #define X(A... -> GCC extension // Diagnose extension. Diag(Tok, diag::ext_named_variadic_macro); // Lex the token after the identifier. LexUnexpandedToken(Tok); if (Tok.isNot(tok::r_paren)) { Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); return true; } MI->setIsGNUVarargs(); MI->setArgumentList(&Arguments[0], Arguments.size(), BP); return false; } } } } /// HandleDefineDirective - Implements #define. This consumes the entire macro /// line then lets the caller lex the next real token. void Preprocessor::HandleDefineDirective(Token &DefineTok) { ++NumDefined; Token MacroNameTok; ReadMacroName(MacroNameTok, 1); // Error reading macro name? If so, diagnostic already issued. if (MacroNameTok.is(tok::eom)) return; Token LastTok = MacroNameTok; // If we are supposed to keep comments in #defines, reenable comment saving // mode. if (CurLexer) CurLexer->SetCommentRetentionState(KeepMacroComments); // Create the new macro. MacroInfo *MI = AllocateMacroInfo(MacroNameTok.getLocation()); Token Tok; LexUnexpandedToken(Tok); // If this is a function-like macro definition, parse the argument list, // marking each of the identifiers as being used as macro arguments. Also, // check other constraints on the first token of the macro body. if (Tok.is(tok::eom)) { // If there is no body to this macro, we have no special handling here. } else if (Tok.hasLeadingSpace()) { // This is a normal token with leading space. Clear the leading space // marker on the first token to get proper expansion. Tok.clearFlag(Token::LeadingSpace); } else if (Tok.is(tok::l_paren)) { // This is a function-like macro definition. Read the argument list. MI->setIsFunctionLike(); if (ReadMacroDefinitionArgList(MI)) { // Forget about MI. ReleaseMacroInfo(MI); // Throw away the rest of the line. if (CurPPLexer->ParsingPreprocessorDirective) DiscardUntilEndOfDirective(); return; } // If this is a definition of a variadic C99 function-like macro, not using // the GNU named varargs extension, enabled __VA_ARGS__. // "Poison" __VA_ARGS__, which can only appear in the expansion of a macro. // This gets unpoisoned where it is allowed. assert(Ident__VA_ARGS__->isPoisoned() && "__VA_ARGS__ should be poisoned!"); if (MI->isC99Varargs()) Ident__VA_ARGS__->setIsPoisoned(false); // Read the first token after the arg list for down below. LexUnexpandedToken(Tok); } else if (Features.C99) { // C99 requires whitespace between the macro definition and the body. Emit // a diagnostic for something like "#define X+". Diag(Tok, diag::ext_c99_whitespace_required_after_macro_name); } else { // C90 6.8 TC1 says: "In the definition of an object-like macro, if the // first character of a replacement list is not a character required by // subclause 5.2.1, then there shall be white-space separation between the // identifier and the replacement list.". 5.2.1 lists this set: // "A-Za-z0-9!"#%&'()*+,_./:;<=>?[\]^_{|}~" as well as whitespace, which // is irrelevant here. bool isInvalid = false; if (Tok.is(tok::at)) // @ is not in the list above. isInvalid = true; else if (Tok.is(tok::unknown)) { // If we have an unknown token, it is something strange like "`". Since // all of valid characters would have lexed into a single character // token of some sort, we know this is not a valid case. isInvalid = true; } if (isInvalid) Diag(Tok, diag::ext_missing_whitespace_after_macro_name); else Diag(Tok, diag::warn_missing_whitespace_after_macro_name); } if (!Tok.is(tok::eom)) LastTok = Tok; // Read the rest of the macro body. if (MI->isObjectLike()) { // Object-like macros are very simple, just read their body. while (Tok.isNot(tok::eom)) { LastTok = Tok; MI->AddTokenToBody(Tok); // Get the next token of the macro. LexUnexpandedToken(Tok); } } else { // Otherwise, read the body of a function-like macro. While we are at it, // check C99 6.10.3.2p1: ensure that # operators are followed by macro // parameters in function-like macro expansions. while (Tok.isNot(tok::eom)) { LastTok = Tok; if (Tok.isNot(tok::hash)) { MI->AddTokenToBody(Tok); // Get the next token of the macro. LexUnexpandedToken(Tok); continue; } // Get the next token of the macro. LexUnexpandedToken(Tok); // Check for a valid macro arg identifier. if (Tok.getIdentifierInfo() == 0 || MI->getArgumentNum(Tok.getIdentifierInfo()) == -1) { // If this is assembler-with-cpp mode, we accept random gibberish after // the '#' because '#' is often a comment