//===--- PCHReader.cpp - Precompiled Headers Reader -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PCHReader class, which reads a precompiled header. // //===----------------------------------------------------------------------===// #include "clang/Frontend/PCHReader.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/PCHDeserializationListener.h" #include "clang/Frontend/Utils.h" #include "../Sema/Sema.h" // FIXME: move Sema headers elsewhere #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Expr.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLocVisitor.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Basic/OnDiskHashTable.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManagerInternals.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Version.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/System/Path.h" #include #include #include #include using namespace clang; //===----------------------------------------------------------------------===// // PCH reader validator implementation //===----------------------------------------------------------------------===// PCHReaderListener::~PCHReaderListener() {} bool PCHValidator::ReadLanguageOptions(const LangOptions &LangOpts) { const LangOptions &PPLangOpts = PP.getLangOptions(); #define PARSE_LANGOPT_BENIGN(Option) #define PARSE_LANGOPT_IMPORTANT(Option, DiagID) \ if (PPLangOpts.Option != LangOpts.Option) { \ Reader.Diag(DiagID) << LangOpts.Option << PPLangOpts.Option; \ return true; \ } PARSE_LANGOPT_BENIGN(Trigraphs); PARSE_LANGOPT_BENIGN(BCPLComment); PARSE_LANGOPT_BENIGN(DollarIdents); PARSE_LANGOPT_BENIGN(AsmPreprocessor); PARSE_LANGOPT_IMPORTANT(GNUMode, diag::warn_pch_gnu_extensions); PARSE_LANGOPT_IMPORTANT(GNUKeywords, diag::warn_pch_gnu_keywords); PARSE_LANGOPT_BENIGN(ImplicitInt); PARSE_LANGOPT_BENIGN(Digraphs); PARSE_LANGOPT_BENIGN(HexFloats); PARSE_LANGOPT_IMPORTANT(C99, diag::warn_pch_c99); PARSE_LANGOPT_IMPORTANT(Microsoft, diag::warn_pch_microsoft_extensions); PARSE_LANGOPT_IMPORTANT(CPlusPlus, diag::warn_pch_cplusplus); PARSE_LANGOPT_IMPORTANT(CPlusPlus0x, diag::warn_pch_cplusplus0x); PARSE_LANGOPT_BENIGN(CXXOperatorName); PARSE_LANGOPT_IMPORTANT(ObjC1, diag::warn_pch_objective_c); PARSE_LANGOPT_IMPORTANT(ObjC2, diag::warn_pch_objective_c2); PARSE_LANGOPT_IMPORTANT(ObjCNonFragileABI, diag::warn_pch_nonfragile_abi); PARSE_LANGOPT_IMPORTANT(ObjCNonFragileABI2, diag::warn_pch_nonfragile_abi2); PARSE_LANGOPT_IMPORTANT(NoConstantCFStrings, diag::warn_pch_no_constant_cfstrings); PARSE_LANGOPT_BENIGN(PascalStrings); PARSE_LANGOPT_BENIGN(WritableStrings); PARSE_LANGOPT_IMPORTANT(LaxVectorConversions, diag::warn_pch_lax_vector_conversions); PARSE_LANGOPT_IMPORTANT(AltiVec, diag::warn_pch_altivec); PARSE_LANGOPT_IMPORTANT(Exceptions, diag::warn_pch_exceptions); PARSE_LANGOPT_IMPORTANT(SjLjExceptions, diag::warn_pch_sjlj_exceptions); PARSE_LANGOPT_IMPORTANT(NeXTRuntime, diag::warn_pch_objc_runtime); PARSE_LANGOPT_IMPORTANT(Freestanding, diag::warn_pch_freestanding); PARSE_LANGOPT_IMPORTANT(NoBuiltin, diag::warn_pch_builtins); PARSE_LANGOPT_IMPORTANT(ThreadsafeStatics, diag::warn_pch_thread_safe_statics); PARSE_LANGOPT_IMPORTANT(POSIXThreads, diag::warn_pch_posix_threads); PARSE_LANGOPT_IMPORTANT(Blocks, diag::warn_pch_blocks); PARSE_LANGOPT_BENIGN(EmitAllDecls); PARSE_LANGOPT_IMPORTANT(MathErrno, diag::warn_pch_math_errno); PARSE_LANGOPT_BENIGN(getSignedOverflowBehavior()); PARSE_LANGOPT_IMPORTANT(HeinousExtensions, diag::warn_pch_heinous_extensions); // FIXME: Most of the options below are benign if the macro wasn't // used. Unfortunately, this means that a PCH compiled without // optimization can't be used with optimization turned on, even // though the only thing that changes is whether __OPTIMIZE__ was // defined... but if __OPTIMIZE__ never showed up in the header, it // doesn't matter. We could consider making this some special kind // of check. PARSE_LANGOPT_IMPORTANT(Optimize, diag::warn_pch_optimize); PARSE_LANGOPT_IMPORTANT(OptimizeSize, diag::warn_pch_optimize_size); PARSE_LANGOPT_IMPORTANT(Static, diag::warn_pch_static); PARSE_LANGOPT_IMPORTANT(PICLevel, diag::warn_pch_pic_level); PARSE_LANGOPT_IMPORTANT(GNUInline, diag::warn_pch_gnu_inline); PARSE_LANGOPT_IMPORTANT(NoInline, diag::warn_pch_no_inline); PARSE_LANGOPT_IMPORTANT(AccessControl, diag::warn_pch_access_control); PARSE_LANGOPT_IMPORTANT(CharIsSigned, diag::warn_pch_char_signed); PARSE_LANGOPT_IMPORTANT(ShortWChar, diag::warn_pch_short_wchar); if ((PPLangOpts.getGCMode() != 0) != (LangOpts.getGCMode() != 0)) { Reader.Diag(diag::warn_pch_gc_mode) << LangOpts.getGCMode() << PPLangOpts.getGCMode(); return true; } PARSE_LANGOPT_BENIGN(getVisibilityMode()); PARSE_LANGOPT_IMPORTANT(getStackProtectorMode(), diag::warn_pch_stack_protector); PARSE_LANGOPT_BENIGN(InstantiationDepth); PARSE_LANGOPT_IMPORTANT(OpenCL, diag::warn_pch_opencl); PARSE_LANGOPT_BENIGN(CatchUndefined); PARSE_LANGOPT_IMPORTANT(ElideConstructors, diag::warn_pch_elide_constructors); PARSE_LANGOPT_BENIGN(SpellChecking); #undef PARSE_LANGOPT_IMPORTANT #undef PARSE_LANGOPT_BENIGN return false; } bool PCHValidator::ReadTargetTriple(llvm::StringRef Triple) { if (Triple == PP.getTargetInfo().getTriple().str()) return false; Reader.Diag(diag::warn_pch_target_triple) << Triple << PP.getTargetInfo().getTriple().str(); return true; } struct EmptyStringRef { bool operator ()(llvm::StringRef r) const { return r.empty(); } }; struct EmptyBlock { bool operator ()(const PCHPredefinesBlock &r) const { return r.Data.empty(); } }; static bool EqualConcatenations(llvm::SmallVector L, PCHPredefinesBlocks R) { // First, sum up the lengths. unsigned LL = 0, RL = 0; for (unsigned I = 0, N = L.size(); I != N; ++I) { LL += L[I].size(); } for (unsigned I = 0, N = R.size(); I != N; ++I) { RL += R[I].Data.size(); } if (LL != RL) return false; if (LL == 0 && RL == 0) return true; // Kick out empty parts, they confuse the algorithm below. L.erase(std::remove_if(L.begin(), L.end(), EmptyStringRef()), L.end()); R.erase(std::remove_if(R.begin(), R.end(), EmptyBlock()), R.end()); // Do it the hard way. At this point, both vectors must be non-empty. llvm::StringRef LR = L[0], RR = R[0].Data; unsigned LI = 0, RI = 0, LN = L.size(), RN = R.size(); for (;;) { // Compare the current pieces. if (LR.size() == RR.size()) { // If they're the same length, it's pretty easy. if (LR != RR) return false; // Both pieces are done, advance. ++LI; ++RI; // If either string is done, they're both done, since they're the same // length. if (LI == LN) { assert(RI == RN && "Strings not the same length after all?"); return true; } LR = L[LI]; RR = R[RI].Data; } else if (LR.size() < RR.size()) { // Right piece is longer. if (!RR.startswith(LR)) return false; ++LI; assert(LI != LN && "Strings not the same length after all?"); RR = RR.substr(LR.size()); LR = L[LI]; } else { // Left piece is longer. if (!LR.startswith(RR)) return false; ++RI; assert(RI != RN && "Strings not the same length after all?"); LR = LR.substr(RR.size()); RR = R[RI].Data; } } } static std::pair FindMacro(const PCHPredefinesBlocks &Buffers, llvm::StringRef MacroDef) { std::pair Res; for (unsigned I = 0, N = Buffers.size(); I != N; ++I) { Res.second = Buffers[I].Data.find(MacroDef); if (Res.second != llvm::StringRef::npos) { Res.first = Buffers[I].BufferID; break; } } return Res; } bool PCHValidator::ReadPredefinesBuffer(const PCHPredefinesBlocks &Buffers, llvm::StringRef OriginalFileName, std::string &SuggestedPredefines) { // We are in the context of an implicit include, so the predefines buffer will // have a #include entry for the PCH file itself (as normalized by the // preprocessor initialization). Find it and skip over it in the checking // below. llvm::SmallString<256> PCHInclude; PCHInclude += "#include \""; PCHInclude += NormalizeDashIncludePath(OriginalFileName); PCHInclude += "\"\n"; std::pair Split = llvm::StringRef(PP.getPredefines()).split(PCHInclude.str()); llvm::StringRef Left = Split.first, Right = Split.second; if (Left == PP.getPredefines()) { Error("Missing PCH include entry!"); return true; } // If the concatenation of all the PCH buffers is equal to the adjusted // command line, we're done. // We build a SmallVector of the command line here, because we'll eventually // need to support an arbitrary amount of pieces anyway (when we have chained // PCH reading). llvm::SmallVector CommandLine; CommandLine.push_back(Left); CommandLine.push_back(Right); if (EqualConcatenations(CommandLine, Buffers)) return false; SourceManager &SourceMgr = PP.getSourceManager(); // The predefines buffers are different. Determine what the differences are, // and whether they require us to reject the PCH file. llvm::SmallVector PCHLines; for (unsigned I = 0, N = Buffers.size(); I != N; ++I) Buffers[I].Data.split(PCHLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false); llvm::SmallVector CmdLineLines; Left.split(CmdLineLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false); Right.split(CmdLineLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false); // Sort both sets of predefined buffer lines, since we allow some extra // definitions and they may appear at any point in the output. std::sort(CmdLineLines.begin(), CmdLineLines.end()); std::sort(PCHLines.begin(), PCHLines.end()); // Determine which predefines that were used to build the PCH file are missing // from the command line. std::vector MissingPredefines; std::set_difference(PCHLines.begin(), PCHLines.end(), CmdLineLines.begin(), CmdLineLines.end(), std::back_inserter(MissingPredefines)); bool MissingDefines = false; bool ConflictingDefines = false; for (unsigned I = 0, N = MissingPredefines.size(); I != N; ++I) { llvm::StringRef Missing = MissingPredefines[I]; if (!Missing.startswith("#define ")) { Reader.Diag(diag::warn_pch_compiler_options_mismatch); return true; } // This is a macro definition. Determine the name of the macro we're // defining. std::string::size_type StartOfMacroName = strlen("#define "); std::string::size_type EndOfMacroName = Missing.find_first_of("( \n\r", StartOfMacroName); assert(EndOfMacroName != std::string::npos && "Couldn't find the end of the macro name"); llvm::StringRef MacroName = Missing.slice(StartOfMacroName, EndOfMacroName); // Determine whether this macro was given a different definition on the // command line. std::string MacroDefStart = "#define " + MacroName.str(); std::string::size_type MacroDefLen = MacroDefStart.size(); llvm::SmallVector::iterator ConflictPos = std::lower_bound(CmdLineLines.begin(), CmdLineLines.end(), MacroDefStart); for (; ConflictPos != CmdLineLines.end(); ++ConflictPos) { if (!ConflictPos->startswith(MacroDefStart)) { // Different macro; we're done. ConflictPos = CmdLineLines.end(); break; } assert(ConflictPos->size() > MacroDefLen && "Invalid #define in predefines buffer?"); if ((*ConflictPos)[MacroDefLen] != ' ' && (*ConflictPos)[MacroDefLen] != '(') continue; // Longer macro name; keep trying. // We found a conflicting macro definition. break; } if (ConflictPos != CmdLineLines.end()) { Reader.Diag(diag::warn_cmdline_conflicting_macro_def) << MacroName; // Show the definition of this macro within the PCH file. std::pair MacroLoc = FindMacro(Buffers, Missing); assert(MacroLoc.second!=llvm::StringRef::npos && "Unable to find macro!"); SourceLocation PCHMissingLoc = SourceMgr.getLocForStartOfFile(MacroLoc.first) .getFileLocWithOffset(MacroLoc.second); Reader.Diag(PCHMissingLoc, diag::note_pch_macro_defined_as) << MacroName; ConflictingDefines = true; continue; } // If the macro doesn't conflict, then we'll just pick up the macro // definition from the PCH file. Warn the user that they made a mistake. if (ConflictingDefines) continue; // Don't complain if there are already conflicting defs if (!MissingDefines) { Reader.Diag(diag::warn_cmdline_missing_macro_defs); MissingDefines = true; } // Show the definition of this macro within the PCH file. std::pair MacroLoc = FindMacro(Buffers, Missing); assert(MacroLoc.second!