//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This coordinates the per-function state used while generating code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "CGDebugInfo.h" #include "clang/Basic/TargetInfo.h" #include "clang/AST/APValue.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "llvm/Support/CFG.h" #include "llvm/Target/TargetData.h" using namespace clang; using namespace CodeGen; CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) : BlockFunction(cgm, *this, Builder), CGM(cgm), Target(CGM.getContext().Target), DebugInfo(0), SwitchInsn(0), CaseRangeBlock(0), InvokeDest(0), CXXThisDecl(0) { LLVMIntTy = ConvertType(getContext().IntTy); LLVMPointerWidth = Target.getPointerWidth(0); } ASTContext &CodeGenFunction::getContext() const { return CGM.getContext(); } llvm::BasicBlock *CodeGenFunction::getBasicBlockForLabel(const LabelStmt *S) { llvm::BasicBlock *&BB = LabelMap[S]; if (BB) return BB; // Create, but don't insert, the new block. return BB = createBasicBlock(S->getName()); } llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) { llvm::Value *Res = LocalDeclMap[VD]; assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); return Res; } llvm::Constant * CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) { return cast(GetAddrOfLocalVar(BVD)); } const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { return CGM.getTypes().ConvertTypeForMem(T); } const llvm::Type *CodeGenFunction::ConvertType(QualType T) { return CGM.getTypes().ConvertType(T); } bool CodeGenFunction::hasAggregateLLVMType(QualType T) { // FIXME: Use positive checks instead of negative ones to be more robust in // the face of extension. return !T->hasPointerRepresentation() &&!T->isRealType() && !T->isVoidType() && !T->isVectorType() && !T->isFunctionType() && !T->isBlockPointerType(); } void CodeGenFunction::EmitReturnBlock() { // For cleanliness, we try to avoid emitting the return block for // simple cases. llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); if (CurBB) { assert(!CurBB->getTerminator() && "Unexpected terminated block."); // We have a valid insert point, reuse it if there are no explicit // jumps to the return block. if (ReturnBlock->use_empty()) delete ReturnBlock; else EmitBlock(ReturnBlock); return; } // Otherwise, if the return block is the target of a single direct // branch then we can just put the code in that block instead. This // cleans up functions which started with a unified return block. if (ReturnBlock->hasOneUse()) { llvm::BranchInst *BI = dyn_cast(*ReturnBlock->use_begin()); if (BI && BI->isUnconditional() && BI->getSuccessor(0) == ReturnBlock) { // Reset insertion point and delete the branch. Builder.SetInsertPoint(BI->getParent()); BI->eraseFromParent(); delete ReturnBlock; return; } } // FIXME: We are at an unreachable point, there is no reason to emit the block // unless it has uses. However, we still need a place to put the debug // region.end for now. EmitBlock(ReturnBlock); } void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { // Finish emission of indirect switches. EmitIndirectSwitches(); assert(BreakContinueStack.empty() && "mismatched push/pop in break/continue stack!"); assert(BlockScopes.empty() && "did not remove all blocks from block scope map!"); assert(CleanupEntries.empty() && "mismatched push/pop in cleanup stack!"); // Emit function epilog (to return). EmitReturnBlock(); // Emit debug descriptor for function end. if (CGDebugInfo *DI = getDebugInfo()) { DI->setLocation(EndLoc); DI->EmitRegionEnd(CurFn, Builder); } EmitFunctionEpilog(*CurFnInfo, ReturnValue); // Remove the AllocaInsertPt instruction, which is just a convenience for us. llvm::Instruction *Ptr = AllocaInsertPt; AllocaInsertPt = 0; Ptr->eraseFromParent(); } void CodeGenFunction::StartFunction(const Decl *D, QualType RetTy, llvm::Function *Fn, const FunctionArgList &Args, SourceLocation StartLoc) { DidCallStackSave = false; CurCodeDecl = CurFuncDecl = D; FnRetTy = RetTy; CurFn = Fn; assert(CurFn->isDeclaration() && "Function already has body?"); llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); // Create a marker to make it easy to insert allocas into the entryblock // later. Don't create this with the builder, because we don't want it // folded. llvm::Value *Undef = llvm::UndefValue::get(llvm::Type::Int32Ty); AllocaInsertPt = new llvm::BitCastInst(Undef, llvm::Type::Int32Ty, "", EntryBB); if (Builder.isNamePreserving()) AllocaInsertPt->setName("allocapt"); ReturnBlock = createBasicBlock("return"); ReturnValue = 0; if (!RetTy->isVoidType()) ReturnValue = CreateTempAlloca(ConvertType(RetTy), "retval"); Builder.SetInsertPoint(EntryBB); // Emit subprogram debug descriptor. // FIXME: The cast here is a huge hack. if (CGDebugInfo *DI = getDebugInfo()) { DI->setLocation(StartLoc); if (const FunctionDecl *FD = dyn_cast(D)) { DI->EmitFunctionStart(CGM.getMangledName(FD), RetTy, CurFn, Builder); } else { // Just use LLVM function name. DI->EmitFunctionStart(Fn->getName().c_str(), RetTy, CurFn, Builder); } } // FIXME: Leaked. CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args); EmitFunctionProlog(*CurFnInfo, CurFn, Args); // If