character. However, change // the kind of the token to tok::unknown so that the preprocessor isn't // confused. if (getLangOptions().AsmPreprocessor && Tok.isNot(tok::eom)) { LastTok.setKind(tok::unknown); } else { Diag(Tok, diag::err_pp_stringize_not_parameter); ReleaseMacroInfo(MI); // Disable __VA_ARGS__ again. Ident__VA_ARGS__->setIsPoisoned(true); return; } } // Things look ok, add the '#' and param name tokens to the macro. MI->AddTokenToBody(LastTok); MI->AddTokenToBody(Tok); LastTok = Tok; // Get the next token of the macro. LexUnexpandedToken(Tok); } } // Disable __VA_ARGS__ again. Ident__VA_ARGS__->setIsPoisoned(true); // Check that there is no paste (##) operator at the begining or end of the // replacement list. unsigned NumTokens = MI->getNumTokens(); if (NumTokens != 0) { if (MI->getReplacementToken(0).is(tok::hashhash)) { Diag(MI->getReplacementToken(0), diag::err_paste_at_start); ReleaseMacroInfo(MI); return; } if (MI->getReplacementToken(NumTokens-1).is(tok::hashhash)) { Diag(MI->getReplacementToken(NumTokens-1), diag::err_paste_at_end); ReleaseMacroInfo(MI); return; } } // If this is the primary source file, remember that this macro hasn't been // used yet. if (isInPrimaryFile()) MI->setIsUsed(false); MI->setDefinitionEndLoc(LastTok.getLocation()); // Finally, if this identifier already had a macro defined for it, verify that // the macro bodies are identical and free the old definition. if (MacroInfo *OtherMI = getMacroInfo(MacroNameTok.getIdentifierInfo())) { // It is very common for system headers to have tons of macro redefinitions // and for warnings to be disabled in system headers. If this is the case, // then don't bother calling MacroInfo::isIdenticalTo. if (!getDiagnostics().getSuppressSystemWarnings() || !SourceMgr.isInSystemHeader(DefineTok.getLocation())) { if (!OtherMI->isUsed()) Diag(OtherMI->getDefinitionLoc(), diag::pp_macro_not_used); // Macros must be identical. This means all tokes and whitespace // separation must be the same. C99 6.10.3.2. if (!MI->isIdenticalTo(*OtherMI, *this)) { Diag(MI->getDefinitionLoc(), diag::ext_pp_macro_redef) << MacroNameTok.getIdentifierInfo(); Diag(OtherMI->getDefinitionLoc(), diag::note_previous_definition); } } ReleaseMacroInfo(OtherMI); } setMacroInfo(MacroNameTok.getIdentifierInfo(), MI); // If the callbacks want to know, tell them about the macro definition. if (Callbacks) Callbacks->MacroDefined(MacroNameTok.getIdentifierInfo(), MI); } /// HandleUndefDirective - Implements #undef. /// void Preprocessor::HandleUndefDirective(Token &UndefTok) { ++NumUndefined; Token MacroNameTok; ReadMacroName(MacroNameTok, 2); // Error reading macro name? If so, diagnostic already issued. if (MacroNameTok.is(tok::eom)) return; // Check to see if this is the last token on the #undef line. CheckEndOfDirective("undef"); // Okay, we finally have a valid identifier to undef. MacroInfo *MI = getMacroInfo(MacroNameTok.getIdentifierInfo()); // If the macro is not defined, this is a noop undef, just return. if (MI == 0) return; if (!MI->isUsed()) Diag(MI->getDefinitionLoc(), diag::pp_macro_not_used); // If the callbacks want to know, tell them about the macro #undef. if (Callbacks) Callbacks->MacroUndefined(MacroNameTok.getIdentifierInfo(), MI); // Free macro definition. ReleaseMacroInfo(MI); setMacroInfo(MacroNameTok.getIdentifierInfo(), 0); } //===----------------------------------------------------------------------===// // Preprocessor Conditional Directive Handling. //===----------------------------------------------------------------------===// /// HandleIfdefDirective - Implements the #ifdef/#ifndef directive. isIfndef is /// true when this is a #ifndef directive. ReadAnyTokensBeforeDirective is true /// if any tokens have been returned or pp-directives activated before this /// #ifndef has been lexed. /// void Preprocessor::HandleIfdefDirective(Token &Result, bool isIfndef, bool ReadAnyTokensBeforeDirective) { ++NumIf; Token DirectiveTok = Result; Token MacroNameTok; ReadMacroName(MacroNameTok); // Error reading macro name? If so, diagnostic already issued. if (MacroNameTok.is(tok::eom)) { // Skip code until we get to #endif. This helps with recovery by not // emitting an error when the #endif is reached. SkipExcludedConditionalBlock(DirectiveTok.getLocation(), /*Foundnonskip*/false, /*FoundElse*/false); return; } // Check to see if this is the last token on the #if[n]def line. CheckEndOfDirective(isIfndef ? "ifndef" : "ifdef"); if (CurPPLexer->getConditionalStackDepth() == 0) { // If the start of a top-level #ifdef, inform MIOpt. if (!ReadAnyTokensBeforeDirective) { assert(isIfndef && "#ifdef shouldn't reach here"); CurPPLexer->MIOpt.EnterTopLevelIFNDEF(MacroNameTok.getIdentifierInfo()); } else CurPPLexer->MIOpt.EnterTopLevelConditional(); } IdentifierInfo *MII = MacroNameTok.getIdentifierInfo(); MacroInfo *MI = getMacroInfo(MII); // If there is a macro, process it. if (MI) // Mark it used. MI->setIsUsed(true); // Should we include the stuff contained by this directive? if (!MI == isIfndef) { // Yes, remember that we are inside a conditional, then lex the next token. CurPPLexer->pushConditionalLevel(DirectiveTok.getLocation(), /*wasskip*/false, /*foundnonskip*/true, /*foundelse*/false); } else { // No, skip the contents of this block and return the first token after it. SkipExcludedConditionalBlock(DirectiveTok.getLocation(), /*Foundnonskip*/false, /*FoundElse*/false); } } /// HandleIfDirective - Implements the #if directive. /// void Preprocessor::HandleIfDirective(Token &IfToken, bool ReadAnyTokensBeforeDirective) { ++NumIf; // Parse and evaluation the conditional expression. IdentifierInfo *IfNDefMacro = 0; bool ConditionalTrue = EvaluateDirectiveExpression(IfNDefMacro); // If this condition is equivalent to #ifndef X, and if this is the first // directive seen, handle it for the multiple-include optimization. if (CurPPLexer->getConditionalStackDepth() == 0) { if (!ReadAnyTokensBeforeDirective && IfNDefMacro) CurPPLexer->MIOpt.EnterTopLevelIFNDEF(IfNDefMacro); else CurPPLexer->MIOpt.EnterTopLevelConditional(); } // Should we include the stuff contained by this directive? if (ConditionalTrue) { // Yes, remember that we are inside a conditional, then lex the next token. CurPPLexer->pushConditionalLevel(IfToken.getLocation(), /*wasskip*/false, /*foundnonskip*/true, /*foundelse*/false); } else { // No, skip the contents of this block and return the first token after it. SkipExcludedConditionalBlock(IfToken.getLocation(), /*Foundnonskip*/false, /*FoundElse*/false); } } /// HandleEndifDirective - Implements the #endif directive. /// void Preprocessor::HandleEndifDirective(Token &EndifToken) { ++NumEndif; // Check that this is the whole directive. CheckEndOfDirective("endif"); PPConditionalInfo CondInfo; if (CurPPLexer->popConditionalLevel(CondInfo)) { // No conditionals on the stack: this is an #endif without an #if. Diag(EndifToken, diag::err_pp_endif_without_if); return; } // If this the end of a top-level #endif, inform MIOpt. if (CurPPLexer->getConditionalStackDepth() == 0) CurPPLexer->MIOpt.ExitTopLevelConditional(); assert(!CondInfo.WasSkipping && !CurPPLexer->LexingRawMode && "This code should only be reachable in the non-skipping case!"); } void Preprocessor::HandleElseDirective(Token &Result) { ++NumElse; // #else directive in a non-skipping conditional... start skipping. CheckEndOfDirective("else"); PPConditionalInfo CI; if (CurPPLexer->popConditionalLevel(CI)) { Diag(Result, diag::pp_err_else_without_if); return; } // If this is a top-level #else, inform the MIOpt. if (CurPPLexer->getConditionalStackDepth() == 0) CurPPLexer->MIOpt.EnterTopLevelConditional(); // If this is a #else with a #else before it, report the error. if (CI.FoundElse) Diag(Result, diag::pp_err_else_after_else); // Finally, skip the rest of the contents of this block and return the first // token after it. return SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true, /*FoundElse*/true); } void Preprocessor::HandleElifDirective(Token &ElifToken) { ++NumElse; // #elif directive in a non-skipping conditional... start skipping. // We don't care what the condition is, because we will always skip it (since // the block immediately before it was included). DiscardUntilEndOfDirective(); PPConditionalInfo CI; if (CurPPLexer->popConditionalLevel(CI)) { Diag(ElifToken, diag::pp_err_elif_without_if); return; } // If this is a top-level #elif, inform the MIOpt. if (CurPPLexer->getConditionalStackDepth() == 0) CurPPLexer->MIOpt.EnterTopLevelConditional(); // If this is a #elif with a #else before it, report the error. if (CI.FoundElse) Diag(ElifToken, diag::pp_err_elif_after_else); // Finally, skip the rest of the contents of this block and return the first // token after it. return SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true, /*FoundElse*/CI.FoundElse); }