=llvm::StringRef::npos && "Unable to find macro!"); SourceLocation PCHMissingLoc = SourceMgr.getLocForStartOfFile(MacroLoc.first) .getFileLocWithOffset(MacroLoc.second); Reader.Diag(PCHMissingLoc, diag::note_using_macro_def_from_pch); } if (ConflictingDefines) return true; // Determine what predefines were introduced based on command-line // parameters that were not present when building the PCH // file. Extra #defines are okay, so long as the identifiers being // defined were not used within the precompiled header. std::vector ExtraPredefines; std::set_difference(CmdLineLines.begin(), CmdLineLines.end(), PCHLines.begin(), PCHLines.end(), std::back_inserter(ExtraPredefines)); for (unsigned I = 0, N = ExtraPredefines.size(); I != N; ++I) { llvm::StringRef &Extra = ExtraPredefines[I]; if (!Extra.startswith("#define ")) { Reader.Diag(diag::warn_pch_compiler_options_mismatch); return true; } // This is an extra macro definition. Determine the name of the // macro we're defining. std::string::size_type StartOfMacroName = strlen("#define "); std::string::size_type EndOfMacroName = Extra.find_first_of("( \n\r", StartOfMacroName); assert(EndOfMacroName != std::string::npos && "Couldn't find the end of the macro name"); llvm::StringRef MacroName = Extra.slice(StartOfMacroName, EndOfMacroName); // Check whether this name was used somewhere in the PCH file. If // so, defining it as a macro could change behavior, so we reject // the PCH file. if (IdentifierInfo *II = Reader.get(MacroName)) { Reader.Diag(diag::warn_macro_name_used_in_pch) << II; return true; } // Add this definition to the suggested predefines buffer. SuggestedPredefines += Extra; SuggestedPredefines += '\n'; } // If we get here, it's because the predefines buffer had compatible // contents. Accept the PCH file. return false; } void PCHValidator::ReadHeaderFileInfo(const HeaderFileInfo &HFI, unsigned ID) { PP.getHeaderSearchInfo().setHeaderFileInfoForUID(HFI, ID); ++NumHeaderInfos; } void PCHValidator::ReadCounter(unsigned Value) { PP.setCounterValue(Value); } //===----------------------------------------------------------------------===// // PCH reader implementation //===----------------------------------------------------------------------===// PCHReader::PCHReader(Preprocessor &PP, ASTContext *Context, const char *isysroot) : Listener(new PCHValidator(PP, *this)), DeserializationListener(0), SourceMgr(PP.getSourceManager()), FileMgr(PP.getFileManager()), Diags(PP.getDiagnostics()), SemaObj(0), PP(&PP), Context(Context), StatCache(0), Consumer(0), IdentifierTableData(0), IdentifierLookupTable(0), IdentifierOffsets(0), MethodPoolLookupTable(0), MethodPoolLookupTableData(0), TotalSelectorsInMethodPool(0), SelectorOffsets(0), TotalNumSelectors(0), MacroDefinitionOffsets(0), NumPreallocatedPreprocessingEntities(0), isysroot(isysroot), NumStatHits(0), NumStatMisses(0), NumSLocEntriesRead(0), NumStatementsRead(0), NumMacrosRead(0), NumMethodPoolSelectorsRead(0), NumMethodPoolMisses(0), NumLexicalDeclContextsRead(0), NumVisibleDeclContextsRead(0), CurrentlyLoadingTypeOrDecl(0) { RelocatablePCH = false; } PCHReader::PCHReader(SourceManager &SourceMgr, FileManager &FileMgr, Diagnostic &Diags, const char *isysroot) : DeserializationListener(0), SourceMgr(SourceMgr), FileMgr(FileMgr), Diags(Diags), SemaObj(0), PP(0), Context(0), StatCache(0), Consumer(0), IdentifierTableData(0), IdentifierLookupTable(0), IdentifierOffsets(0), MethodPoolLookupTable(0), MethodPoolLookupTableData(0), TotalSelectorsInMethodPool(0), SelectorOffsets(0), TotalNumSelectors(0), MacroDefinitionOffsets(0), NumPreallocatedPreprocessingEntities(0), isysroot(isysroot), NumStatHits(0), NumStatMisses(0), NumSLocEntriesRead(0), NumStatementsRead(0), NumMacrosRead(0), NumMethodPoolSelectorsRead(0), NumMethodPoolMisses(0), NumLexicalDeclContextsRead(0), NumVisibleDeclContextsRead(0), CurrentlyLoadingTypeOrDecl(0) { RelocatablePCH = false; } PCHReader::~PCHReader() {} namespace { class PCHMethodPoolLookupTrait { PCHReader &Reader; public: typedef std::pair data_type; typedef Selector external_key_type; typedef external_key_type internal_key_type; explicit PCHMethodPoolLookupTrait(PCHReader &Reader) : Reader(Reader) { } static bool EqualKey(const internal_key_type& a, const internal_key_type& b) { return a == b; } static unsigned ComputeHash(Selector Sel) { unsigned N = Sel.getNumArgs(); if (N == 0) ++N; unsigned R = 5381; for (unsigned I = 0; I != N; ++I) if (IdentifierInfo *II = Sel.getIdentifierInfoForSlot(I)) R = llvm::HashString(II->getName(), R); return R; } // This hopefully will just get inlined and removed by the optimizer. static const internal_key_type& GetInternalKey(const external_key_type& x) { return x; } static std::pair ReadKeyDataLength(const unsigned char*& d) { using namespace clang::io; unsigned KeyLen = ReadUnalignedLE16(d); unsigned DataLen = ReadUnalignedLE16(d); return std::make_pair(KeyLen, DataLen); } internal_key_type ReadKey(const unsigned char* d, unsigned) { using namespace clang::io; SelectorTable &SelTable = Reader.getContext()->Selectors; unsigned N = ReadUnalignedLE16(d); IdentifierInfo *FirstII = Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d)); if (N == 0) return SelTable.getNullarySelector(FirstII); else if (N == 1) return SelTable.getUnarySelector(FirstII); llvm::SmallVector Args; Args.push_back(FirstII); for (unsigned I = 1; I != N; ++I) Args.push_back(Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d))); return SelTable.getSelector(N, Args.data()); } data_type ReadData(Selector, const unsigned char* d, unsigned DataLen) { using namespace clang::io; unsigned NumInstanceMethods = ReadUnalignedLE16(d); unsigned NumFactoryMethods = ReadUnalignedLE16(d); data_type Result; // Load instance methods ObjCMethodList *Prev = 0; for (unsigned I = 0; I != NumInstanceMethods; ++I) { ObjCMethodDecl *Method = cast(Reader.GetDecl(ReadUnalignedLE32(d))); if (!Result.first.Method) { // This is the first method, which is the easy case. Result.first.Method = Method; Prev = &Result.first; continue; } ObjCMethodList *Mem = Reader.getSema()->BumpAlloc.Allocate(); Prev->Next = new (Mem) ObjCMethodList(Method, 0); Prev = Prev->Next; } // Load factory methods Prev = 0; for (unsigned I = 0; I != NumFactoryMethods; ++I) { ObjCMethodDecl *Method = cast(Reader.GetDecl(ReadUnalignedLE32(d))); if (!Result.second.Method) { // This is the first method, which is the easy case. Result.second.Method = Method; Prev = &Result.second; continue; } ObjCMethodList *Mem = Reader.getSema()->BumpAlloc.Allocate(); Prev->Next = new (Mem) ObjCMethodList(Method, 0); Prev = Prev->Next; } return Result; } }; } // end anonymous namespace /// \brief The on-disk hash table used for the global method pool. typedef OnDiskChainedHashTable PCHMethodPoolLookupTable; namespace { class PCHIdentifierLookupTrait { PCHReader &Reader; // If we know the IdentifierInfo in advance, it is here and we will // not build a new one. Used when deserializing information about an // identifier that was constructed before the PCH file was read. IdentifierInfo *KnownII; public: typedef IdentifierInfo * data_type; typedef const std::pair external_key_type; typedef external_key_type internal_key_type; explicit PCHIdentifierLookupTrait(PCHReader &Reader, IdentifierInfo *II = 0) : Reader(Reader), KnownII(II) { } static bool EqualKey(const internal_key_type& a, const internal_key_type& b) { return (a.second == b.second) ? memcmp(a.first, b.first, a.second) == 0 : false; } static unsigned ComputeHash(const internal_key_type& a) { return llvm::HashString(llvm::StringRef(a.first, a.second)); } // This hopefully will just get inlined and removed by the optimizer. static const internal_key_type& GetInternalKey(const external_key_type& x) { return x; } static std::pair ReadKeyDataLength(const unsigned char*& d) { using namespace clang::io; unsigned DataLen = ReadUnalignedLE16(d); unsigned KeyLen = ReadUnalignedLE16(d); return std::make_pair(KeyLen, DataLen); } static std::pair ReadKey(const unsigned char* d, unsigned n) { assert(n >= 2 && d[n-1] == '\0'); return std::make_pair((const char*) d, n-1); } IdentifierInfo *ReadData(const internal_key_type& k, const unsigned char* d, unsigned DataLen) { using namespace clang::io; pch::IdentID ID = ReadUnalignedLE32(d); bool IsInteresting = ID & 0x01; // Wipe out the "is interesting" bit. ID = ID >> 1; if (!IsInteresting) { // For unintersting identifiers, just build the IdentifierInfo // and associate it with the persistent ID. IdentifierInfo *II = KnownII; if (!II) II = &Reader.getIdentifierTable().CreateIdentifierInfo( k.first, k.first + k.second); Reader.SetIdentifierInfo(ID, II); return II; } unsigned Bits = ReadUnalignedLE16(d); bool CPlusPlusOperatorKeyword = Bits & 0x01; Bits >>= 1; bool Poisoned = Bits & 0x01; Bits >>= 1; bool ExtensionToken = Bits & 0x01; Bits >>= 1; bool hasMacroDefinition = Bits & 0x01; Bits >>= 1; unsigned ObjCOrBuiltinID = Bits & 0x3FF; Bits >>= 10; assert(Bits == 0 && "Extra bits in the identifier?"); DataLen -= 6; // Build the IdentifierInfo itself and link the identifier ID with // the new IdentifierInfo. IdentifierInfo *II = KnownII; if (!II) II = &Reader.getIdentifierTable().CreateIdentifierInfo( k.first, k.first + k.second); Reader.SetIdentifierInfo(ID, II); // Set or check the various bits in the IdentifierInfo structure. // FIXME: Load token IDs lazily, too? II->setObjCOrBuiltinID(ObjCOrBuiltinID); assert(II->isExtensionToken() == ExtensionToken && "Incorrect extension token flag"); (void)ExtensionToken; II->setIsPoisoned(Poisoned); assert(II->isCPlusPlusOperatorKeyword() == CPlusPlusOperatorKeyword && "Incorrect C++ operator keyword flag"); (void)CPlusPlusOperatorKeyword; // If this identifier is a macro, deserialize the macro // definition. if (hasMacroDefinition) { uint32_t Offset = ReadUnalignedLE32(d); Reader.ReadMacroRecord(Offset); DataLen -= 4; } // Read all of the declarations visible at global scope with this // name. if (Reader.getContext() == 0) return II; if (DataLen > 0) { llvm::SmallVector DeclIDs; for (; DataLen > 0; DataLen -= 4) DeclIDs.push_back(ReadUnalignedLE32(d)); Reader.SetGloballyVisibleDecls(II, DeclIDs); } return II; } }; } // end anonymous namespace /// \brief The on-disk hash table used to contain information about /// all of the identifiers in the program. typedef OnDiskChainedHashTable PCHIdentifierLookupTable; void PCHReader::Error(const char *Msg) { Diag(diag::err_fe_pch_malformed) << Msg; } /// \brief Check the contents of the concatenation of all predefines buffers in /// the PCH chain against the contents of the predefines buffer of the current /// compiler invocation. /// /// The contents should be the same. If not, then some command-line option /// changed the preprocessor state and we must probably reject the PCH file. /// /// \returns true if there was a mismatch (in which case the PCH file /// should be ignored), or false otherwise. bool PCHReader::CheckPredefinesBuffers() { if (Listener) return Listener->ReadPredefinesBuffer(PCHPredefinesBuffers, ActualOriginalFileName, SuggestedPredefines); return false; } //===----------------------------------------------------------------------===// // Source Manager Deserialization //===----------------------------------------------------------------------===// /// \brief Read the line table in the source manager block. /// \returns true if ther was an error. bool PCHReader::ParseLineTable(llvm::SmallVectorImpl &Record) { unsigned Idx = 0; LineTableInfo &LineTable = SourceMgr.getLineTable(); // Parse the file names std::map FileIDs; for (int I = 0, N = Record[Idx++]; I != N; ++I) { // Extract the file name unsigned FilenameLen = Record[Idx++]; std::string Filename(&Record[Idx], &Record[Idx] + FilenameLen); Idx += FilenameLen; MaybeAddSystemRootToFilename(Filename); FileIDs[I] = LineTable.getLineTableFilenameID(Filename.c_str(), Filename.size()); } // Parse the line entries std::vector Entries; while (Idx < Record.size()) { int FID = Record[Idx++]; // Extract the line entries unsigned NumEntries = Record[Idx++]; assert(NumEntries && "Numentries is 00000"); Entries.clear(); Entries.reserve(NumEntries); for (unsigned I = 0; I != NumEntries; ++I) { unsigned FileOffset = Record[Idx++]; unsigned LineNo = Record[Idx++]; int FilenameID = FileIDs[Record[Idx++]]; SrcMgr::CharacteristicKind FileKind = (SrcMgr::CharacteristicKind)Record[Idx++]; unsigned IncludeOffset = Record[Idx++]; Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID, FileKind, IncludeOffset)); } LineTable.AddEntry(FID, Entries); } return false; } namespace { class PCHStatData { public: const bool hasStat; const ino_t ino; const dev_t dev; const mode_t mode; const time_t mtime; const off_t size; PCHStatData(ino_t i, dev_t d, mode_t mo, time_t m, off_t s) : hasStat(true), ino(i), dev(d), mode(mo), mtime(m), size(s) {} PCHStatData() : hasStat(false), ino(0), dev(0), mode(0), mtime(0), size(0) {} }; class PCHStatLookupTrait { public: typedef const char *external_key_type; typedef const char *internal_key_type; typedef PCHStatData data_type; static unsigned ComputeHash(const char *path) { return llvm::HashString(path); } static internal_key_type GetInternalKey(const char *path) { return path; } static bool EqualKey(internal_key_type a, internal_key_type b) { return strcmp(a, b) == 0; } static std::pair ReadKeyDataLength(const unsigned char*& d) { unsigned KeyLen = (unsigned) clang::io::ReadUnalignedLE16(d); unsigned DataLen = (unsigned) *d++; return std::make_pair(KeyLen + 1, DataLen); } static internal_key_type ReadKey(const unsigned char *d, unsigned) { return (const char *)d; } static data_type ReadData(const internal_key_type, const unsigned char *d, unsigned /*DataLen*/) { using namespace clang::io; if (*d++ == 1) return data_type(); ino_t ino = (ino_t) ReadUnalignedLE32(d); dev_t dev = (dev_t) ReadUnalignedLE32(d); mode_t mode = (mode_t) ReadUnalignedLE16(d); time_t mtime = (time_t) ReadUnalignedLE64(d); off_t size = (off_t) ReadUnalignedLE64(d); return data_type(ino, dev, mode, mtime, size); } }; /// \brief stat() cache for precompiled headers. /// /// This cache is very similar to the stat cache used by pretokenized /// headers. class PCHStatCache : public StatSysCallCache { typedef OnDiskChainedHashTable CacheTy; CacheTy *Cache; unsigned &NumStatHits, &NumStatMisses; public: PCHStatCache(const unsigned char *Buckets, const unsigned char *Base, unsigned &NumStatHits, unsigned &NumStatMisses) : Cache(0), NumStatHits(NumStatHits), NumStatMisses(NumStatMisses) { Cache = CacheTy::Create(Buckets, Base); } ~PCHStatCache() { delete Cache; } int stat(const char *path, struct stat *buf) { // Do the lookup for the file's data in the PCH file. CacheTy::iterator I = Cache->find(path); // If we don't get a hit in the PCH file just forward to 'stat'. if (I == Cache->end()) { ++NumStatMisses; return StatSysCallCache::stat(path, buf); } ++NumStatHits; PCHStatData Data = *I; if (!Data.hasStat) return 1; buf->st_ino = Data.ino; buf->st_dev = Data.dev; buf->st_mtime = Data.mtime; buf->st_mode = Data.mode; buf->st_size = Data.size; return 0; } }; } // end anonymous namespace /// \brief Read the source manager block PCHReader::PCHReadResult PCHReader::ReadSourceManagerBlock() { using namespace SrcMgr; // Set the source-location entry cursor to the current position in // the stream. This cursor will be used to read the contents of the // source manager block initially, and then lazily read // source-location entries as needed. SLocEntryCursor = Stream; // The stream itself is going to skip over the source manager block. if (Stream.SkipBlock()) { Error("malformed block record in PCH file"); return Failure; } // Enter the source manager block. if (SLocEntryCursor.EnterSubBlock(pch::SOURCE_MANAGER_BLOCK_ID)) { Error("malformed source manager block record in PCH file"); return Failure; } RecordData Record; while (true) { unsigned Code = SLocEntryCursor.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (SLocEntryCursor.ReadBlockEnd()) { Error("error at end of Source Manager block in PCH file"); return Failure; } return Success; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. SLocEntryCursor.ReadSubBlockID(); if (SLocEntryCursor.SkipBlock()) { Error("malformed block record in PCH file"); return Failure; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { SLocEntryCursor.ReadAbbrevRecord(); continue; } // Read a record. const char *BlobStart; unsigned BlobLen; Record.clear(); switch (SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case pch::SM_LINE_TABLE: if (ParseLineTable(Record)) return Failure; break; case pch::SM_SLOC_FILE_ENTRY: case pch::SM_SLOC_BUFFER_ENTRY: case pch::SM_SLOC_INSTANTIATION_ENTRY: // Once we hit one of the source location entries, we're done. return Success; } } } /// \brief Read in the source location entry with the given ID. PCHReader::PCHReadResult PCHReader::ReadSLocEntryRecord(unsigned ID) { if (ID == 0) return Success; if (ID > TotalNumSLocEntries) { Error("source location entry ID out-of-range for PCH file"); return Failure; } ++NumSLocEntriesRead; SLocEntryCursor.JumpToBit(SLocOffsets[ID - 1]); unsigned Code = SLocEntryCursor.ReadCode(); if (Code == llvm::bitc::END_BLOCK || Code == llvm::bitc::ENTER_SUBBLOCK || Code == llvm::bitc::DEFINE_ABBREV) { Error("incorrectly-formatted source location entry in PCH file"); return Failure; } RecordData Record; const char *BlobStart; unsigned BlobLen; switch (SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: Error("incorrectly-formatted source location entry in PCH file"); return Failure; case pch::SM_SLOC_FILE_ENTRY: { std::string Filename(BlobStart, BlobStart + BlobLen); MaybeAddSystemRootToFilename(Filename); const FileEntry *File = FileMgr.getFile(Filename); if (File == 0) { std::string ErrorStr = "could not find file '"; ErrorStr += Filename; ErrorStr += "' referenced by PCH file"; Error(ErrorStr.c_str()); return Failure; } if (Record.size() < 10) { Error("source location entry is incorrect"); return Failure; } if ((off_t)Record[4] != File->getSize() #if !defined(LLVM_ON_WIN32) // In our regression testing, the Windows file system seems to // have inconsistent modification times that sometimes // erroneously trigger this error-handling path. || (time_t)Record[5] != File->getModificationTime() #endif ) { Diag(diag::err_fe_pch_file_modified) << Filename; return Failure; } FileID FID = SourceMgr.createFileID(File, SourceLocation::getFromRawEncoding(Record[1]), (SrcMgr::CharacteristicKind)Record[2], ID, Record[0]); if (Record[3]) const_cast(SourceMgr.getSLocEntry(FID).getFile()) .setHasLineDirectives(); // Reconstruct header-search information for this file. HeaderFileInfo HFI; HFI.isImport = Record[6]; HFI.DirInfo = Record[7]; HFI.NumIncludes = Record[8]; HFI.ControllingMacroID = Record[9]; if (Listener) Listener->ReadHeaderFileInfo(HFI, File->getUID()); break; } case pch::SM_SLOC_BUFFER_ENTRY: { const char *Name = BlobStart; unsigned Offset = Record[0]; unsigned Code = SLocEntryCursor.ReadCode(); Record.clear(); unsigned RecCode = SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen); if (RecCode != pch::SM_SLOC_BUFFER_BLOB) { Error("PCH record has invalid code"); return Failure; } llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(llvm::StringRef(BlobStart, BlobLen - 1), Name); FileID BufferID = SourceMgr.createFileIDForMemBuffer(Buffer, ID, Offset); if (strcmp(Name, "") == 0) { PCHPredefinesBlock Block = { BufferID, llvm::StringRef(BlobStart, BlobLen - 1) }; PCHPredefinesBuffers.push_back(Block); } break; } case pch::SM_SLOC_INSTANTIATION_ENTRY: { SourceLocation SpellingLoc = SourceLocation::getFromRawEncoding(Record[1]); SourceMgr.createInstantiationLoc(SpellingLoc, SourceLocation::getFromRawEncoding(Record[2]), SourceLocation::getFromRawEncoding(Record[3]), Record[4], ID, Record[0]); break; } } return Success; } /// ReadBlockAbbrevs - Enter a subblock of the specified BlockID with the /// specified cursor. Read the abbreviations that are at the top of the block /// and then leave the cursor pointing into the block. bool PCHReader::ReadBlockAbbrevs(llvm::BitstreamCursor &Cursor, unsigned BlockID) { if (Cursor.EnterSubBlock(BlockID)) { Error("malformed block record in PCH file"); return Failure; } while (true) { unsigned Code = Cursor.ReadCode(); // We expect all abbrevs to be at the start of the block. if (Code != llvm::bitc::DEFINE_ABBREV) return false; Cursor.ReadAbbrevRecord(); } } void PCHReader::ReadMacroRecord(uint64_t Offset) { assert(PP && "Forgot to set Preprocessor ?"); // Keep track of where we are in the stream, then jump back there // after reading this macro. SavedStreamPosition SavedPosition(Stream); Stream.JumpToBit(Offset); RecordData Record; llvm::SmallVector MacroArgs; MacroInfo *Macro = 0; while (true) { unsigned Code = Stream.ReadCode(); switch (Code) { case llvm::bitc::END_BLOCK: return; case llvm::bitc::ENTER_SUBBLOCK: // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) { Error("malformed block record in PCH file"); return; } continue; case llvm::bitc::DEFINE_ABBREV: Stream.ReadAbbrevRecord(); continue; default: break; } // Read a record. Record.clear(); pch::PreprocessorRecordTypes RecType = (pch::PreprocessorRecordTypes)Stream.ReadRecord(Code, Record); switch (RecType) { case pch::PP_MACRO_OBJECT_LIKE: case pch::PP_MACRO_FUNCTION_LIKE: { // If we already have a macro, that means that we've hit the end // of the definition of the macro we were looking for. We're // done. if (Macro) return; IdentifierInfo *II = DecodeIdentifierInfo(Record[0]); if (II == 0) { Error("macro must have a name in PCH file"); return; } SourceLocation Loc = SourceLocation::getFromRawEncoding(Record[1]); bool isUsed = Record[2]; MacroInfo *MI = PP->AllocateMacroInfo(Loc); MI->setIsUsed(isUsed); unsigned NextIndex = 3; if (RecType == pch::PP_MACRO_FUNCTION_LIKE) { // Decode function-like macro info. bool isC99VarArgs = Record[3]; bool isGNUVarArgs = Record[4]; MacroArgs.clear(); unsigned NumArgs = Record[5]; NextIndex = 6 + NumArgs; for (unsigned i = 0; i != NumArgs; ++i) MacroArgs.push_back(DecodeIdentifierInfo(Record[6+i])); // Install function-like macro info. MI->setIsFunctionLike(); if (isC99VarArgs) MI->setIsC99Varargs(); if (isGNUVarArgs) MI->setIsGNUVarargs(); MI->setArgumentList(MacroArgs.data(), MacroArgs.size(), PP->getPreprocessorAllocator()); } // Finally, install the macro. PP->setMacroInfo(II, MI); // Remember that we saw this macro last so that we add the tokens that // form its body to it. Macro = MI; if (NextIndex + 1 == Record.size() && PP->getPreprocessingRecord()) { // We have a macro definition. Load it now. PP->getPreprocessingRecord()->RegisterMacroDefinition(Macro, getMacroDefinition(Record[NextIndex])); } ++NumMacrosRead; break; } case pch::PP_TOKEN: { // If we see a TOKEN before a PP_MACRO_*, then the file is // erroneous, just pretend we didn't see this. if (Macro == 0) break; Token Tok; Tok.startToken(); Tok.setLocation(SourceLocation::getFromRawEncoding(Record[0])); Tok.setLength(Record[1]); if (IdentifierInfo *II = DecodeIdentifierInfo(Record[2])) Tok.setIdentifierInfo(II); Tok.setKind((tok::TokenKind)Record[3]); Tok.setFlag((Token::TokenFlags)Record[4]); Macro->AddTokenToBody(Tok); break; } case pch::PP_MACRO_INSTANTIATION: { // If we already have a macro, that means that we've hit the end // of the definition of the macro we were looking for. We're // done. if (Macro) return; if (!PP->getPreprocessingRecord()) { Error("missing preprocessing record in PCH file"); return; } PreprocessingRecord &PPRec = *PP->getPreprocessingRecord(); if (PPRec.getPreprocessedEntity(Record[0])) return; MacroInstantiation *MI = new (PPRec) MacroInstantiation(DecodeIdentifierInfo(Record[3]), SourceRange( SourceLocation::getFromRawEncoding(Record[1]), SourceLocation::getFromRawEncoding(Record[2])), getMacroDefinition(Record[4])); PPRec.SetPreallocatedEntity(Record[0], MI); return; } case pch::PP_MACRO_DEFINITION: { // If we already have a macro, that means that we've hit the end // of the definition of the macro we were looking for. We're // done. if (Macro) return; if (!PP->getPreprocessingRecord()) { Error("missing preprocessing record in PCH file"); return; } PreprocessingRecord &PPRec = *PP->getPreprocessingRecord(); if (PPRec.getPreprocessedEntity(Record[0])) return; if (Record[1] >= MacroDefinitionsLoaded.size()) { Error("out-of-bounds macro definition record"); return; } MacroDefinition *MD = new (PPRec) MacroDefinition(DecodeIdentifierInfo(Record[4]), SourceLocation::getFromRawEncoding(Record[5]), SourceRange( SourceLocation::getFromRawEncoding(Record[2]), SourceLocation::getFromRawEncoding(Record[3]))); PPRec.SetPreallocatedEntity(Record[0], MD); MacroDefinitionsLoaded[Record[1]] = MD; return; } } } } void PCHReader::ReadDefinedMacros() { // If there was no preprocessor block, do nothing. if (!MacroCursor.getBitStreamReader()) return; llvm::BitstreamCursor Cursor = MacroCursor; if (Cursor.EnterSubBlock(pch::PREPROCESSOR_BLOCK_ID)) { Error("malformed preprocessor block record in PCH file"); return; } RecordData Record; while (true) { unsigned Code = Cursor.