//===--- Mangle.cpp - Mangle C++ Names --------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implements C++ name mangling according to the Itanium C++ ABI, // which is used in GCC 3.2 and newer (and many compilers that are // ABI-compatible with GCC): // // http://www.codesourcery.com/public/cxx-abi/abi.html // //===----------------------------------------------------------------------===// #include "Mangle.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/ExprCXX.h" #include "clang/Basic/SourceManager.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/ErrorHandling.h" #include "CGVtable.h" using namespace clang; using namespace CodeGen; namespace { static const CXXMethodDecl *getStructor(const CXXMethodDecl *MD) { assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) && "Passed in decl is not a ctor or dtor!"); if (const TemplateDecl *TD = MD->getPrimaryTemplate()) { MD = cast<CXXMethodDecl>(TD->getTemplatedDecl()); assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) && "Templated decl is not a ctor or dtor!"); } return MD; } /// CXXNameMangler - Manage the mangling of a single name. class CXXNameMangler { MangleContext &Context; llvm::raw_svector_ostream Out; const CXXMethodDecl *Structor; unsigned StructorType; llvm::DenseMap<uintptr_t, unsigned> Substitutions; public: CXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res) : Context(C), Out(Res), Structor(0), StructorType(0) { } CXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res, const CXXConstructorDecl *D, CXXCtorType Type) : Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type) { } CXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res, const CXXDestructorDecl *D, CXXDtorType Type) : Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type) { } llvm::raw_svector_ostream &getStream() { return Out; } void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z"); void mangleCallOffset(const ThunkAdjustment &Adjustment); void mangleNumber(int64_t Number); void mangleFunctionEncoding(const FunctionDecl *FD); void mangleName(const NamedDecl *ND); void mangleType(QualType T); private: bool mangleSubstitution(const NamedDecl *ND); bool mangleSubstitution(QualType T); bool mangleSubstitution(uintptr_t Ptr); bool mangleStandardSubstitution(const NamedDecl *ND); void addSubstitution(const NamedDecl *ND) { ND = cast<NamedDecl>(ND->getCanonicalDecl()); addSubstitution(reinterpret_cast<uintptr_t>(ND)); } void addSubstitution(QualType T); void addSubstitution(uintptr_t Ptr); void mangleName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); void mangleUnqualifiedName(const NamedDecl *ND); void mangleUnscopedName(const NamedDecl *ND); void mangleUnscopedTemplateName(const TemplateDecl *ND); void mangleSourceName(const IdentifierInfo *II); void mangleLocalName(const NamedDecl *ND); void mangleNestedName(const NamedDecl *ND, const DeclContext *DC); void mangleNestedName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); void manglePrefix(const DeclContext *DC); void mangleTemplatePrefix(const TemplateDecl *ND); void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); void mangleQualifiers(Qualifiers Quals); void mangleObjCMethodName(const ObjCMethodDecl *MD); // Declare manglers for every type class. #define ABSTRACT_TYPE(CLASS, PARENT) #define NON_CANONICAL_TYPE(CLASS, PARENT) #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); #include "clang/AST/TypeNodes.def" void mangleType(const TagType*); void mangleBareFunctionType(const FunctionType *T, bool MangleReturnType); void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); void mangleExpression(const Expr *E); void mangleCXXCtorType(CXXCtorType T); void mangleCXXDtorType(CXXDtorType T); void mangleTemplateArgs(const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); void mangleTemplateArgumentList(const TemplateArgumentList &L); void mangleTemplateArgument(const TemplateArgument &A); void mangleTemplateParameter(unsigned Index); }; } static bool isInCLinkageSpecification(const Decl *D) { D = D->getCanonicalDecl(); for (const DeclContext *DC = D->getDeclContext(); !DC->isTranslationUnit(); DC = DC->getParent()) { if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC)) return Linkage->getLanguage() == LinkageSpecDecl::lang_c; } return false; } bool MangleContext::shouldMangleDeclName(const NamedDecl *D) { // In C, functions with no attributes never need to be mangled. Fastpath them. if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs()) return false; // Any decl can be declared with __asm("foo") on it, and this takes precedence // over all other naming in the .o file. if (D->hasAttr<AsmLabelAttr>()) return true; // Clang's "overloadable" attribute extension to C/C++ implies name mangling // (always) as does passing a C++ member function and a function // whose name is not a simple identifier. const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) || !FD->getDeclName().isIdentifier())) return true; // Otherwise, no mangling is done outside C++ mode. if (!getASTContext().getLangOptions().CPlusPlus) return false; // No mangling in an "implicit extern C" header. if (D->getLocation().isValid() && getASTContext().getSourceManager(). isInExternCSystemHeader(D->getLocation())) return false; // Variables at global scope are not mangled. if (!FD) { const DeclContext *DC = D->getDeclContext(); // Check for extern variable declared locally. if (isa<FunctionDecl>(DC) && D->hasLinkage()) while (!DC->isNamespace() && !DC->isTranslationUnit()) DC = DC->getParent(); if (DC->isTranslationUnit()) return false; } // C functions and "main" are not mangled. if ((FD && FD->isMain()) || isInCLinkageSpecification(D)) return false; return true; } void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) { // Any decl can be declared with __asm("foo") on it, and this takes precedence // over all other naming in the .o file. if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) { // If we have an asm name, then we use it as the mangling. Out << '\01'; // LLVM IR Marker for __asm("foo") Out << ALA->getLabel(); return; } // <mangled-name> ::= _Z <encoding> // ::= <data name> // ::= <special-name> Out << Prefix; if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) mangleFunctionEncoding(FD); else mangleName(cast<VarDecl>(D)); } void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { // <encoding> ::= <function name> <bare-function-type> mangleName(FD); // Don't mangle in the type if this isn't a decl we should typically mangle. if (!Context.shouldMangleDeclName(FD)) return; // Whether the mangling of a function type includes the return type depends on // the context and the nature of the function. The rules for deciding whether // the return type is included are: // // 1. Template functions (names or types) have return types encoded, with // the exceptions listed below. // 2. Function types not appearing as part of a function name mangling, // e.g. parameters, pointer types, etc., have return type encoded, with the // exceptions listed below. // 3. Non-template function names do not have return types encoded. // // The exceptions mentioned in (1) and (2) above, for which the return type is // never included, are // 1. Constructors. // 2. Destructors. // 3. Conversion operator functions, e.g. operator int. bool MangleReturnType = false; if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || isa<CXXConversionDecl>(FD))) MangleReturnType = true; // Mangle the type of the primary template. FD = PrimaryTemplate->getTemplatedDecl(); } // Do the canonicalization out here because parameter types can // undergo additional canonicalization (e.g. array decay). FunctionType *FT = cast<FunctionType>(Context.getASTContext() .getCanonicalType(FD->getType())); mangleBareFunctionType(FT, MangleReturnType); } /// isStd - Return whether a given namespace is the 'std' namespace. static bool isStd(const NamespaceDecl *NS) { const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); return II && II->isStr("std"); } static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { while (isa<LinkageSpecDecl>(DC)) { assert(cast<LinkageSpecDecl>(DC)->getLanguage() == LinkageSpecDecl::lang_cxx && "Unexpected linkage decl!"); DC = DC->getParent(); } return DC; } // isStdNamespace - Return whether a given decl context is a toplevel 'std' // namespace. static bool isStdNamespace(const DeclContext *DC) { if (!DC->isNamespace()) return false; if (!IgnoreLinkageSpecDecls(DC->getParent())->isTranslationUnit()) return false; return isStd(cast<NamespaceDecl>(DC)); } static const TemplateDecl * isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { // Check if we have a function template. if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){ if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { TemplateArgs = FD->getTemplateSpecializationArgs(); return TD; } } // Check if we have a class template. if (const ClassTemplateSpecializationDecl *Spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { TemplateArgs = &Spec->getTemplateArgs(); return Spec->getSpecializedTemplate(); } return 0; } void CXXNameMangler::mangleName(const NamedDecl *ND) { // <name> ::= <nested-name> // ::= <unscoped-name> // ::= <unscoped-template-name> <template-args> // ::= <local-name> // const DeclContext *DC = ND->getDeclContext(); // If this is an extern variable declared locally, the relevant DeclContext // is that of the containing namespace, or the translation unit. if (isa<FunctionDecl>(DC) && ND->hasLinkage()) while (!DC->isNamespace() && !DC->isTranslationUnit()) DC = DC->getParent(); while (isa<LinkageSpecDecl>(DC)) DC = DC->getParent(); if (DC->isTranslationUnit() || isStdNamespace(DC)) { // Check if we have a template. const TemplateArgumentList *TemplateArgs = 0; if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { mangleUnscopedTemplateName(TD); mangleTemplateArgumentList(*TemplateArgs); return; } mangleUnscopedName(ND); return; } if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) { mangleLocalName(ND); return; } mangleNestedName(ND, DC); } void CXXNameMangler::mangleName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext()); if (DC->isTranslationUnit() || isStdNamespace(DC)) { mangleUnscopedTemplateName(TD); mangleTemplateArgs(TemplateArgs, NumTemplateArgs); } else { mangleNestedName(TD, TemplateArgs, NumTemplateArgs); } } void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) { // <unscoped-name> ::= <unqualified-name> // ::= St <unqualified-name> # ::std:: if (isStdNamespace(ND->getDeclContext())) Out << "St"; mangleUnqualifiedName(ND); } void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) { // <unscoped-template-name> ::= <unscoped-name> // ::= <substitution> if (mangleSubstitution(ND)) return; mangleUnscopedName(ND->getTemplatedDecl()); addSubstitution(ND); } void CXXNameMangler::mangleNumber(int64_t Number) { // <number> ::= [n] <non-negative decimal integer> if (Number < 0) { Out << 'n'; Number = -Number; } Out << Number; } void CXXNameMangler::mangleCallOffset(const ThunkAdjustment &Adjustment) { // <call-offset> ::= h <nv-offset> _ // ::= v <v-offset> _ // <nv-offset> ::= <offset number> # non-virtual base override // <v-offset> ::= <offset number> _ <virtual offset number> // # virtual base override, with vcall offset if (!Adjustment.Virtual) { Out << 'h'; mangleNumber(Adjustment.NonVirtual); Out << '_'; return; } Out << 'v'; mangleNumber(Adjustment.NonVirtual); Out << '_'; mangleNumber(Adjustment.Virtual); Out << '_'; } void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND) { // <unqualified-name> ::= <operator-name> // ::= <ctor-dtor-name> // ::= <source-name> DeclarationName Name = ND->getDeclName(); switch (Name.getNameKind()) { case DeclarationName::Identifier: { if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { if (NS->isAnonymousNamespace()) { // This is how gcc mangles these names. It's apparently // always '1', no matter how many different anonymous // namespaces appear in a context. Out << "12_GLOBAL__N_1"; break; } } if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { mangleSourceName(II); break; } // We must have an anonymous struct. const TagDecl *TD = cast<TagDecl>(ND); if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) { assert(TD->getDeclContext() == D->getDeclContext() && "Typedef should not be in another decl context!"); assert(D->getDeclName().getAsIdentifierInfo() && "Typedef was not named!"); mangleSourceName(D->getDeclName().getAsIdentifierInfo()); break; } // Get a unique id for the anonymous struct. uint64_t AnonStructId = Context.getAnonymousStructId(TD); // Mangle it as a source name in the form // [n] $_<id> // where n is the length of the string. llvm::SmallString<8> Str; Str += "$_"; Str += llvm::utostr(AnonStructId); Out << Str.size(); Out << Str.str(); break; } case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: assert(false && "Can't mangle Objective-C selector names here!"); break; case DeclarationName::CXXConstructorName: if (ND == Structor) // If the named decl is the C++ constructor we're mangling, use the type // we were given. mangleCXXCtorType(static_cast<CXXCtorType>(StructorType)); else // Otherwise, use the complete constructor name. This is relevant if a // class with a constructor is declared within a constructor. mangleCXXCtorType(Ctor_Complete); break; case DeclarationName::CXXDestructorName: if (ND == Structor) // If the named decl is the C++ destructor we're mangling, use the type we // were given. mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); else // Otherwise, use the complete destructor name. This is relevant if a // class with a destructor is declared within a destructor. mangleCXXDtorType(Dtor_Complete); break; case DeclarationName::CXXConversionFunctionName: // <operator-name> ::= cv <type> # (cast) Out << "cv"; mangleType(Context.getASTContext().getCanonicalType(Name.getCXXNameType())); break; case DeclarationName::CXXOperatorName: mangleOperatorName(Name.getCXXOverloadedOperator(), cast<FunctionDecl>(ND)->getNumParams()); break; case DeclarationName::CXXLiteralOperatorName: // FIXME: This mangling is not yet official. Out << "li"; mangleSourceName(Name.getCXXLiteralIdentifier()); break; case DeclarationName::CXXUsingDirective: assert(false && "Can't mangle a using directive name!"); break; } } void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { // <source-name> ::= <positive length number> <identifier> // <number> ::= [n] <non-negative decimal integer> // <identifier> ::= <unqualified source code identifier> Out << II->getLength() << II->getName(); } void CXXNameMangler::mangleNestedName(const NamedDecl *ND, const DeclContext *DC) { // <nested-name> ::= N [<CV-qualifiers>] <prefix> <unqualified-name> E // ::= N [<CV-qualifiers>] <template-prefix> <template-args> E Out << 'N'; if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers())); // Check if we have a template. const TemplateArgumentList *TemplateArgs = 0; if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { mangleTemplatePrefix(TD); mangleTemplateArgumentList(*TemplateArgs); } else { manglePrefix(DC); mangleUnqualifiedName(ND); } Out << 'E'; } void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E Out << 'N'; mangleTemplatePrefix(TD); mangleTemplateArgs(TemplateArgs, NumTemplateArgs); Out << 'E'; } void CXXNameMangler::mangleLocalName(const NamedDecl *ND) { // <local-name> := Z <function encoding> E <entity name> [<discriminator>] // := Z <function encoding> E s [<discriminator>] // <discriminator> := _ <non-negative number> Out << 'Z'; if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND->getDeclContext())) mangleObjCMethodName(MD); else mangleFunctionEncoding(cast<FunctionDecl>(ND->getDeclContext())); Out << 'E'; mangleUnqualifiedName(ND); } void CXXNameMangler::manglePrefix(const DeclContext *DC) { // <prefix> ::= <prefix> <unqualified-name> // ::= <template-prefix> <template-args> // ::= <template-param> // ::= # empty // ::= <substitution> while (isa<LinkageSpecDecl>(DC)) DC = DC->getParent(); if (DC->isTranslationUnit()) return; if (mangleSubstitution(cast<NamedDecl>(DC))) return; // Check if we have a template. const TemplateArgumentList *TemplateArgs = 0; if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) { mangleTemplatePrefix(TD); mangleTemplateArgumentList(*TemplateArgs); } else { manglePrefix(DC->getParent()); mangleUnqualifiedName(cast<NamedDecl>(DC)); } addSubstitution(cast<NamedDecl>(DC)); } void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) { // <template-prefix> ::= <prefix> <template unqualified-name> // ::= <template-param> // ::= <substitution> if (mangleSubstitution(ND)) return; // FIXME: <template-param> manglePrefix(ND->getDeclContext()); mangleUnqualifiedName(ND->getTemplatedDecl()); addSubstitution(ND); } void CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { switch (OO) { // <operator-name> ::= nw # new case OO_New: Out << "nw"; break; // ::= na # new[] case OO_Array_New: Out << "na"; break; // ::= dl # delete case OO_Delete: Out << "dl"; break; // ::= da # delete[] case OO_Array_Delete: Out << "da"; break; // ::= ps # + (unary) // ::= pl # + case OO_Plus: Out << (Arity == 1? "ps" : "pl"); break; // ::= ng # - (unary) // ::= mi # - case OO_Minus: Out << (Arity == 1? "ng" : "mi"); break; // ::= ad # & (unary) // ::= an # & case OO_Amp: Out << (Arity == 1? "ad" : "an"); break; // ::= de # * (unary) // ::= ml # * case OO_Star: Out << (Arity == 1? "de" : "ml"); break; // ::= co # ~ case OO_Tilde: Out << "co"; break; // ::= dv # / case OO_Slash: Out << "dv"; break; // ::= rm # % case OO_Percent: Out << "rm"; break; // ::= or # | case OO_Pipe: Out << "or"; break; // ::= eo # ^ case OO_Caret: Out << "eo"; break; // ::= aS # = case OO_Equal: Out << "aS"; break; // ::= pL # += case OO_PlusEqual: Out << "pL"; break; // ::= mI # -= case OO_MinusEqual: Out << "mI"; break; // ::= mL # *= case OO_StarEqual: Out << "mL"; break; // ::= dV # /= case OO_SlashEqual: Out << "dV"; break; // ::= rM # %= case OO_PercentEqual: Out << "rM"; break; // ::= aN # &= case OO_AmpEqual: Out << "aN"; break; // ::= oR # |= case OO_PipeEqual: Out << "oR"; break; // ::= eO # ^= case OO_CaretEqual: Out << "eO"; break; // ::= ls # << case OO_LessLess: Out << "ls"; break; // ::= rs # >> case OO_GreaterGreater: Out << "rs"; break; // ::= lS # <<= case OO_LessLessEqual: Out << "lS"; break; // ::= rS # >>= case OO_GreaterGreaterEqual: Out << "rS"; break; // ::= eq # == case OO_EqualEqual: Out << "eq"; break; // ::= ne # != case OO_ExclaimEqual: Out << "ne"; break; // ::= lt # < case OO_Less: Out << "lt"; break; // ::= gt # > case OO_Greater: Out << "gt"; break; // ::= le # <= case OO_LessEqual: Out << "le"; break; // ::= ge # >= case OO_GreaterEqual: Out << "ge"; break; // ::= nt # ! case OO_Exclaim: Out << "nt"; break; // ::= aa # && case OO_AmpAmp: Out << "aa"; break; // ::= oo # || case OO_PipePipe: Out << "oo"; break; // ::= pp # ++ case OO_PlusPlus: Out << "pp"; break; // ::= mm # -- case OO_MinusMinus: Out << "mm"; break; // ::= cm # , case OO_Comma: Out << "cm"; break; // ::= pm # ->* case OO_ArrowStar: Out << "pm"; break; // ::= pt # -> case OO_Arrow: Out << "pt"; break; // ::= cl # () case OO_Call: Out << "cl"; break; // ::= ix # [] case OO_Subscript: Out << "ix"; break; // ::= qu # ? // The conditional operator can't be overloaded, but we still handle it when // mangling expressions. case OO_Conditional: Out << "qu"; break; case OO_None: case NUM_OVERLOADED_OPERATORS: assert(false && "Not an overloaded operator"); break; } } void CXXNameMangler::mangleQualifiers(Qualifiers Quals) { // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const if (Quals.hasRestrict()) Out << 'r'; if (Quals.hasVolatile()) Out << 'V'; if (Quals.hasConst()) Out << 'K'; // FIXME: For now, just drop all extension qualifiers on the floor. } void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { llvm::SmallString<64> Name; llvm::raw_svector_ostream OS(Name); const ObjCContainerDecl *CD = dyn_cast<ObjCContainerDecl>(MD->getDeclContext()); assert (CD && "Missing container decl in GetNameForMethod"); OS << (MD->isInstanceMethod() ? '-' : '+') << '[' << CD->getName(); if (const ObjCCategoryImplDecl *CID = dyn_cast<ObjCCategoryImplDecl>(CD)) OS << '(' << CID->getNameAsString() << ')'; OS << ' ' << MD->getSelector().getAsString() << ']'; Out << OS.str().size() << OS.str(); } void CXXNameMangler::mangleType(QualType T) { // Only operate on the canonical type! T = Context.getASTContext().getCanonicalType(T); bool IsSubstitutable = T.hasLocalQualifiers() || !isa<BuiltinType>(T); if (IsSubstitutable && mangleSubstitution(T)) return; if (Qualifiers Quals = T.getLocalQualifiers()) { mangleQualifiers(Quals); // Recurse: even if the qualified type isn't yet substitutable, // the unqualified type might be. mangleType(T.getLocalUnqualifiedType()); } else { switch (T->getTypeClass()) { #define ABSTRACT_TYPE(CLASS, PARENT) #define NON_CANONICAL_TYPE(CLASS, PARENT) \ case Type::CLASS: \ llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ return; #define TYPE(CLASS, PARENT) \ case Type::CLASS: \ mangleType(static_cast<const CLASS##Type*>(T.getTypePtr())); \ break; #include "clang/AST/TypeNodes.def" } } // Add the substitution. if (IsSubstitutable) addSubstitution(T); } void CXXNameMangler::mangleType(const BuiltinType *T) { // <type> ::= <builtin-type> // <builtin-type> ::= v # void // ::= w # wchar_t // ::= b # bool // ::= c # char // ::= a # signed char // ::= h # unsigned char // ::= s # short // ::= t # unsigned short // ::= i # int // ::= j # unsigned int // ::= l # long // ::= m # unsigned long // ::= x # long long, __int64 // ::= y # unsigned long long, __int64 // ::= n # __int128 // UNSUPPORTED: ::= o # unsigned __int128 // ::= f # float // ::= d # double // ::= e # long double, __float80 // UNSUPPORTED: ::= g # __float128 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) // UNSUPPORTED: ::= Dh # IEEE 754r half-precision floating point (16 bits) // ::= Di # char32_t // ::= Ds # char16_t // ::= u <source-name> # vendor extended type // From our point of view, std::nullptr_t is a builtin, but as far as mangling // is concerned, it's a type called std::nullptr_t. switch (T->getKind()) { case BuiltinType::Void: Out << 'v'; break; case BuiltinType::Bool: Out << 'b'; break; case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break; case BuiltinType::UChar: Out << 'h'; break; case BuiltinType::UShort: Out << 't'; break; case BuiltinType::UInt: Out << 'j'; break; case BuiltinType::ULong: Out << 'm'; break; case BuiltinType::ULongLong: Out << 'y'; break; case BuiltinType::UInt128: Out << 'o'; break; case BuiltinType::SChar: Out << 'a'; break; case BuiltinType::WChar: Out << 'w'; break; case BuiltinType::Char16: Out << "Ds"; break; case BuiltinType::Char32: Out << "Di"; break; case BuiltinType::Short: Out << 's'; break; case BuiltinType::Int: Out << 'i'; break; case BuiltinType::Long: Out << 'l'; break; case BuiltinType::LongLong: Out << 'x'; break; case BuiltinType::Int128: Out << 'n'; break; case BuiltinType::Float: Out << 'f'; break; case BuiltinType::Double: Out << 'd'; break; case BuiltinType::LongDouble: Out << 'e'; break; case BuiltinType::NullPtr: Out << "St9nullptr_t"; break; case BuiltinType::Overload: case BuiltinType::Dependent: assert(false && "Overloaded and dependent types shouldn't get to name mangling"); break; case BuiltinType::UndeducedAuto: assert(0 && "Should not see undeduced auto here"); break; case BuiltinType::ObjCId: Out << "11objc_object"; break; case BuiltinType::ObjCClass: Out << "10objc_class"; break; case BuiltinType::ObjCSel: Out << "13objc_selector"; break; } } // <type> ::= <function-type> // <function-type> ::= F [Y] <bare-function-type> E void CXXNameMangler::mangleType(const FunctionProtoType *T) { Out << 'F'; // FIXME: We don't have enough information in the AST to produce the 'Y' // encoding for extern "C" function types. mangleBareFunctionType(T, /*MangleReturnType=*/true); Out << 'E'; } void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { llvm_unreachable("Can't mangle K&R function prototypes"); } void CXXNameMangler::mangleBareFunctionType(const FunctionType *T, bool MangleReturnType) { // We should never be mangling something without a prototype. const FunctionProtoType *Proto = cast<FunctionProtoType>(T); // <bare-function-type> ::= <signature type>+ if (MangleReturnType) mangleType(Proto->getResultType()); if (Proto->getNumArgs() == 0) { Out << 'v'; return; } for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), ArgEnd = Proto->arg_type_end(); Arg != ArgEnd; ++Arg) mangleType(*Arg); // <builtin-type> ::= z # ellipsis if (Proto->isVariadic()) Out << 'z'; } // <type> ::= <class-enum-type> // <class-enum-type> ::= <name> void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { mangleName(T->getDecl()); } // <type> ::= <class-enum-type> // <class-enum-type> ::= <name> void CXXNameMangler::mangleType(const EnumType *T) { mangleType(static_cast<const TagType*>(T)); } void CXXNameMangler::mangleType(const RecordType *T) { mangleType(static_cast<const TagType*>(T)); } void CXXNameMangler::mangleType(const TagType *T) { mangleName(T->getDecl()); } // <type> ::= <array-type> // <array-type> ::= A <positive dimension number> _ <element type> // ::= A [<dimension expression>] _ <element type> void CXXNameMangler::mangleType(const ConstantArrayType *T) { Out << 'A' << T->getSize() << '_'; mangleType(T->getElementType()); } void CXXNameMangler::mangleType(const VariableArrayType *T) { Out << 'A'; mangleExpression(T->getSizeExpr()); Out << '_'; mangleType(T->getElementType()); } void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { Out << 'A'; mangleExpression(T->getSizeExpr()); Out << '_'; mangleType(T->getElementType()); } void CXXNameMangler::mangleType(const IncompleteArrayType *T) { Out << 'A' << '_'; mangleType(T->getElementType()); } // <type> ::= <pointer-to-member-type> // <pointer-to-member-type> ::= M <class type> <member type> void CXXNameMangler::mangleType(const MemberPointerType *T) { Out << 'M'; mangleType(QualType(T->getClass(), 0)); QualType PointeeType = T->getPointeeType(); if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals())); mangleType(FPT); } else mangleType(PointeeType); } // <type> ::= <template-param> void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { mangleTemplateParameter(T->getIndex()); } // FIXME: <type> ::= <template-template-param> <template-args> // <type> ::= P <type> # pointer-to void CXXNameMangler::mangleType(const PointerType *T) { Out << 'P'; mangleType(T->getPointeeType()); } void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { Out << 'P'; mangleType(T->getPointeeType()); } // <type> ::= R <type> # reference-to void CXXNameMangler::mangleType(const LValueReferenceType *T) { Out << 'R'; mangleType(T->getPointeeType()); } // <type> ::= O <type> # rvalue reference-to (C++0x) void CXXNameMangler::mangleType(const RValueReferenceType *T) { Out << 'O'; mangleType(T->getPointeeType()); } // <type> ::= C <type> # complex pair (C 2000) void CXXNameMangler::mangleType(const ComplexType *T) { Out << 'C'; mangleType(T->getElementType()); } // GNU extension: vector types void CXXNameMangler::mangleType(const VectorType *T) { Out << "U8__vector"; mangleType(T->getElementType()); } void CXXNameMangler::mangleType(const ExtVectorType *T) { mangleType(static_cast<const