any of the arguments have a variably modified type, make sure to // emit the type size. for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); i != e; ++i) { QualType Ty = i->second; if (Ty->isVariablyModifiedType()) EmitVLASize(Ty); } } void CodeGenFunction::GenerateCode(const FunctionDecl *FD, llvm::Function *Fn) { // Check if we should generate debug info for this function. if (CGM.getDebugInfo() && !FD->hasAttr()) DebugInfo = CGM.getDebugInfo(); FunctionArgList Args; if (const CXXMethodDecl *MD = dyn_cast(FD)) { if (MD->isInstance()) { // Create the implicit 'this' decl. // FIXME: I'm not entirely sure I like using a fake decl just for code // generation. Maybe we can come up with a better way? CXXThisDecl = ImplicitParamDecl::Create(getContext(), 0, SourceLocation(), &getContext().Idents.get("this"), MD->getThisType(getContext())); Args.push_back(std::make_pair(CXXThisDecl, CXXThisDecl->getType())); } } if (FD->getNumParams()) { const FunctionProtoType* FProto = FD->getType()->getAsFunctionProtoType(); assert(FProto && "Function def must have prototype!"); for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) Args.push_back(std::make_pair(FD->getParamDecl(i), FProto->getArgType(i))); } // FIXME: Support CXXTryStmt here, too. if (const CompoundStmt *S = FD->getCompoundBody(getContext())) { StartFunction(FD, FD->getResultType(), Fn, Args, S->getLBracLoc()); EmitStmt(S); FinishFunction(S->getRBracLoc()); } // Destroy the 'this' declaration. if (CXXThisDecl) CXXThisDecl->Destroy(getContext()); } /// ContainsLabel - Return true if the statement contains a label in it. If /// this statement is not executed normally, it not containing a label means /// that we can just remove the code. bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { // Null statement, not a label! if (S == 0) return false; // If this is a label, we have to emit the code, consider something like: // if (0) { ... foo: bar(); } goto foo; if (isa(S)) return true; // If this is a case/default statement, and we haven't seen a switch, we have // to emit the code. if (isa(S) && !IgnoreCaseStmts) return true; // If this is a switch statement, we want to ignore cases below it. if (isa(S)) IgnoreCaseStmts = true; // Scan subexpressions for verboten labels. for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); I != E; ++I) if (ContainsLabel(*I, IgnoreCaseStmts)) return true; return false; } /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to /// a constant, or if it does but contains a label, return 0. If it constant /// folds to 'true' and does not contain a label, return 1, if it constant folds /// to 'false' and does not contain a label, return -1. int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { // FIXME: Rename and handle conversion of other evaluatable things // to bool. Expr::EvalResult Result; if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || Result.HasSideEffects) return 0; // Not foldable, not integer or not fully evaluatable. if (CodeGenFunction::ContainsLabel(Cond)) return 0; // Contains a label. return Result.Val.getInt().getBoolValue() ? 1 : -1; } /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if /// statement) to the specified blocks. Based on the condition, this might try /// to simplify the codegen of the conditional based on the branch. /// void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock) { if (const ParenExpr *PE = dyn_cast(Cond)) return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); if (const BinaryOperator *CondBOp = dyn_cast(Cond)) { // Handle X && Y in a condition. if (CondBOp->getOpcode() == BinaryOperator::LAnd) { // If we have "1 && X", simplify the code. "0 && X" would have constant // folded if the case was simple enough. if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { // br(1 && X) -> br(X). return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); } // If we have "X && 1", simplify the code to use an uncond branch. // "X && 0" would have been constant folded to 0. if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { // br(X && 1) -> br(X). return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); } // Emit the LHS as a conditional. If the LHS conditional is false, we // want to jump to the FalseBlock. llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); EmitBlock(LHSTrue); EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); return; } else if (CondBOp->getOpcode() == BinaryOperator::LOr) { // If we have "0 || X", simplify the code. "1 || X" would have constant // folded if the case was simple enough. if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { // br(0 || X) -> br(X). return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); } // If we have "X || 0", simplify the code to use an uncond branch. // "X || 1" would have been constant folded to 1. if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { // br(X || 0) -> br(X). return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); } // Emit the LHS as a conditional. If the LHS conditional is true, we // want to jump to the