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (Cursor.ReadBlockEnd()) Error("error at end of preprocessor block in PCH file"); return; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Cursor.ReadSubBlockID(); if (Cursor.SkipBlock()) { Error("malformed block record in PCH file"); return; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Cursor.ReadAbbrevRecord(); continue; } // Read a record. const char *BlobStart; unsigned BlobLen; Record.clear(); switch (Cursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case pch::PP_MACRO_OBJECT_LIKE: case pch::PP_MACRO_FUNCTION_LIKE: DecodeIdentifierInfo(Record[0]); break; case pch::PP_TOKEN: // Ignore tokens. break; case pch::PP_MACRO_INSTANTIATION: case pch::PP_MACRO_DEFINITION: // Read the macro record. ReadMacroRecord(Cursor.GetCurrentBitNo()); break; } } } MacroDefinition *PCHReader::getMacroDefinition(pch::IdentID ID) { if (ID == 0 || ID >= MacroDefinitionsLoaded.size()) return 0; if (!MacroDefinitionsLoaded[ID]) ReadMacroRecord(MacroDefinitionOffsets[ID]); return MacroDefinitionsLoaded[ID]; } /// \brief If we are loading a relocatable PCH file, and the filename is /// not an absolute path, add the system root to the beginning of the file /// name. void PCHReader::MaybeAddSystemRootToFilename(std::string &Filename) { // If this is not a relocatable PCH file, there's nothing to do. if (!RelocatablePCH) return; if (Filename.empty() || llvm::sys::Path(Filename).isAbsolute()) return; if (isysroot == 0) { // If no system root was given, default to '/' Filename.insert(Filename.begin(), '/'); return; } unsigned Length = strlen(isysroot); if (isysroot[Length - 1] != '/') Filename.insert(Filename.begin(), '/'); Filename.insert(Filename.begin(), isysroot, isysroot + Length); } PCHReader::PCHReadResult PCHReader::ReadPCHBlock() { if (Stream.EnterSubBlock(pch::PCH_BLOCK_ID)) { Error("malformed block record in PCH file"); return Failure; } // Read all of the records and blocks for the PCH file. RecordData Record; while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) { Error("error at end of module block in PCH file"); return Failure; } return Success; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { switch (Stream.ReadSubBlockID()) { case pch::DECLTYPES_BLOCK_ID: // We lazily load the decls block, but we want to set up the // DeclsCursor cursor to point into it. Clone our current bitcode // cursor to it, enter the block and read the abbrevs in that block. // With the main cursor, we just skip over it. DeclsCursor = Stream; if (Stream.SkipBlock() || // Skip with the main cursor. // Read the abbrevs. ReadBlockAbbrevs(DeclsCursor, pch::DECLTYPES_BLOCK_ID)) { Error("malformed block record in PCH file"); return Failure; } break; case pch::PREPROCESSOR_BLOCK_ID: MacroCursor = Stream; if (PP) PP->setExternalSource(this); if (Stream.SkipBlock()) { Error("malformed block record in PCH file"); return Failure; } break; case pch::SOURCE_MANAGER_BLOCK_ID: switch (ReadSourceManagerBlock()) { case Success: break; case Failure: Error("malformed source manager block in PCH file"); return Failure; case IgnorePCH: return IgnorePCH; } break; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read and process a record. Record.clear(); const char *BlobStart = 0; unsigned BlobLen = 0; switch ((pch::PCHRecordTypes)Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case pch::TYPE_OFFSET: if (!TypesLoaded.empty()) { Error("duplicate TYPE_OFFSET record in PCH file"); return Failure; } TypeOffsets = (const uint32_t *)BlobStart; TypesLoaded.resize(Record[0]); break; case pch::DECL_OFFSET: if (!DeclsLoaded.empty()) { Error("duplicate DECL_OFFSET record in PCH file"); return Failure; } DeclOffsets = (const uint32_t *)BlobStart; DeclsLoaded.resize(Record[0]); break; case pch::LANGUAGE_OPTIONS: if (ParseLanguageOptions(Record)) return IgnorePCH; break; case pch::METADATA: { if (Record[0] != pch::VERSION_MAJOR) { Diag(Record[0] < pch::VERSION_MAJOR? diag::warn_pch_version_too_old : diag::warn_pch_version_too_new); return IgnorePCH; } RelocatablePCH = Record[4]; if (Listener) { std::string TargetTriple(BlobStart, BlobLen); if (Listener->ReadTargetTriple(TargetTriple)) return IgnorePCH; } break; } case pch::IDENTIFIER_TABLE: IdentifierTableData = BlobStart; if (Record[0]) { IdentifierLookupTable = PCHIdentifierLookupTable::Create( (const unsigned char *)IdentifierTableData + Record[0], (const unsigned char *)IdentifierTableData, PCHIdentifierLookupTrait(*this)); if (PP) PP->getIdentifierTable().setExternalIdentifierLookup(this); } break; case pch::IDENTIFIER_OFFSET: if (!IdentifiersLoaded.empty()) { Error("duplicate IDENTIFIER_OFFSET record in PCH file"); return Failure; } IdentifierOffsets = (const uint32_t *)BlobStart; IdentifiersLoaded.resize(Record[0]); if (PP) PP->getHeaderSearchInfo().SetExternalLookup(this); break; case pch::EXTERNAL_DEFINITIONS: if (!ExternalDefinitions.empty()) { Error("duplicate EXTERNAL_DEFINITIONS record in PCH file"); return Failure; } ExternalDefinitions.swap(Record); break; case pch::SPECIAL_TYPES: SpecialTypes.swap(Record); break; case pch::STATISTICS: TotalNumStatements = Record[0]; TotalNumMacros = Record[1]; TotalLexicalDeclContexts = Record[2]; TotalVisibleDeclContexts = Record[3]; break; case pch::TENTATIVE_DEFINITIONS: if (!TentativeDefinitions.empty()) { Error("duplicate TENTATIVE_DEFINITIONS record in PCH file"); return Failure; } TentativeDefinitions.swap(Record); break; case pch::UNUSED_STATIC_FUNCS: if (!UnusedStaticFuncs.empty()) { Error("duplicate UNUSED_STATIC_FUNCS record in PCH file"); return Failure; } UnusedStaticFuncs.swap(Record); break; case pch::LOCALLY_SCOPED_EXTERNAL_DECLS: if (!LocallyScopedExternalDecls.empty()) { Error("duplicate LOCALLY_SCOPED_EXTERNAL_DECLS record in PCH file"); return Failure; } LocallyScopedExternalDecls.swap(Record); break; case pch::SELECTOR_OFFSETS: SelectorOffsets = (const uint32_t *)BlobStart; TotalNumSelectors = Record[0]; SelectorsLoaded.resize(TotalNumSelectors); break; case pch::METHOD_POOL: MethodPoolLookupTableData = (const unsigned char *)BlobStart; if (Record[0]) MethodPoolLookupTable = PCHMethodPoolLookupTable::Create( MethodPoolLookupTableData + Record[0], MethodPoolLookupTableData, PCHMethodPoolLookupTrait(*this)); TotalSelectorsInMethodPool = Record[1]; break; case pch::PP_COUNTER_VALUE: if (!Record.empty() && Listener) Listener->ReadCounter(Record[0]); break; case pch::SOURCE_LOCATION_OFFSETS: SLocOffsets = (const uint32_t *)BlobStart; TotalNumSLocEntries = Record[0]; SourceMgr.PreallocateSLocEntries(this, TotalNumSLocEntries, Record[1]); break; case pch::SOURCE_LOCATION_PRELOADS: for (unsigned I = 0, N = Record.size(); I != N; ++I) { PCHReadResult Result = ReadSLocEntryRecord(Record[I]); if (Result != Success) return Result; } break; case pch::STAT_CACHE: { PCHStatCache *MyStatCache = new PCHStatCache((const unsigned char *)BlobStart + Record[0], (const unsigned char *)BlobStart, NumStatHits, NumStatMisses); FileMgr.addStatCache(MyStatCache); StatCache = MyStatCache; break; } case pch::EXT_VECTOR_DECLS: if (!ExtVectorDecls.empty()) { Error("duplicate EXT_VECTOR_DECLS record in PCH file"); return Failure; } ExtVectorDecls.swap(Record); break; case pch::VTABLE_USES: if (!VTableUses.empty()) { Error("duplicate VTABLE_USES record in PCH file"); return Failure; } VTableUses.swap(Record); break; case pch::DYNAMIC_CLASSES: if (!DynamicClasses.empty()) { Error("duplicate DYNAMIC_CLASSES record in PCH file"); return Failure; } DynamicClasses.swap(Record); break; case pch::ORIGINAL_FILE_NAME: ActualOriginalFileName.assign(BlobStart, BlobLen); OriginalFileName = ActualOriginalFileName; MaybeAddSystemRootToFilename(OriginalFileName); break; case pch::VERSION_CONTROL_BRANCH_REVISION: { const std::string &CurBranch = getClangFullRepositoryVersion(); llvm::StringRef PCHBranch(BlobStart, BlobLen); if (llvm::StringRef(CurBranch) != PCHBranch) { Diag(diag::warn_pch_different_branch) << PCHBranch << CurBranch; return IgnorePCH; } break; } case pch::MACRO_DEFINITION_OFFSETS: MacroDefinitionOffsets = (const uint32_t *)BlobStart; if (PP) { if (!PP->getPreprocessingRecord()) PP->createPreprocessingRecord(); PP->getPreprocessingRecord()->SetExternalSource(*this, Record[0]); } else { NumPreallocatedPreprocessingEntities = Record[0]; } MacroDefinitionsLoaded.resize(Record[1]); break; } } Error("premature end of bitstream in PCH file"); return Failure; } PCHReader::PCHReadResult PCHReader::ReadPCH(const std::string &FileName) { // Set the PCH file name. this->FileName = FileName; // Open the PCH file. // // FIXME: This shouldn't be here, we should just take a raw_ostream. std::string ErrStr; Buffer.reset(llvm::MemoryBuffer::getFileOrSTDIN(FileName, &ErrStr)); if (!Buffer) { Error(ErrStr.c_str()); return IgnorePCH; } // Initialize the stream StreamFile.init((const unsigned char *)Buffer->getBufferStart(), (const unsigned char *)Buffer->getBufferEnd()); Stream.init(StreamFile); // Sniff for the signature. if (Stream.Read(8) != 'C' || Stream.Read(8) != 'P' || Stream.Read(8) != 'C' || Stream.Read(8) != 'H') { Diag(diag::err_not_a_pch_file) << FileName; return Failure; } while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code != llvm::bitc::ENTER_SUBBLOCK) { Error("invalid record at top-level of PCH file"); return Failure; } unsigned BlockID = Stream.ReadSubBlockID(); // We only know the PCH subblock ID. switch (BlockID) { case llvm::bitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) { Error("malformed BlockInfoBlock in PCH file"); return Failure; } break; case pch::PCH_BLOCK_ID: switch (ReadPCHBlock()) { case Success: break; case Failure: return Failure; case IgnorePCH: // FIXME: We could consider reading through to the end of this // PCH block, skipping subblocks, to see if there are other // PCH blocks elsewhere. // Clear out any preallocated source location entries, so that // the source manager does not try to resolve them later. SourceMgr.ClearPreallocatedSLocEntries(); // Remove the stat cache. if (StatCache) FileMgr.removeStatCache((PCHStatCache*)StatCache); return IgnorePCH; } break; default: if (Stream.SkipBlock()) { Error("malformed block record in PCH file"); return Failure; } break; } } // Check the predefines buffer. if (CheckPredefinesBuffers()) return IgnorePCH; if (PP) { // Initialization of keywords and pragmas occurs before the // PCH file is read, so there may be some identifiers that were // loaded into the IdentifierTable before we intercepted the // creation of identifiers. Iterate through the list of known // identifiers and determine whether we have to establish // preprocessor definitions or top-level identifier declaration // chains for those identifiers. // // We copy the IdentifierInfo pointers to a small vector first, // since de-serializing declarations or macro definitions can add // new entries into the identifier table, invalidating the // iterators. llvm::SmallVector Identifiers; for (IdentifierTable::iterator Id = PP->getIdentifierTable().begin(), IdEnd = PP->getIdentifierTable().end(); Id != IdEnd; ++Id) Identifiers.push_back(Id->second); PCHIdentifierLookupTable *IdTable = (PCHIdentifierLookupTable *)IdentifierLookupTable; for (unsigned I = 0, N = Identifiers.size(); I != N; ++I) { IdentifierInfo *II = Identifiers[I]; // Look in the on-disk hash table for an entry for PCHIdentifierLookupTrait Info(*this, II); std::pair Key(II->getNameStart(), II->getLength()); PCHIdentifierLookupTable::iterator Pos = IdTable->find(Key, &Info); if (Pos == IdTable->end()) continue; // Dereferencing the iterator has the effect of populating the // IdentifierInfo node with the various declarations it needs. (void)*Pos; } } if (Context) InitializeContext(*Context); return Success; } void PCHReader::setPreprocessor(Preprocessor &pp) { PP = &pp; if (NumPreallocatedPreprocessingEntities) { if (!PP->getPreprocessingRecord()) PP->createPreprocessingRecord(); PP->getPreprocessingRecord()->SetExternalSource(*this, NumPreallocatedPreprocessingEntities); NumPreallocatedPreprocessingEntities = 0; } } void PCHReader::InitializeContext(ASTContext &Ctx) { Context = &Ctx; assert(Context && "Passed null context!"); assert(PP && "Forgot to set Preprocessor ?"); PP->getIdentifierTable().setExternalIdentifierLookup(this); PP->getHeaderSearchInfo().SetExternalLookup(this); PP->setExternalSource(this); // Load the translation unit declaration GetTranslationUnitDecl(); // Load the special types. Context->setBuiltinVaListType( GetType(SpecialTypes[pch::SPECIAL_TYPE_BUILTIN_VA_LIST])); if (unsigned Id = SpecialTypes[pch::SPECIAL_TYPE_OBJC_ID]) Context->setObjCIdType(GetType(Id)); if (unsigned Sel = SpecialTypes[pch::SPECIAL_TYPE_OBJC_SELECTOR]) Context->setObjCSelType(GetType(Sel)); if (unsigned Proto = SpecialTypes[pch::SPECIAL_TYPE_OBJC_PROTOCOL]) Context->setObjCProtoType(GetType(Proto)); if (unsigned Class = SpecialTypes[pch::SPECIAL_TYPE_OBJC_CLASS]) Context->setObjCClassType(GetType(Class)); if (unsigned String = SpecialTypes[pch::SPECIAL_TYPE_CF_CONSTANT_STRING]) Context->setCFConstantStringType(GetType(String)); if (unsigned FastEnum = SpecialTypes[pch::SPECIAL_TYPE_OBJC_FAST_ENUMERATION_STATE]) Context->setObjCFastEnumerationStateType(GetType(FastEnum)); if (unsigned File = SpecialTypes[pch::SPECIAL_TYPE_FILE]) { QualType FileType = GetType(File); if (FileType.isNull()) { Error("FILE type is NULL"); return; } if (const TypedefType *Typedef = FileType->getAs()) Context->setFILEDecl(Typedef->getDecl()); else { const TagType *Tag = FileType->getAs(); if (!Tag) { Error("Invalid FILE type in PCH file"); return; } Context->setFILEDecl(Tag->getDecl()); } } if (unsigned Jmp_buf = SpecialTypes[pch::SPECIAL_TYPE_jmp_buf]) { QualType Jmp_bufType = GetType(Jmp_buf); if (Jmp_bufType.isNull()) { Error("jmp_bug type is NULL"); return; } if (const TypedefType *Typedef = Jmp_bufType->getAs()) Context->setjmp_bufDecl(Typedef->getDecl()); else { const TagType *Tag = Jmp_bufType->getAs(); if (!Tag) { Error("Invalid jmp_bug type in PCH file"); return; } Context->setjmp_bufDecl(Tag->getDecl()); } } if (unsigned Sigjmp_buf = SpecialTypes[pch::SPECIAL_TYPE_sigjmp_buf]) { QualType Sigjmp_bufType = GetType(Sigjmp_buf); if (Sigjmp_bufType.isNull()) { Error("sigjmp_buf type is NULL"); return; } if (const TypedefType *Typedef = Sigjmp_bufType->getAs()) Context->setsigjmp_bufDecl(Typedef->getDecl()); else { const TagType *Tag = Sigjmp_bufType->getAs(); assert(Tag && "Invalid sigjmp_buf type in PCH file"); Context->setsigjmp_bufDecl(Tag->getDecl()); } } if (unsigned ObjCIdRedef = SpecialTypes[pch::SPECIAL_TYPE_OBJC_ID_REDEFINITION]) Context->ObjCIdRedefinitionType = GetType(ObjCIdRedef); if (unsigned ObjCClassRedef = SpecialTypes[pch::SPECIAL_TYPE_OBJC_CLASS_REDEFINITION]) Context->ObjCClassRedefinitionType = GetType(ObjCClassRedef); if (unsigned String = SpecialTypes[pch::SPECIAL_TYPE_BLOCK_DESCRIPTOR]) Context->setBlockDescriptorType(GetType(String)); if (unsigned String = SpecialTypes[pch::SPECIAL_TYPE_BLOCK_EXTENDED_DESCRIPTOR]) Context->setBlockDescriptorExtendedType(GetType(String)); if (unsigned ObjCSelRedef = SpecialTypes[pch::SPECIAL_TYPE_OBJC_SEL_REDEFINITION]) Context->ObjCSelRedefinitionType = GetType(ObjCSelRedef); if (unsigned String = SpecialTypes[pch::SPECIAL_TYPE_NS_CONSTANT_STRING]) Context->setNSConstantStringType(GetType(String)); if (SpecialTypes[pch::SPECIAL_TYPE_INT128_INSTALLED]) Context->setInt128Installed(); } /// \brief Retrieve the name of the original source file name /// directly from the PCH file, without actually loading the PCH /// file. std::string PCHReader::getOriginalSourceFile(const std::string &PCHFileName, Diagnostic &Diags) { // Open the PCH file. std::string ErrStr; llvm::OwningPtr Buffer; Buffer.reset(llvm::MemoryBuffer::getFile(PCHFileName.c_str(), &ErrStr)); if (!Buffer) { Diags.Report(diag::err_fe_unable_to_read_pch_file) << ErrStr; return std::string(); } // Initialize the stream llvm::BitstreamReader StreamFile; llvm::BitstreamCursor Stream; StreamFile.init((const unsigned char *)Buffer->getBufferStart(), (const unsigned char *)Buffer->getBufferEnd()); Stream.init(StreamFile); // Sniff for the signature. if (Stream.Read(8) != 'C' || Stream.Read(8) != 'P' || Stream.Read(8) != 'C' || Stream.Read(8) != 'H') { Diags.Report(diag::err_fe_not_a_pch_file) << PCHFileName; return std::string(); } RecordData Record; while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::ENTER_SUBBLOCK) { unsigned BlockID = Stream.ReadSubBlockID(); // We only know the PCH subblock ID. switch (BlockID) { case pch::PCH_BLOCK_ID: if (Stream.EnterSubBlock(pch::PCH_BLOCK_ID)) { Diags.Report(diag::err_fe_pch_malformed_block) << PCHFileName; return std::string(); } break; default: if (Stream.SkipBlock()) { Diags.Report(diag::err_fe_pch_malformed_block) << PCHFileName; return std::string(); } break; } continue; } if (Code == llvm::bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) { Diags.Report(diag::err_fe_pch_error_at_end_block) << PCHFileName; return std::string(); } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } Record.clear(); const char *BlobStart = 0; unsigned BlobLen = 0; if (Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen) == pch::ORIGINAL_FILE_NAME) return std::string(BlobStart, BlobLen); } return std::string(); } /// \brief Parse the record that corresponds to a LangOptions data /// structure. /// /// This routine compares the language options used to generate the /// PCH file against the language options set for the current /// compilation. For each option, we classify differences between the /// two compiler states as either "benign" or "important". Benign /// differences don't matter, and we accept them without complaint /// (and without modifying the language options). Differences between /// the states for important options cause the PCH file to be /// unusable, so we emit a warning and return true to indicate that /// there was an error. /// /// \returns true if the PCH file is unacceptable, false otherwise. bool PCHReader::ParseLanguageOptions( const llvm::SmallVectorImpl &Record) { if (Listener) { LangOptions LangOpts; #define PARSE_LANGOPT(Option) \ LangOpts.Option = Record[Idx]; \ ++Idx unsigned Idx = 0; PARSE_LANGOPT(Trigraphs); PARSE_LANGOPT(BCPLComment); PARSE_LANGOPT(DollarIdents); PARSE_LANGOPT(AsmPreprocessor); PARSE_LANGOPT(GNUMode); PARSE_LANGOPT(GNUKeywords); PARSE_LANGOPT(ImplicitInt); PARSE_LANGOPT(Digraphs); PARSE_LANGOPT(HexFloats); PARSE_LANGOPT(C99); PARSE_LANGOPT(Microsoft); PARSE_LANGOPT(CPlusPlus); PARSE_LANGOPT(CPlusPlus0x); PARSE_LANGOPT(CXXOperatorNames); PARSE_LANGOPT(ObjC1); PARSE_LANGOPT(ObjC2); PARSE_LANGOPT(ObjCNonFragileABI); PARSE_LANGOPT(ObjCNonFragileABI2); PARSE_LANGOPT(NoConstantCFStrings); PARSE_LANGOPT(PascalStrings); PARSE_LANGOPT(WritableStrings); PARSE_LANGOPT(LaxVectorConversions); PARSE_LANGOPT(AltiVec); PARSE_LANGOPT(Exceptions); PARSE_LANGOPT(SjLjExceptions); PARSE_LANGOPT(NeXTRuntime); PARSE_LANGOPT(Freestanding); PARSE_LANGOPT(NoBuiltin); PARSE_LANGOPT(ThreadsafeStatics); PARSE_LANGOPT(POSIXThreads); PARSE_LANGOPT(Blocks); PARSE_LANGOPT(EmitAllDecls); PARSE_LANGOPT(MathErrno); LangOpts.setSignedOverflowBehavior((LangOptions::SignedOverflowBehaviorTy) Record[Idx++]); PARSE_LANGOPT(HeinousExtensions); PARSE_LANGOPT(Optimize); PARSE_LANGOPT(OptimizeSize); PARSE_LANGOPT(Static); PARSE_LANGOPT(PICLevel); PARSE_LANGOPT(GNUInline); PARSE_LANGOPT(NoInline); PARSE_LANGOPT(AccessControl); PARSE_LANGOPT(CharIsSigned); PARSE_LANGOPT(ShortWChar); LangOpts.setGCMode((LangOptions::GCMode)Record[Idx++]); LangOpts.setVisibilityMode((LangOptions::VisibilityMode)Record[Idx++]); LangOpts.setStackProtectorMode((LangOptions::StackProtectorMode) Record[Idx++]); PARSE_LANGOPT(InstantiationDepth); PARSE_LANGOPT(OpenCL); PARSE_LANGOPT(CatchUndefined); // FIXME: Missing ElideConstructors?! #undef PARSE_LANGOPT return Listener->ReadLanguageOptions(LangOpts); } return false; } void PCHReader::ReadPreprocessedEntities() { ReadDefinedMacros(); } /// \brief Read and return the type at the given offset. /// /// This routine actually reads the record corresponding to the type /// at the given offset in the bitstream. It is a helper routine for /// GetType, which deals with reading type IDs. QualType PCHReader::ReadTypeRecord(uint64_t Offset) { // Keep track of where we are in the stream, then jump back there // after reading this type. SavedStreamPosition SavedPosition(DeclsCursor); ReadingKindTracker ReadingKind(Read_Type, *this); // Note that we are loading a type record. LoadingTypeOrDecl Loading(*this); DeclsCursor.JumpToBit(Offset); RecordData Record; unsigned Code = DeclsCursor.ReadCode(); switch ((pch::TypeCode)DeclsCursor.ReadRecord(Code, Record)) { case pch::TYPE_EXT_QUAL: { if (Record.size() != 2) { Error("Incorrect encoding of extended qualifier type"); return QualType(); } QualType Base = GetType(Record[0]); Qualifiers Quals = Qualifiers::fromOpaqueValue(Record[1]); return Context->getQualifiedType(Base, Quals); } case pch::TYPE_COMPLEX: { if (Record.size() != 1) { Error("Incorrect encoding of complex type"); return QualType(); } QualType ElemType = GetType(Record[0]); return Context->getComplexType(ElemType); } case pch::TYPE_POINTER: { if (Record.size() != 1) { Error("Incorrect encoding of pointer type"); return QualType(); } QualType PointeeType = GetType(Record[0]); return Context->getPointerType(PointeeType); } case pch::TYPE_BLOCK_POINTER: { if (Record.size() != 1) { Error("Incorrect encoding of block pointer type"); return QualType(); } QualType PointeeType = GetType(Record[0]); return Context->getBlockPointerType(PointeeType); } case pch::TYPE_LVALUE_REFERENCE: { if (Record.size() != 1) { Error("Incorrect encoding of lvalue reference type"); return QualType(); } QualType PointeeType = GetType(Record[0]); return Context->getLValueReferenceType(PointeeType); } case pch::TYPE_RVALUE_REFERENCE: { if (Record.size() != 1) { Error("Incorrect encoding of rvalue reference type"); return QualType(); } QualType PointeeType = GetType(Record[0]); return Context->getRValueReferenceType(PointeeType); } case pch::TYPE_MEMBER_POINTER: { if (Record.size() != 2) { Error("Incorrect encoding of member pointer type"); return QualType(); } QualType PointeeType = GetType(Record[0]); QualType ClassType = GetType(Record[1]); return Context->getMemberPointerType(PointeeType, ClassType.getTypePtr()); } case pch::TYPE_CONSTANT_ARRAY: { QualType ElementType = GetType(Record[0]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; unsigned Idx = 3; llvm::APInt Size = ReadAPInt(Record, Idx); return Context->getConstantArrayType(ElementType, Size, ASM, IndexTypeQuals); } case pch::TYPE_INCOMPLETE_ARRAY: { QualType ElementType = GetType(Record[0]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; return Context->getIncompleteArrayType(ElementType, ASM, IndexTypeQuals); } case pch::TYPE_VARIABLE_ARRAY: { QualType ElementType = GetType(Record[0]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; SourceLocation LBLoc = SourceLocation::getFromRawEncoding(Record[3]); SourceLocation RBLoc = SourceLocation::getFromRawEncoding(Record[4]); return Context->getVariableArrayType(ElementType, ReadExpr(), ASM, IndexTypeQuals, SourceRange(LBLoc, RBLoc)); } case pch::TYPE_VECTOR: { if (Record.size() != 3) { Error("incorrect encoding of vector type in PCH file"); return QualType(); } QualType ElementType = GetType(Record[0]); unsigned NumElements = Record[1]; unsigned AltiVecSpec = Record[2]; return Context->getVectorType(ElementType, NumElements, (VectorType::AltiVecSpecific)AltiVecSpec); } case pch::TYPE_EXT_VECTOR: { if (Record.size() != 3) { Error("incorrect encoding of extended vector type in PCH file"); return QualType(); } QualType ElementType = GetType(Record[0]); unsigned NumElements = Record[1]; return Context->getExtVectorType(ElementType, NumElements); } case pch::TYPE_FUNCTION_NO_PROTO: { if (Record.size() != 4) { Error("incorrect encoding of no-proto function type"); return QualType(); } QualType ResultType = GetType(Record[0]); FunctionType::ExtInfo Info(Record[1], Record[2], (CallingConv)Record[3]); return Context->getFunctionNoProtoType(ResultType, Info); } case pch::TYPE_FUNCTION_PROTO: { QualType ResultType = GetType(Record[0]); bool NoReturn = Record[1]; unsigned RegParm = Record[2]; CallingConv CallConv = (CallingConv)Record[3]; unsigned Idx = 4; unsigned NumParams = Record[Idx++]; llvm::SmallVector ParamTypes; for (unsigned I = 0; I != NumParams; ++I) ParamTypes.push_back(GetType(Record[Idx++])); bool isVariadic = Record[Idx++]; unsigned Quals = Record[Idx++]; bool hasExceptionSpec = Record[Idx++]; bool hasAnyExceptionSpec = Record[Idx++]; unsigned NumExceptions = Record[Idx++]; llvm::SmallVector Exceptions; for (unsigned I = 0; I != NumExceptions; ++I) Exceptions.push_back(GetType(Record[Idx++])); return Context->getFunctionType(ResultType, ParamTypes.data(), NumParams, isVariadic, Quals, hasExceptionSpec, hasAnyExceptionSpec, NumExceptions, Exceptions.data(), FunctionType::ExtInfo(NoReturn, RegParm, CallConv)); } case pch::TYPE_UNRESOLVED_USING: return Context->getTypeDeclType( cast(GetDecl(Record[0]))); case pch::TYPE_TYPEDEF: { if (Record.size() != 2) { Error("incorrect encoding of typedef type"); return QualType(); } TypedefDecl *Decl = cast(GetDecl(Record[0])); QualType Canonical = GetType(Record[1]); return Context->getTypedefType(Decl, Canonical); } case pch::TYPE_TYPEOF_EXPR: return Context->getTypeOfExprType(ReadExpr()); case pch::TYPE_TYPEOF: { if (Record.size() != 1) { Error("incorrect encoding of typeof(type) in PCH file"); return QualType(); } QualType UnderlyingType = GetType(Record[0]); return Context->getTypeOfType(UnderlyingType); } case pch::TYPE_DECLTYPE: return Context->getDecltypeType(ReadExpr()); case pch::TYPE_RECORD: { if (Record.size() != 2) { Error("incorrect encoding of record type"); return QualType(); } bool IsDependent = Record[0]; QualType T = Context->getRecordType(cast(GetDecl(Record[1]))); T->Dependent = IsDependent; return T; } case pch::TYPE_ENUM: { if (Record.size() != 2) { Error("incorrect encoding of enum type"); return QualType(); } bool IsDependent = Record[0]; QualType T = Context->getEnumType(cast(GetDecl(Record[1]))); T->Dependent = IsDependent; return T; } case pch::TYPE_ELABORATED: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx); QualType NamedType = GetType(Record[Idx++]); return Context->getElaboratedType(Keyword, NNS, NamedType); } case