VectorType*>(T)); } void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { Out << "U8__vector"; mangleType(T->getElementType()); } void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { mangleSourceName(T->getDecl()->getIdentifier()); } void CXXNameMangler::mangleType(const BlockPointerType *T) { assert(false && "can't mangle block pointer types yet"); } void CXXNameMangler::mangleType(const FixedWidthIntType *T) { assert(false && "can't mangle arbitary-precision integer type yet"); } void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl(); assert(TD && "FIXME: Support dependent template names!"); mangleName(TD, T->getArgs(), T->getNumArgs()); } void CXXNameMangler::mangleType(const TypenameType *T) { // Typename types are always nested Out << 'N'; const Type *QTy = T->getQualifier()->getAsType(); if (const TemplateSpecializationType *TST = dyn_cast<TemplateSpecializationType>(QTy)) { if (!mangleSubstitution(QualType(TST, 0))) { TemplateDecl *TD = TST->getTemplateName().getAsTemplateDecl(); mangleTemplatePrefix(TD); mangleTemplateArgs(TST->getArgs(), TST->getNumArgs()); addSubstitution(QualType(TST, 0)); } } else if (const TemplateTypeParmType *TTPT = dyn_cast<TemplateTypeParmType>(QTy)) { // We use the QualType mangle type variant here because it handles // substitutions. mangleType(QualType(TTPT, 0)); } else assert(false && "Unhandled type!"); mangleSourceName(T->getIdentifier()); Out << 'E'; } void CXXNameMangler::mangleIntegerLiteral(QualType T, const llvm::APSInt &Value) { // <expr-primary> ::= L <type> <value number> E # integer literal Out << 'L'; mangleType(T); if (T->isBooleanType()) { // Boolean values are encoded as 0/1. Out << (Value.getBoolValue() ? '1' : '0'); } else { if (Value.isNegative()) Out << 'n'; Value.abs().print(Out, false); } Out << 'E'; } void CXXNameMangler::mangleExpression(const Expr *E) { // <expression> ::= <unary operator-name> <expression> // ::= <binary operator-name> <expression> <expression> // ::= <trinary operator-name> <expression> <expression> <expression> // ::= cl <expression>* E # call // ::= cv <type> expression # conversion with one argument // ::= cv <type> _ <expression>* E # conversion with a different number of arguments // ::= st <type> # sizeof (a type) // ::= at <type> # alignof (a type) // ::= <template-param> // ::= <function-param> // ::= sr <type> <unqualified-name> # dependent name // ::= sr <type> <unqualified-name> <template-args> # dependent template-id // ::= sZ <template-param> # size of a parameter pack // ::= <expr-primary> switch (E->getStmtClass()) { default: assert(false && "Unhandled expression kind!"); case Expr::UnaryOperatorClass: { const UnaryOperator *UO = cast<UnaryOperator>(E); mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), /*Arity=*/1); mangleExpression(UO->getSubExpr()); break; } case Expr::BinaryOperatorClass: { const BinaryOperator *BO = cast<BinaryOperator>(E); mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), /*Arity=*/2); mangleExpression(BO->getLHS()); mangleExpression(BO->getRHS()); break; } case Expr::ConditionalOperatorClass: { const ConditionalOperator *CO = cast<ConditionalOperator>(E); mangleOperatorName(OO_Conditional, /*Arity=*/3); mangleExpression(CO->getCond()); mangleExpression(CO->getLHS()); mangleExpression(CO->getRHS()); break; } case Expr::ParenExprClass: mangleExpression(cast<ParenExpr>(E)->getSubExpr()); break; case Expr::DeclRefExprClass: { const Decl *D = cast<DeclRefExpr>(E)->getDecl(); switch (D->getKind()) { default: assert(false && "Unhandled decl kind!"); case Decl::NonTypeTemplateParm: { const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); mangleTemplateParameter(PD->getIndex()); break; } } break; } case Expr::DependentScopeDeclRefExprClass: { const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); const Type *QTy = DRE->getQualifier()->getAsType(); assert(QTy && "Qualifier was not type!"); // ::= sr <type> <unqualified-name> # dependent name Out << "sr"; mangleType(QualType(QTy, 0)); assert(DRE->getDeclName().getNameKind() == DeclarationName::Identifier && "Unhandled decl name kind!"); mangleSourceName(DRE->getDeclName().getAsIdentifierInfo()); break; } case Expr::IntegerLiteralClass: mangleIntegerLiteral(E->getType(), llvm::APSInt(cast<IntegerLiteral>(E)->getValue())); break; } } // FIXME: <type> ::= G <type> # imaginary (C 2000) // FIXME: <type> ::= U <source-name> <type> # vendor extended type qualifier void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) { // <ctor-dtor-name> ::= C1 # complete object constructor // ::= C2 # base object constructor // ::= C3 # complete object allocating constructor // switch (T) { case Ctor_Complete: Out << "C1"; break; case Ctor_Base: Out << "C2"; break; case Ctor_CompleteAllocating: Out << "C3"; break; } } void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { // <ctor-dtor-name> ::= D0 # deleting destructor // ::= D1 # complete object destructor // ::= D2 # base object destructor // switch (T) { case Dtor_Deleting: Out << "D0"; break; case Dtor_Complete: Out << "D1"; break; case Dtor_Base: Out << "D2"; break; } } void CXXNameMangler::mangleTemplateArgumentList(const TemplateArgumentList &L) { // <template-args> ::= I <template-arg>+ E Out << "I"; for (unsigned i = 0, e = L.size(); i != e; ++i) mangleTemplateArgument(L[i]); Out << "E"; } void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { // <template-args> ::= I <template-arg>+ E Out << "I"; for (unsigned i = 0; i != NumTemplateArgs; ++i) mangleTemplateArgument(TemplateArgs[i]); Out << "E"; } void CXXNameMangler::mangleTemplateArgument(const TemplateArgument &A) { // <template-arg> ::= <type> # type or template // ::= X <expression> E # expression // ::= <expr-primary> # simple expressions // ::= I <template-arg>* E # argument pack // ::= sp <expression> # pack expansion of (C++0x) switch (A.getKind()) { default: assert(0 && "Unknown template argument kind!"); case TemplateArgument::Type: mangleType(A.getAsType()); break; case TemplateArgument::Expression: Out << 'X'; mangleExpression(A.getAsExpr()); Out << 'E'; break; case TemplateArgument::Integral: mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral()); break; case TemplateArgument::Declaration: { // <expr-primary> ::= L <mangled-name> E # external name // FIXME: Clang produces AST's where pointer-to-member-function expressions // and pointer-to-function expressions are represented as a declaration not // an expression; this is not how gcc represents them and this changes the // mangling. Out << 'L'; // References to external entities use the mangled name; if the name would // not normally be manged then mangle it as unqualified. // // FIXME: The ABI specifies that external names here should have _Z, but // gcc leaves this off. mangle(cast<NamedDecl>(A.getAsDecl()), "Z"); Out << 'E'; break; } } } void CXXNameMangler::mangleTemplateParameter(unsigned Index) { // <template-param> ::= T_ # first template parameter // ::= T <parameter-2 non-negative number> _ if (Index == 0) Out << "T_"; else Out << 'T' << (Index - 1) << '_'; } // <substitution> ::= S <seq-id> _ // ::= S_ bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { // Try one of the standard substitutions first. if (mangleStandardSubstitution(ND)) return true; ND = cast<NamedDecl>(ND->getCanonicalDecl()); return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); } bool CXXNameMangler::mangleSubstitution(QualType T) { if (!T.getCVRQualifiers()) { if (const RecordType *RT = T->getAs<RecordType>()) return mangleSubstitution(RT->getDecl()); } uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); return mangleSubstitution(TypePtr); } bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); if (I == Substitutions.end()) return false; unsigned SeqID = I->second; if (SeqID == 0) Out << "S_"; else { SeqID--; // <seq-id> is encoded in base-36, using digits and upper case letters. char Buffer[10]; char *BufferPtr = Buffer + 9; *BufferPtr = 0; if (SeqID == 0) *--BufferPtr = '0'; while (SeqID) { assert(BufferPtr > Buffer && "Buffer overflow!"); unsigned char c = static_cast<unsigned char>(SeqID) % 36; *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10); SeqID /= 36; } Out << 'S' << BufferPtr << '_'; } return true; } static bool isCharType(QualType T) { if (T.isNull()) return false; return T->isSpecificBuiltinType(BuiltinType::Char_S) || T->isSpecificBuiltinType(BuiltinType::Char_U); } /// isCharSpecialization - Returns whether a given type is a template /// specialization of a given name with a single argument of type char. static bool isCharSpecialization(QualType T, const char *Name) { if (T.isNull()) return false; const RecordType *RT = T->getAs<RecordType>(); if (!RT) return false; const ClassTemplateSpecializationDecl *SD = dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); if (!SD) return false; if (!isStdNamespace(SD->getDeclContext())) return false; const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); if (TemplateArgs.size() != 1) return false; if (!isCharType(TemplateArgs[0].getAsType())) return false; return SD->getIdentifier()->getName() == Name; } template <std::size_t StrLen> bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl *SD, const char (&Str)[StrLen]) { if (!SD->getIdentifier()->isStr(Str)) return false; const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); if (TemplateArgs.size() != 2) return false; if (!isCharType(TemplateArgs[0].getAsType())) return false; if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) return false; return true; } bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { // <substitution> ::= St # ::std:: if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { if (isStd(NS)) { Out << "St"; return true; } } if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { if (!isStdNamespace(TD->getDeclContext())) return false; // <substitution> ::= Sa # ::std::allocator if (TD->getIdentifier()->isStr("allocator")) { Out << "Sa"; return true; } // <<substitution> ::= Sb # ::std::basic_string if (TD->getIdentifier()->isStr("basic_string")) { Out << "Sb"; return true; } } if (const ClassTemplateSpecializationDecl *SD = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { // <substitution> ::= Ss # ::std::basic_string<char, // ::std::char_traits<char>, // ::std::allocator<char> > if (SD->getIdentifier()->isStr("basic_string")) { const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); if (TemplateArgs.size() != 3) return false; if (!isCharType(TemplateArgs[0].getAsType())) return false; if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) return false; if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator")) return false; Out << "Ss"; return true; } // <substitution> ::= Si # ::std::basic_istream<char, // ::std::char_traits<char> > if (isStreamCharSpecialization(SD, "basic_istream")) { Out << "Si"; return true; } // <substitution> ::= So # ::std::basic_ostream<char, // ::std::char_traits<char> > if (isStreamCharSpecialization(SD, "basic_ostream")) { Out << "So"; return true; } // <substitution> ::= Sd # ::std::basic_iostream<char, // ::std::char_traits<char> > if (isStreamCharSpecialization(SD, "basic_iostream")) { Out << "Sd"; return true; } } return false; } void CXXNameMangler::addSubstitution(QualType T) { if (!T.getCVRQualifiers()) { if (const RecordType *RT = T->getAs<RecordType>()) { addSubstitution(RT->getDecl()); return; } } uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); addSubstitution(TypePtr); } void CXXNameMangler::addSubstitution(uintptr_t Ptr) { unsigned SeqID = Substitutions.size(); assert(!Substitutions.count(Ptr) && "Substitution already exists!"); Substitutions[Ptr] = SeqID; } // /// \brief Mangles the name of the declaration D and emits that name to the /// given output stream. /// /// If the declaration D requires a mangled name, this routine will emit that /// mangled name to \p os and return true. Otherwise, \p os will be unchanged /// and this routine will return false. In this case, the caller should just /// emit the identifier of the declaration (\c D->getIdentifier()) as its /// name. void MangleContext::mangleName(const NamedDecl *D, llvm::SmallVectorImpl<char> &Res) { assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && "Invalid mangleName() call, argument is not a variable or function!"); assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && "Invalid mangleName() call on 'structor decl!"); PrettyStackTraceDecl CrashInfo(D, SourceLocation(), getASTContext().getSourceManager(), "Mangling declaration"); CXXNameMangler Mangler(*this, Res); return Mangler.mangle(D); } void MangleContext::mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, llvm::SmallVectorImpl<char> &Res) { CXXNameMangler Mangler(*this, Res, D, Type); Mangler.mangle(D); } void MangleContext::mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, llvm::SmallVectorImpl<char> &Res) { CXXNameMangler Mangler(*this, Res, D, Type); Mangler.mangle(D); } /// \brief Mangles the a thunk with the offset n for the declaration D and /// emits that name to the given output stream. void MangleContext::mangleThunk(const FunctionDecl *FD, const ThunkAdjustment &ThisAdjustment, llvm::SmallVectorImpl<char> &Res) { assert(!isa<CXXDestructorDecl>(FD) && "Use mangleCXXDtor for destructor decls!"); // <special-name> ::= T <call-offset> <base encoding> // # base is the nominal target function of thunk CXXNameMangler Mangler(*this, Res); Mangler.getStream() << "_ZT"; Mangler.mangleCallOffset(ThisAdjustment); Mangler.mangleFunctionEncoding(FD); } void MangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *D, CXXDtorType Type, const ThunkAdjustment &ThisAdjustment, llvm::SmallVectorImpl<char> &Res) { // <special-name> ::= T <call-offset> <base encoding> // # base is the nominal target function of thunk CXXNameMangler Mangler(*this, Res, D, Type); Mangler.getStream() << "_ZT"; Mangler.mangleCallOffset(ThisAdjustment); Mangler.mangleFunctionEncoding(D); } /// \brief Mangles the a covariant thunk for the declaration D and emits that /// name to the given output stream. void MangleContext::mangleCovariantThunk(const FunctionDecl *FD, const CovariantThunkAdjustment& Adjustment, llvm::SmallVectorImpl<char> &Res) { assert(!isa<CXXDestructorDecl>(FD) && "No such thing as a covariant thunk for a destructor!"); // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> // # base is the nominal target function of thunk // # first call-offset is 'this' adjustment // # second call-offset is result adjustment CXXNameMangler Mangler(*this, Res); Mangler.getStream() << "_ZTc"; Mangler.mangleCallOffset(Adjustment.ThisAdjustment); Mangler.mangleCallOffset(Adjustment.ReturnAdjustment); Mangler.mangleFunctionEncoding(FD); } /// mangleGuardVariable - Returns the mangled name for a guard variable /// for the passed in VarDecl. void MangleContext::mangleGuardVariable(const VarDecl *D, llvm::SmallVectorImpl<char> &Res) { // <special-name> ::= GV <object name> # Guard variable for one-time // # initialization CXXNameMangler Mangler(*this, Res); Mangler.getStream() << "_ZGV"; Mangler.mangleName(D); } void MangleContext::mangleCXXVtable(const CXXRecordDecl *RD, llvm::SmallVectorImpl<char> &Res) { // <special-name> ::= TV <type> # virtual table CXXNameMangler Mangler(*this, Res); Mangler.getStream() << "_ZTV"; Mangler.mangleName(RD); } void MangleContext::mangleCXXVTT(const CXXRecordDecl *RD, llvm::SmallVectorImpl<char> &Res) { // <special-name> ::= TT <type> # VTT structure CXXNameMangler Mangler(*this, Res); Mangler.getStream() << "_ZTT"; Mangler.mangleName(RD); } void MangleContext::mangleCXXCtorVtable(const CXXRecordDecl *RD, int64_t Offset, const CXXRecordDecl *Type, llvm::SmallVectorImpl<char> &Res) { // <special-name> ::= TC <type> <offset number> _ <base type> CXXNameMangler Mangler(*this, Res); Mangler.getStream() << "_ZTC"; Mangler.mangleName(RD); Mangler.getStream() << Offset; Mangler.getStream() << "_"; Mangler.mangleName(Type); } void MangleContext::mangleCXXRTTI(QualType Ty, llvm::SmallVectorImpl<char> &Res) { // <special-name> ::= TI <type> # typeinfo structure CXXNameMangler Mangler(*this, Res); Mangler.getStream() << "_ZTI"; Mangler.mangleType(Ty); } void MangleContext::mangleCXXRTTIName(QualType Ty, llvm::SmallVectorImpl<char> &Res) { // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) CXXNameMangler Mangler(*this, Res); Mangler.getStream() << "_ZTS"; Mangler.mangleType(Ty); }