pch::TYPE_OBJC_INTERFACE: { unsigned Idx = 0; ObjCInterfaceDecl *ItfD = cast(GetDecl(Record[Idx++])); return Context->getObjCInterfaceType(ItfD); } case pch::TYPE_OBJC_OBJECT: { unsigned Idx = 0; QualType Base = GetType(Record[Idx++]); unsigned NumProtos = Record[Idx++]; llvm::SmallVector Protos; for (unsigned I = 0; I != NumProtos; ++I) Protos.push_back(cast(GetDecl(Record[Idx++]))); return Context->getObjCObjectType(Base, Protos.data(), NumProtos); } case pch::TYPE_OBJC_OBJECT_POINTER: { unsigned Idx = 0; QualType Pointee = GetType(Record[Idx++]); return Context->getObjCObjectPointerType(Pointee); } case pch::TYPE_SUBST_TEMPLATE_TYPE_PARM: { unsigned Idx = 0; QualType Parm = GetType(Record[Idx++]); QualType Replacement = GetType(Record[Idx++]); return Context->getSubstTemplateTypeParmType(cast(Parm), Replacement); } case pch::TYPE_INJECTED_CLASS_NAME: { CXXRecordDecl *D = cast(GetDecl(Record[0])); QualType TST = GetType(Record[1]); // probably derivable // FIXME: ASTContext::getInjectedClassNameType is not currently suitable // for PCH reading, too much interdependencies. return QualType(new (*Context, TypeAlignment) InjectedClassNameType(D, TST), 0); } case pch::TYPE_TEMPLATE_TYPE_PARM: { unsigned Idx = 0; unsigned Depth = Record[Idx++]; unsigned Index = Record[Idx++]; bool Pack = Record[Idx++]; IdentifierInfo *Name = GetIdentifierInfo(Record, Idx); return Context->getTemplateTypeParmType(Depth, Index, Pack, Name); } case pch::TYPE_DEPENDENT_NAME: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx); const IdentifierInfo *Name = this->GetIdentifierInfo(Record, Idx); QualType Canon = GetType(Record[Idx++]); return Context->getDependentNameType(Keyword, NNS, Name, Canon); } case pch::TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx); const IdentifierInfo *Name = this->GetIdentifierInfo(Record, Idx); unsigned NumArgs = Record[Idx++]; llvm::SmallVector Args; Args.reserve(NumArgs); while (NumArgs--) Args.push_back(ReadTemplateArgument(Record, Idx)); return Context->getDependentTemplateSpecializationType(Keyword, NNS, Name, Args.size(), Args.data()); } case pch::TYPE_DEPENDENT_SIZED_ARRAY: { unsigned Idx = 0; // ArrayType QualType ElementType = GetType(Record[Idx++]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[Idx++]; unsigned IndexTypeQuals = Record[Idx++]; // DependentSizedArrayType Expr *NumElts = ReadExpr(); SourceRange Brackets = ReadSourceRange(Record, Idx); return Context->getDependentSizedArrayType(ElementType, NumElts, ASM, IndexTypeQuals, Brackets); } case pch::TYPE_TEMPLATE_SPECIALIZATION: { unsigned Idx = 0; bool IsDependent = Record[Idx++]; TemplateName Name = ReadTemplateName(Record, Idx); llvm::SmallVector Args; ReadTemplateArgumentList(Args, Record, Idx); QualType Canon = GetType(Record[Idx++]); QualType T; if (Canon.isNull()) T = Context->getCanonicalTemplateSpecializationType(Name, Args.data(), Args.size()); else T = Context->getTemplateSpecializationType(Name, Args.data(), Args.size(), Canon); T->Dependent = IsDependent; return T; } } // Suppress a GCC warning return QualType(); } namespace { class TypeLocReader : public TypeLocVisitor { PCHReader &Reader; const PCHReader::RecordData &Record; unsigned &Idx; public: TypeLocReader(PCHReader &Reader, const PCHReader::RecordData &Record, unsigned &Idx) : Reader(Reader), Record(Record), Idx(Idx) { } // We want compile-time assurance that we've enumerated all of // these, so unfortunately we have to declare them first, then // define them out-of-line. #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc); #include "clang/AST/TypeLocNodes.def" void VisitFunctionTypeLoc(FunctionTypeLoc); void VisitArrayTypeLoc(ArrayTypeLoc); }; } void TypeLocReader::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { // nothing to do } void TypeLocReader::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { TL.setBuiltinLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); if (TL.needsExtraLocalData()) { TL.setWrittenTypeSpec(static_cast(Record[Idx++])); TL.setWrittenSignSpec(static_cast(Record[Idx++])); TL.setWrittenWidthSpec(static_cast(Record[Idx++])); TL.setModeAttr(Record[Idx++]); } } void TypeLocReader::VisitComplexTypeLoc(ComplexTypeLoc TL) { TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitPointerTypeLoc(PointerTypeLoc TL) { TL.setStarLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { TL.setCaretLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { TL.setAmpLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { TL.setAmpAmpLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { TL.setStarLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitArrayTypeLoc(ArrayTypeLoc TL) { TL.setLBracketLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setRBracketLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); if (Record[Idx++]) TL.setSizeExpr(Reader.ReadExpr()); else TL.setSizeExpr(0); } void TypeLocReader::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitDependentSizedArrayTypeLoc( DependentSizedArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitDependentSizedExtVectorTypeLoc( DependentSizedExtVectorTypeLoc TL) { TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) { TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitFunctionTypeLoc(FunctionTypeLoc TL) { TL.setLParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) { TL.setArg(i, cast_or_null(Reader.GetDecl(Record[Idx++]))); } } void TypeLocReader::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocReader::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocReader::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) { TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitTypedefTypeLoc(TypedefTypeLoc TL) { TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { TL.setTypeofLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setLParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { TL.setTypeofLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setLParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(Record, Idx)); } void TypeLocReader::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) { TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitRecordTypeLoc(RecordTypeLoc TL) { TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitEnumTypeLoc(EnumTypeLoc TL) { TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitSubstTemplateTypeParmTypeLoc( SubstTemplateTypeParmTypeLoc TL) { TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitTemplateSpecializationTypeLoc( TemplateSpecializationTypeLoc TL) { TL.setTemplateNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setLAngleLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setRAngleLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) TL.setArgLocInfo(i, Reader.GetTemplateArgumentLocInfo(TL.getTypePtr()->getArg(i).getKind(), Record, Idx)); } void TypeLocReader::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { TL.setKeywordLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setQualifierRange(Reader.ReadSourceRange(Record, Idx)); } void TypeLocReader::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) { TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { TL.setKeywordLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setQualifierRange(Reader.ReadSourceRange(Record, Idx)); TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitDependentTemplateSpecializationTypeLoc( DependentTemplateSpecializationTypeLoc TL) { TL.setKeywordLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setQualifierRange(Reader.ReadSourceRange(Record, Idx)); TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setLAngleLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setRAngleLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) TL.setArgLocInfo(I, Reader.GetTemplateArgumentLocInfo(TL.getTypePtr()->getArg(I).getKind(), Record, Idx)); } void TypeLocReader::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { TL.setHasBaseTypeAsWritten(Record[Idx++]); TL.setLAngleLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); TL.setRAngleLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i) TL.setProtocolLoc(i, SourceLocation::getFromRawEncoding(Record[Idx++])); } void TypeLocReader::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { TL.setStarLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } TypeSourceInfo *PCHReader::GetTypeSourceInfo(const RecordData &Record, unsigned &Idx) { QualType InfoTy = GetType(Record[Idx++]); if (InfoTy.isNull()) return 0; TypeSourceInfo *TInfo = getContext()->CreateTypeSourceInfo(InfoTy); TypeLocReader TLR(*this, Record, Idx); for (TypeLoc TL = TInfo->getTypeLoc(); !TL.isNull(); TL = TL.getNextTypeLoc()) TLR.Visit(TL); return TInfo; } QualType PCHReader::GetType(pch::TypeID ID) { unsigned FastQuals = ID & Qualifiers::FastMask; unsigned Index = ID >> Qualifiers::FastWidth; if (Index < pch::NUM_PREDEF_TYPE_IDS) { QualType T; switch ((pch::PredefinedTypeIDs)Index) { case pch::PREDEF_TYPE_NULL_ID: return QualType(); case pch::PREDEF_TYPE_VOID_ID: T = Context->VoidTy; break; case pch::PREDEF_TYPE_BOOL_ID: T = Context->BoolTy; break; case pch::PREDEF_TYPE_CHAR_U_ID: case pch::PREDEF_TYPE_CHAR_S_ID: // FIXME: Check that the signedness of CharTy is correct! T = Context->CharTy; break; case pch::PREDEF_TYPE_UCHAR_ID: T = Context->UnsignedCharTy; break; case pch::PREDEF_TYPE_USHORT_ID: T = Context->UnsignedShortTy; break; case pch::PREDEF_TYPE_UINT_ID: T = Context->UnsignedIntTy; break; case pch::PREDEF_TYPE_ULONG_ID: T = Context->UnsignedLongTy; break; case pch::PREDEF_TYPE_ULONGLONG_ID: T = Context->UnsignedLongLongTy; break; case pch::PREDEF_TYPE_UINT128_ID: T = Context->UnsignedInt128Ty; break; case pch::PREDEF_TYPE_SCHAR_ID: T = Context->SignedCharTy; break; case pch::PREDEF_TYPE_WCHAR_ID: T = Context->WCharTy; break; case pch::PREDEF_TYPE_SHORT_ID: T = Context->ShortTy; break; case pch::PREDEF_TYPE_INT_ID: T = Context->IntTy; break; case pch::PREDEF_TYPE_LONG_ID: T = Context->LongTy; break; case pch::PREDEF_TYPE_LONGLONG_ID: T = Context->LongLongTy; break; case pch::PREDEF_TYPE_INT128_ID: T = Context->Int128Ty; break; case pch::PREDEF_TYPE_FLOAT_ID: T = Context->FloatTy; break; case pch::PREDEF_TYPE_DOUBLE_ID: T = Context->DoubleTy; break; case pch::PREDEF_TYPE_LONGDOUBLE_ID: T = Context->LongDoubleTy; break; case pch::PREDEF_TYPE_OVERLOAD_ID: T = Context->OverloadTy; break; case pch::PREDEF_TYPE_DEPENDENT_ID: T = Context->DependentTy; break; case pch::PREDEF_TYPE_NULLPTR_ID: T = Context->NullPtrTy; break; case pch::PREDEF_TYPE_CHAR16_ID: T = Context->Char16Ty; break; case pch::PREDEF_TYPE_CHAR32_ID: T = Context->Char32Ty; break; case pch::PREDEF_TYPE_OBJC_ID: T = Context->ObjCBuiltinIdTy; break; case pch::PREDEF_TYPE_OBJC_CLASS: T = Context->ObjCBuiltinClassTy; break; case pch::PREDEF_TYPE_OBJC_SEL: T = Context->ObjCBuiltinSelTy; break; } assert(!T.isNull() && "Unknown predefined type"); return T.withFastQualifiers(FastQuals); } Index -= pch::NUM_PREDEF_TYPE_IDS; //assert(Index < TypesLoaded.size() && "Type index out-of-range"); if (TypesLoaded[Index].isNull()) { TypesLoaded[Index] = ReadTypeRecord(TypeOffsets[Index]); TypesLoaded[Index]->setFromPCH(); if (DeserializationListener) DeserializationListener->TypeRead(ID, TypesLoaded[Index]); } return TypesLoaded[Index].withFastQualifiers(FastQuals); } TemplateArgumentLocInfo PCHReader::GetTemplateArgumentLocInfo(TemplateArgument::ArgKind Kind, const RecordData &Record, unsigned &Index) { switch (Kind) { case TemplateArgument::Expression: return ReadExpr(); case TemplateArgument::Type: return GetTypeSourceInfo(Record, Index); case TemplateArgument::Template: { SourceRange QualifierRange = ReadSourceRange(Record, Index); SourceLocation TemplateNameLoc = ReadSourceLocation(Record, Index); return TemplateArgumentLocInfo(QualifierRange, TemplateNameLoc); } case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Declaration: case TemplateArgument::Pack: return TemplateArgumentLocInfo(); } llvm_unreachable("unexpected template argument loc"); return TemplateArgumentLocInfo(); } TemplateArgumentLoc PCHReader::ReadTemplateArgumentLoc(const RecordData &Record, unsigned &Index) { TemplateArgument Arg = ReadTemplateArgument(Record, Index); if (Arg.getKind() == TemplateArgument::Expression) { if (Record[Index++]) // bool InfoHasSameExpr. return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo(Arg.getAsExpr())); } return TemplateArgumentLoc(Arg, GetTemplateArgumentLocInfo(Arg.getKind(), Record, Index)); } Decl *PCHReader::GetExternalDecl(uint32_t ID) { return GetDecl(ID); } TranslationUnitDecl *PCHReader::GetTranslationUnitDecl() { if (!DeclsLoaded[0]) { ReadDeclRecord(DeclOffsets[0], 0); if (DeserializationListener) DeserializationListener->DeclRead(0, DeclsLoaded[0]); } return cast(DeclsLoaded[0]); } Decl *PCHReader::GetDecl(pch::DeclID ID) { if (ID == 0) return 0; if (ID > DeclsLoaded.size()) { Error("declaration ID out-of-range for PCH file"); return 0; } unsigned Index = ID - 1; if (!DeclsLoaded[Index]) { ReadDeclRecord(DeclOffsets[Index], Index); if (DeserializationListener) DeserializationListener->DeclRead(ID, DeclsLoaded[Index]); } return DeclsLoaded[Index]; } /// \brief Resolve the offset of a statement into a statement. /// /// This operation will read a new statement from the external /// source each time it is called, and is meant to be used via a /// LazyOffsetPtr (which is used by Decls for the body of functions, etc). Stmt *PCHReader::GetExternalDeclStmt(uint64_t Offset) { // Since we know tha this statement is part of a decl, make sure to use the // decl cursor to read it. DeclsCursor.JumpToBit(Offset); return ReadStmtFromStream(DeclsCursor); } bool PCHReader::FindExternalLexicalDecls(const DeclContext *DC, llvm::SmallVectorImpl &Decls) { assert(DC->hasExternalLexicalStorage() && "DeclContext has no lexical decls in storage"); uint64_t Offset = DeclContextOffsets[DC].first; if (Offset == 0) { Error("DeclContext has no lexical decls in storage"); return true; } // Keep track of where we are in the stream, then jump back there // after reading this context. SavedStreamPosition SavedPosition(DeclsCursor); // Load the record containing all of the declarations lexically in // this context. DeclsCursor.JumpToBit(Offset); RecordData Record; unsigned Code = DeclsCursor.ReadCode(); unsigned RecCode = DeclsCursor.ReadRecord(Code, Record); if (RecCode != pch::DECL_CONTEXT_LEXICAL) { Error("Expected lexical block"); return true; } // Load all of the declaration IDs for (RecordData::iterator I = Record.begin(), E = Record.end(); I != E; ++I) Decls.push_back(GetDecl(*I)); ++NumLexicalDeclContextsRead; return false; } DeclContext::lookup_result PCHReader::FindExternalVisibleDeclsByName(const DeclContext *DC, DeclarationName Name) { assert(DC->hasExternalVisibleStorage() && "DeclContext has no visible decls in storage"); uint64_t Offset = DeclContextOffsets[DC].second; if (Offset == 0) { Error("DeclContext has no visible decls in storage"); return DeclContext::lookup_result(DeclContext::lookup_iterator(), DeclContext::lookup_iterator()); } // Keep track of where we are in the stream, then jump back there // after reading this context. SavedStreamPosition SavedPosition(DeclsCursor); // Load the record containing all of the declarations visible in // this context. DeclsCursor.JumpToBit(Offset); RecordData Record; unsigned Code = DeclsCursor.ReadCode(); unsigned RecCode = DeclsCursor.ReadRecord(Code, Record); if (RecCode != pch::DECL_CONTEXT_VISIBLE) { Error("Expected visible block"); return DeclContext::lookup_result(DeclContext::lookup_iterator(), DeclContext::lookup_iterator()); } llvm::SmallVector Decls; if (Record.empty()) { SetExternalVisibleDecls(DC, Decls); return DeclContext::lookup_result(DeclContext::lookup_iterator(), DeclContext::lookup_iterator()); } unsigned Idx = 0; while (Idx < Record.size()) { Decls.push_back(VisibleDeclaration()); Decls.back().Name = ReadDeclarationName(Record, Idx); unsigned Size = Record[Idx++]; llvm::SmallVector &LoadedDecls = Decls.back().Declarations; LoadedDecls.reserve(Size); for (unsigned I = 0; I < Size; ++I) LoadedDecls.push_back(Record[Idx++]); } ++NumVisibleDeclContextsRead; SetExternalVisibleDecls(DC, Decls); return const_cast(DC)->lookup(Name); } void PCHReader::PassInterestingDeclsToConsumer() { assert(Consumer); while (!InterestingDecls.empty()) { DeclGroupRef DG(InterestingDecls.front()); InterestingDecls.pop_front(); Consumer->HandleTopLevelDecl(DG); } } void PCHReader::StartTranslationUnit(ASTConsumer *Consumer) { this->Consumer = Consumer; if (!Consumer) return; for (unsigned I = 0, N = ExternalDefinitions.size(); I != N; ++I) { // Force deserialization of this decl, which will cause it to be queued for // passing to the consumer. GetDecl(ExternalDefinitions[I]); } PassInterestingDeclsToConsumer(); } void PCHReader::PrintStats() { std::fprintf(stderr, "*** PCH Statistics:\n"); unsigned NumTypesLoaded = TypesLoaded.size() - std::count(TypesLoaded.begin(), TypesLoaded.end(), QualType()); unsigned NumDeclsLoaded = DeclsLoaded.size() - std::count(DeclsLoaded.begin(), DeclsLoaded.end(), (Decl *)0); unsigned NumIdentifiersLoaded = IdentifiersLoaded.size() - std::count(IdentifiersLoaded.begin(), IdentifiersLoaded.end(), (IdentifierInfo *)0); unsigned NumSelectorsLoaded = SelectorsLoaded.size() - std::count(SelectorsLoaded.begin(), SelectorsLoaded.end(), Selector()); std::fprintf(stderr, " %u stat cache hits\n", NumStatHits); std::fprintf(stderr, " %u stat cache misses\n", NumStatMisses); if (TotalNumSLocEntries) std::fprintf(stderr, " %u/%u source location entries read (%f%%)\n", NumSLocEntriesRead, TotalNumSLocEntries, ((float)NumSLocEntriesRead/TotalNumSLocEntries * 100)); if (!TypesLoaded.empty()) std::fprintf(stderr, " %u/%u types read (%f%%)\n", NumTypesLoaded, (unsigned)TypesLoaded.size(), ((float)NumTypesLoaded/TypesLoaded.size() * 100)); if (!DeclsLoaded.empty()) std::fprintf(stderr, " %u/%u declarations read (%f%%)\n", NumDeclsLoaded, (unsigned)DeclsLoaded.size(), ((float)NumDeclsLoaded/DeclsLoaded.size() * 100)); if (!IdentifiersLoaded.empty()) std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n", NumIdentifiersLoaded, (unsigned)IdentifiersLoaded.size(), ((float)NumIdentifiersLoaded/IdentifiersLoaded.size() * 100)); if (TotalNumSelectors) std::fprintf(stderr, " %u/%u selectors read (%f%%)\n", NumSelectorsLoaded, TotalNumSelectors, ((float)NumSelectorsLoaded/TotalNumSelectors * 100)); if (TotalNumStatements) std::fprintf(stderr, " %u/%u statements read (%f%%)\n", NumStatementsRead, TotalNumStatements, ((float)NumStatementsRead/TotalNumStatements * 100)); if (TotalNumMacros) std::fprintf(stderr, " %u/%u macros read (%f%%)\n", NumMacrosRead, TotalNumMacros, ((float)NumMacrosRead/TotalNumMacros * 100)); if (TotalLexicalDeclContexts) std::fprintf(stderr, " %u/%u lexical declcontexts read (%f%%)\n", NumLexicalDeclContextsRead, TotalLexicalDeclContexts, ((float)NumLexicalDeclContextsRead/TotalLexicalDeclContexts * 100)); if (TotalVisibleDeclContexts) std::fprintf(stderr, " %u/%u visible declcontexts read (%f%%)\n", NumVisibleDeclContextsRead, TotalVisibleDeclContexts, ((float)NumVisibleDeclContextsRead/TotalVisibleDeclContexts * 100)); if (TotalSelectorsInMethodPool) { std::fprintf(stderr, " %u/%u method pool entries read (%f%%)\n", NumMethodPoolSelectorsRead, TotalSelectorsInMethodPool, ((float)NumMethodPoolSelectorsRead/TotalSelectorsInMethodPool * 100)); std::fprintf(stderr, " %u method pool misses\n", NumMethodPoolMisses); } std::fprintf(stderr, "\n"); } void PCHReader::InitializeSema(Sema &S) { SemaObj = &S; S.ExternalSource = this; // Makes sure any declarations that were deserialized "too early" // still get added to the identifier's declaration chains. for (unsigned I = 0, N = PreloadedDecls.size(); I != N; ++I) { SemaObj->TUScope->AddDecl(Action::DeclPtrTy::make(PreloadedDecls[I])); SemaObj->IdResolver.AddDecl(PreloadedDecls[I]); } PreloadedDecls.clear(); // If there were any tentative definitions, deserialize them and add // them to Sema's list of tentative definitions. for (unsigned I = 0, N = TentativeDefinitions.size(); I != N; ++I) { VarDecl *Var = cast(GetDecl(TentativeDefinitions[I])); SemaObj->TentativeDefinitions.push_back(Var); } // If there were any unused static functions, deserialize them and add to // Sema's list of unused static functions. for (unsigned I = 0, N = UnusedStaticFuncs.size(); I != N; ++I) { FunctionDecl *FD = cast(GetDecl(UnusedStaticFuncs[I])); SemaObj->UnusedStaticFuncs.push_back(FD); } // If there were any locally-scoped external declarations, // deserialize them and add them to Sema's table of locally-scoped // external declarations. for (unsigned I = 0, N = LocallyScopedExternalDecls.size(); I != N; ++I) { NamedDecl *D = cast(GetDecl(LocallyScopedExternalDecls[I])); SemaObj->LocallyScopedExternalDecls[D->getDeclName()] = D; } // If there were any ext_vector type declarations, deserialize them // and add them to Sema's vector of such declarations. for (unsigned I = 0, N = ExtVectorDecls.size(); I != N; ++I) SemaObj->ExtVectorDecls.push_back( cast(GetDecl(ExtVectorDecls[I]))); // FIXME: Do VTable uses and dynamic classes deserialize too much ? // Can we cut them down before writing them ? // If there were any VTable uses, deserialize the information and add it // to Sema's vector and map of VTable uses. unsigned Idx = 0; for (unsigned I = 0, N = VTableUses[Idx++]; I != N; ++I) { CXXRecordDecl *Class = cast(GetDecl(VTableUses[Idx++])); SourceLocation Loc = ReadSourceLocation(VTableUses, Idx); bool DefinitionRequired = VTableUses[Idx++]; SemaObj->VTableUses.push_back(std::make_pair(Class, Loc)); SemaObj->VTablesUsed[Class] = DefinitionRequired; } // If there were any dynamic classes declarations, deserialize them // and add them to Sema's vector of such declarations. for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) SemaObj->DynamicClasses.push_back( cast(GetDecl(DynamicClasses[I]))); } IdentifierInfo* PCHReader::get(const char *NameStart, const char *NameEnd) { // Try to find this name within our on-disk hash table PCHIdentifierLookupTable *IdTable = (PCHIdentifierLookupTable *)IdentifierLookupTable; std::pair Key(NameStart, NameEnd - NameStart); PCHIdentifierLookupTable::iterator Pos = IdTable->find(Key); if (Pos == IdTable->end()) return 0; // Dereferencing the iterator has the effect of building the // IdentifierInfo node and populating it with the various // declarations it needs. return *Pos; } std::pair PCHReader::ReadMethodPool(Selector Sel) { if (!MethodPoolLookupTable) return std::pair(); // Try to find this selector within our on-disk hash table. PCHMethodPoolLookupTable *PoolTable = (PCHMethodPoolLookupTable*)MethodPoolLookupTable; PCHMethodPoolLookupTable::iterator Pos = PoolTable->find(Sel); if (Pos == PoolTable->end()) { ++NumMethodPoolMisses; return std::pair();; } ++NumMethodPoolSelectorsRead; return *Pos; } void PCHReader::SetIdentifierInfo(unsigned ID, IdentifierInfo *II) { assert(ID && "Non-zero identifier ID required"); assert(ID <= IdentifiersLoaded.size() && "identifier ID out of range"); IdentifiersLoaded[ID - 1] = II; } /// \brief Set the globally-visible declarations associated with the given /// identifier. /// /// If the PCH reader is currently in a state where the given declaration IDs /// cannot safely be resolved, they are queued until it is safe to resolve /// them. /// /// \param II an IdentifierInfo that refers to one or more globally-visible /// declarations. /// /// \param DeclIDs the set of declaration IDs with the name @p II that are /// visible at global scope. /// /// \param Nonrecursive should be true to indicate that the caller knows that /// this call is non-recursive, and therefore the globally-visible declarations /// will not be placed onto the pending queue. void PCHReader::SetGloballyVisibleDecls(IdentifierInfo *II, const llvm::SmallVectorImpl &DeclIDs, bool Nonrecursive) { if (CurrentlyLoadingTypeOrDecl && !Nonrecursive) { PendingIdentifierInfos.push_back(PendingIdentifierInfo()); PendingIdentifierInfo &PII = PendingIdentifierInfos.back(); PII.II = II; for (unsigned I = 0, N = DeclIDs.size(); I != N; ++I) PII.DeclIDs.push_back(DeclIDs[I]); return; } for (unsigned I = 0, N = DeclIDs.size(); I != N; ++I) { NamedDecl *D = cast(GetDecl(DeclIDs[I])); if (SemaObj) { // Introduce this declaration into the translation-unit scope // and add it to the declaration chain for this identifier, so // that (unqualified) name lookup will find it. SemaObj->TUScope->AddDecl(Action::DeclPtrTy::make(D)); SemaObj->IdResolver.AddDeclToIdentifierChain(II, D); } else { // Queue this declaration so that it will be added to the // translation unit scope and identifier's declaration chain // once a Sema object is known. PreloadedDecls.push_back(D); } } } IdentifierInfo *PCHReader::DecodeIdentifierInfo(unsigned ID) { if (ID == 0) return 0; if (!IdentifierTableData || IdentifiersLoaded.empty()) { Error("no identifier table in PCH file"); return 0; } assert(PP && "Forgot to set Preprocessor ?"); if (!IdentifiersLoaded[ID - 1]) { uint32_t Offset = IdentifierOffsets[ID - 1]; const char *Str = IdentifierTableData + Offset; // All of the strings in the PCH file are preceded by a 16-bit // length. Extract that 16-bit length to avoid having to execute // strlen(). // NOTE: 'StrLenPtr' is an 'unsigned char*' so that we load bytes as // unsigned integers. This is important to avoid integer overflow when // we cast them to 'unsigned'. const unsigned char *StrLenPtr = (const unsigned char*) Str - 2; unsigned StrLen = (((unsigned) StrLenPtr[0]) | (((unsigned) StrLenPtr[1]) << 8)) - 1; IdentifiersLoaded[ID - 1] = &PP->getIdentifierTable().get(Str, StrLen); } return IdentifiersLoaded[ID - 1]; } void PCHReader::ReadSLocEntry(unsigned ID) { ReadSLocEntryRecord(ID); } Selector PCHReader::DecodeSelector(unsigned ID) { if (ID == 0) return Selector(); if (!MethodPoolLookupTableData) return Selector(); if (ID > TotalNumSelectors) { Error("selector ID out of range in PCH file"); return Selector(); } unsigned Index = ID - 1; if (SelectorsLoaded[Index].getAsOpaquePtr() == 0) { // Load this selector from the selector table. // FIXME: endianness portability issues with SelectorOffsets table PCHMethodPoolLookupTrait Trait(*this); SelectorsLoaded[Index] = Trait.ReadKey(MethodPoolLookupTableData + SelectorOffsets[Index], 0); } return SelectorsLoaded[Index]; } Selector PCHReader::GetExternalSelector(uint32_t ID) { return DecodeSelector(ID); } uint32_t PCHReader::GetNumExternalSelectors() { return TotalNumSelectors + 1; } DeclarationName PCHReader::ReadDeclarationName(const RecordData &Record, unsigned &Idx) { DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++]; switch (Kind) { case DeclarationName::Identifier: return DeclarationName(GetIdentifierInfo(Record, Idx)); case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: return DeclarationName(GetSelector(Record, Idx)); case DeclarationName::CXXConstructorName: return Context->DeclarationNames.getCXXConstructorName( Context->getCanonicalType(GetType(Record[Idx++]))); case DeclarationName::CXXDestructorName: return Context->DeclarationNames.getCXXDestructorName( Context->getCanonicalType(GetType(Record[Idx++]))); case DeclarationName::CXXConversionFunctionName: return Context->DeclarationNames.getCXXConversionFunctionName( Context->getCanonicalType(GetType(Record[Idx++]))); case DeclarationName::CXXOperatorName: return Context->DeclarationNames.getCXXOperatorName( (OverloadedOperatorKind)Record[Idx++]); case DeclarationName::CXXLiteralOperatorName: return Context->DeclarationNames.getCXXLiteralOperatorName( GetIdentifierInfo(Record, Idx)); case DeclarationName::CXXUsingDirective: return DeclarationName::getUsingDirectiveName(); } // Required to silence GCC warning return DeclarationName(); } TemplateName PCHReader::ReadTemplateName(const RecordData &Record, unsigned &Idx) { TemplateName::NameKind Kind = (TemplateName::NameKind)Record[Idx++]; switch (Kind) { case TemplateName::Template: return TemplateName(cast_or_null(GetDecl(Record[Idx++]))); case TemplateName::OverloadedTemplate: { unsigned size = Record[Idx++]; UnresolvedSet<8> Decls; while (size--) Decls.addDecl(cast(GetDecl(Record[Idx++]))); return Context->getOverloadedTemplateName(Decls.begin(), Decls.end()); } case TemplateName::QualifiedTemplate: { NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx); bool hasTemplKeyword = Record[Idx++]; TemplateDecl *Template = cast(GetDecl(Record[Idx++])); return Context->getQualifiedTemplateName(NNS, hasTemplKeyword, Template); } case TemplateName::DependentTemplate: { NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx); if (Record[Idx++]) // isIdentifier return Context->getDependentTemplateName(NNS, GetIdentifierInfo(Record, Idx)); return Context->getDependentTemplateName(NNS, (OverloadedOperatorKind)Record[Idx++]); } } assert(0 && "Unhandled template name kind!"); return TemplateName(); } TemplateArgument PCHReader::ReadTemplateArgument(const RecordData &Record, unsigned &Idx) { switch ((TemplateArgument::ArgKind)Record[Idx++]) { case TemplateArgument::Null: return TemplateArgument(); case TemplateArgument::Type: return TemplateArgument(GetType(Record[Idx++])); case TemplateArgument::Declaration: return TemplateArgument(GetDecl(Record[Idx++])); case TemplateArgument::Integral: { llvm::APSInt Value = ReadAPSInt(Record, Idx); QualType T = GetType(Record[Idx++]); return TemplateArgument(Value, T); } case TemplateArgument::Template: return TemplateArgument(ReadTemplateName(Record, Idx)); case TemplateArgument::Expression: return TemplateArgument(ReadExpr()); case TemplateArgument::Pack: { unsigned NumArgs = Record[Idx++]; llvm::SmallVector Args; Args.reserve(NumArgs); while (NumArgs--) Args.push_back(ReadTemplateArgument(Record, Idx)); TemplateArgument TemplArg; TemplArg.setArgumentPack(Args.data(), Args.size(), /*CopyArgs=*/true); return TemplArg; } } assert(0 && "Unhandled template argument kind!"); return TemplateArgument(); } TemplateParameterList * PCHReader::ReadTemplateParameterList(const RecordData &Record, unsigned &Idx) { SourceLocation TemplateLoc = ReadSourceLocation(Record, Idx); SourceLocation LAngleLoc = ReadSourceLocation(Record, Idx); SourceLocation RAngleLoc = ReadSourceLocation(Record, Idx); unsigned NumParams = Record[Idx++]; llvm::SmallVector Params; Params.reserve(NumParams); while (NumParams--) Params.push_back(cast(GetDecl(Record[Idx++]))); TemplateParameterList* TemplateParams = TemplateParameterList::Create(*Context, TemplateLoc, LAngleLoc, Params.data(), Params.size(), RAngleLoc); return TemplateParams; } void PCHReader:: ReadTemplateArgumentList(llvm::SmallVector &TemplArgs, const RecordData &Record, unsigned &Idx) { unsigned NumTemplateArgs = Record[Idx++]; TemplArgs.reserve(NumTemplateArgs); while (NumTemplateArgs--) TemplArgs.push_back(ReadTemplateArgument(Record, Idx)); } /// \brief Read a UnresolvedSet structure. void PCHReader::ReadUnresolvedSet(UnresolvedSetImpl &Set, const RecordData &Record, unsigned &Idx) { unsigned NumDecls = Record[Idx++]; while (NumDecls--) { NamedDecl *D = cast(GetDecl(Record[Idx++])); AccessSpecifier AS = (AccessSpecifier)Record[Idx++]; Set.addDecl(D, AS); } } CXXBaseSpecifier PCHReader::ReadCXXBaseSpecifier(const RecordData &Record, unsigned &Idx) { bool isVirtual = static_cast(Record[Idx++]); bool isBaseOfClass = static_cast(Record[Idx++]); AccessSpecifier AS = static_cast(Record[Idx++]); QualType T = GetType(Record[Idx++]); SourceRange Range = ReadSourceRange(Record, Idx); return CXXBaseSpecifier(Range, isVirtual, isBaseOfClass, AS, T); } NestedNameSpecifier * PCHReader::ReadNestedNameSpecifier(const RecordData &Record, unsigned &Idx) { unsigned N = Record[Idx++]; NestedNameSpecifier *NNS = 0, *Prev = 0; for (unsigned I = 0; I != N; ++I) { NestedNameSpecifier::SpecifierKind Kind = (NestedNameSpecifier::SpecifierKind)Record[Idx++]; switch (Kind) { case NestedNameSpecifier::Identifier: { IdentifierInfo *II = GetIdentifierInfo(Record, Idx); NNS = NestedNameSpecifier::Create(*Context, Prev, II); break; } case NestedNameSpecifier::Namespace: { NamespaceDecl *NS = cast(GetDecl(Record[Idx++])); NNS = NestedNameSpecifier::Create(*Context, Prev, NS); break; } case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { Type *T = GetType(Record[Idx++]).getTypePtr(); bool Template = Record[Idx++]; NNS = NestedNameSpecifier::Create(*Context, Prev, Template, T); break; } case NestedNameSpecifier::Global: { NNS = NestedNameSpecifier::GlobalSpecifier(*Context); // No associated value, and there can't be a prefix. break; } } Prev = NNS; } return NNS; } SourceRange PCHReader::ReadSourceRange(const RecordData &Record, unsigned &Idx) { SourceLocation beg = SourceLocation::getFromRawEncoding(Record[Idx++]); SourceLocation end = SourceLocation::getFromRawEncoding(Record[Idx++]); return SourceRange(beg, end); } /// \brief Read an integral value llvm::APInt PCHReader::ReadAPInt(const RecordData &Record, unsigned &Idx) { unsigned BitWidth = Record[Idx++]; unsigned NumWords = llvm::APInt::getNumWords(BitWidth); llvm::APInt Result(BitWidth, NumWords, &Record[Idx]); Idx += NumWords; return Result; } /// \brief Read a signed integral value llvm::APSInt PCHReader::ReadAPSInt(const RecordData &Record, unsigned &Idx) { bool isUnsigned = Record[Idx++]; return llvm::APSInt(ReadAPInt(Record, Idx), isUnsigned); } /// \brief Read a floating-point value llvm::APFloat PCHReader::ReadAPFloat(const RecordData &Record, unsigned &Idx) { return llvm::APFloat(ReadAPInt(Record, Idx)); } // \brief Read a string std::string PCHReader::ReadString(const RecordData &Record, unsigned &Idx) { unsigned Len = Record[Idx++]; std::string Result(Record.data() + Idx, Record.data() + Idx + Len); Idx += Len; return Result; } CXXTemporary *PCHReader::ReadCXXTemporary(const RecordData &Record, unsigned &Idx) { CXXDestructorDecl *Decl = cast(GetDecl(Record[Idx++])); return CXXTemporary::Create(*Context, Decl); } DiagnosticBuilder PCHReader::Diag(unsigned DiagID) { return Diag(SourceLocation(), DiagID); } DiagnosticBuilder PCHReader::Diag(SourceLocation Loc, unsigned DiagID) { return Diags.Report(FullSourceLoc(Loc, SourceMgr), DiagID); } /// \brief Retrieve the identifier table associated with the /// preprocessor. IdentifierTable &PCHReader::getIdentifierTable() { assert(PP && "Forgot to set Preprocessor ?"); return PP->getIdentifierTable(); } /// \brief Record that the given ID maps to the given switch-case /// statement. void PCHReader::RecordSwitchCaseID(SwitchCase *SC, unsigned ID) { assert(SwitchCaseStmts[ID] == 0 && "Already have a SwitchCase with this ID"); SwitchCaseStmts[ID] = SC; } /// \brief Retrieve the switch-case statement with the given ID. SwitchCase *PCHReader::getSwitchCaseWithID(unsigned ID) { assert(SwitchCaseStmts[ID] != 0 && "No SwitchCase with this ID"); return SwitchCaseStmts[ID]; } /// \brief Record that the given label statement has been /// deserialized and has the given ID. void PCHReader::RecordLabelStmt(LabelStmt *S, unsigned ID) { assert(LabelStmts.find(ID) == LabelStmts.end() && "Deserialized label twice"); LabelStmts[ID] = S; // If we've already seen any goto statements that point to this // label, resolve them now. typedef std::multimap::iterator GotoIter; std::pair Gotos = UnresolvedGotoStmts.equal_range(ID); for (GotoIter Goto = Gotos.first; Goto != Gotos.second; ++Goto) Goto->second->setLabel(S); UnresolvedGotoStmts.erase(Gotos.first, Gotos.second); // If we've already seen any address-label statements that point to // this label, resolve them now. typedef std::multimap::iterator AddrLabelIter; std::pair AddrLabels = UnresolvedAddrLabelExprs.equal_range(ID); for (AddrLabelIter AddrLabel = AddrLabels.first; AddrLabel != AddrLabels.second; ++AddrLabel) AddrLabel->second->setLabel(S); UnresolvedAddrLabelExprs.erase(AddrLabels.first, AddrLabels.second); } /// \brief Set the label of the given statement to the label /// identified by ID. /// /// Depending on the order in which the label and other statements /// referencing that label occur, this operation may complete /// immediately (updating the statement) or it may queue the /// statement to be back-patched later. void PCHReader::SetLabelOf(GotoStmt *S, unsigned ID) { std::map::iterator Label = LabelStmts.find(ID); if (Label != LabelStmts.end()) { // We've already seen this label, so set the label of the goto and // we're done. S->setLabel(Label->second); } else { // We haven't seen this label yet, so add this goto to the set of // unresolved goto statements. UnresolvedGotoStmts.insert(std::make_pair(ID, S)); } } /// \brief Set the label of the given expression to the label /// identified by ID. /// /// Depending on the order in which the label and other statements /// referencing that label occur, this operation may complete /// immediately (updating the statement) or it may queue the /// statement to be back-patched later. void PCHReader::SetLabelOf(AddrLabelExpr *S, unsigned ID) { std::map::iterator Label = LabelStmts.find(ID); if (Label != LabelStmts.end()) { // We've already seen this label, so set the label of the // label-address expression and we're done. S->setLabel(Label->second); } else { // We haven't seen this label yet, so add this label-address // expression to the set of unresolved label-address expressions. UnresolvedAddrLabelExprs.insert(std::make_pair(ID, S)); } } PCHReader::LoadingTypeOrDecl::LoadingTypeOrDecl(PCHReader &Reader) : Reader(Reader), Parent(Reader.CurrentlyLoadingTypeOrDecl) { Reader.CurrentlyLoadingTypeOrDecl = this; } PCHReader::LoadingTypeOrDecl::~LoadingTypeOrDecl() { if (!Parent) { // If any identifiers with corresponding top-level declarations have // been loaded, load those declarations now. while (!Reader.PendingIdentifierInfos.empty()) { Reader.SetGloballyVisibleDecls(Reader.PendingIdentifierInfos.front().II, Reader.PendingIdentifierInfos.front().DeclIDs, true); Reader.PendingIdentifierInfos.pop_front(); } // We are not in recursive loading, so it's safe to pass the "interesting" // decls to the consumer. if (Reader.Consumer) Reader.PassInterestingDeclsToConsumer(); } Reader.CurrentlyLoadingTypeOrDecl = Parent; }