TrueBlock. llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); EmitBlock(LHSFalse); EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); return; } } if (const UnaryOperator *CondUOp = dyn_cast(Cond)) { // br(!x, t, f) -> br(x, f, t) if (CondUOp->getOpcode() == UnaryOperator::LNot) return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); } if (const ConditionalOperator *CondOp = dyn_cast(Cond)) { // Handle ?: operator. // Just ignore GNU ?: extension. if (CondOp->getLHS()) { // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); EmitBlock(LHSBlock); EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); EmitBlock(RHSBlock); EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); return; } } // Emit the code with the fully general case. llvm::Value *CondV = EvaluateExprAsBool(Cond); Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); } /// getCGRecordLayout - Return record layout info. const CGRecordLayout *CodeGenFunction::getCGRecordLayout(CodeGenTypes &CGT, QualType Ty) { const RecordType *RTy = Ty->getAsRecordType(); assert (RTy && "Unexpected type. RecordType expected here."); return CGT.getCGRecordLayout(RTy->getDecl()); } /// ErrorUnsupported - Print out an error that codegen doesn't support the /// specified stmt yet. void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, bool OmitOnError) { CGM.ErrorUnsupported(S, Type, OmitOnError); } unsigned CodeGenFunction::GetIDForAddrOfLabel(const LabelStmt *L) { // Use LabelIDs.size() as the new ID if one hasn't been assigned. return LabelIDs.insert(std::make_pair(L, LabelIDs.size())).first->second; } void CodeGenFunction::EmitMemSetToZero(llvm::Value *DestPtr, QualType Ty) { const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); if (DestPtr->getType() != BP) DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); // Get size and alignment info for this aggregate. std::pair TypeInfo = getContext().getTypeInfo(Ty); // Don't bother emitting a zero-byte memset. if (TypeInfo.first == 0) return; // FIXME: Handle variable sized types. const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); Builder.CreateCall4(CGM.getMemSetFn(), DestPtr, llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty), // TypeInfo.first describes size in bits. llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8)); } void CodeGenFunction::EmitIndirectSwitches() { llvm::BasicBlock *Default; if (IndirectSwitches.empty()) return; if (!LabelIDs.empty()) { Default = getBasicBlockForLabel(LabelIDs.begin()->first); } else { // No possible targets for indirect goto, just emit an infinite // loop. Default = createBasicBlock("indirectgoto.loop", CurFn); llvm::BranchInst::Create(Default, Default); } for (std::vector::iterator i = IndirectSwitches.begin(), e = IndirectSwitches.end(); i != e; ++i) { llvm::SwitchInst *I = *i; I->setSuccessor(0, Default); for (std::map::iterator LI = LabelIDs.begin(), LE = LabelIDs.end(); LI != LE; ++LI) { I->addCase(llvm::ConstantInt::get(llvm::Type::Int32Ty, LI->second), getBasicBlockForLabel(LI->first)); } } } llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) { llvm::Value *&SizeEntry = VLASizeMap[VAT]; assert(SizeEntry && "Did not emit size for type"); return SizeEntry; } llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) { assert(Ty->isVariablyModifiedType() && "Must pass variably modified type to EmitVLASizes!"); if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { llvm::Value *&SizeEntry = VLASizeMap[VAT]; if (!SizeEntry) { // Get the element size; llvm::Value *ElemSize; QualType ElemTy = VAT->getElementType(); const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); if (ElemTy->isVariableArrayType()) ElemSize = EmitVLASize(ElemTy); else { ElemSize = llvm::ConstantInt::get(SizeTy, getContext().getTypeSize(ElemTy) / 8); } llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp"); SizeEntry = Builder.CreateMul(ElemSize, NumElements); } return SizeEntry; } else if (const ArrayType *AT = dyn_cast(Ty)) { EmitVLASize(AT->getElementType()); } else if (const PointerType *PT = Ty->getAsPointerType()) EmitVLASize(PT->getPointeeType()); else { assert(0 && "unknown VM type!"); } return 0; } llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { if (CGM.getContext().getBuiltinVaListType()->isArrayType()) { return EmitScalarExpr(E); } return EmitLValue(E).getAddress(); } void CodeGenFunction::PushCleanupBlock(llvm::BasicBlock *CleanupBlock) { CleanupEntries.push_back(CleanupEntry(CleanupBlock)); } void CodeGenFunction::EmitCleanupBlocks(size_t OldCleanupStackSize) { assert(CleanupEntries.size() >= OldCleanupStackSize && "Cleanup stack mismatch!"); while (CleanupEntries.size() > OldCleanupStackSize) EmitCleanupBlock(); } CodeGenFunction::CleanupBlockInfo CodeGenFunction::PopCleanupBlock() { CleanupEntry &CE = CleanupEntries.back(); llvm::BasicBlock *CleanupBlock = CE.CleanupBlock; std::vector Blocks; std::swap(Blocks, CE.Blocks); std::vector BranchFixups; std::swap(BranchFixups, CE.BranchFixups); CleanupEntries.pop_back(); // Check if any branch fixups pointed to the scope we just popped. If so, // we can remove them. for (size_t i = 0, e = BranchFixups.size(); i != e; ++i) { llvm::BasicBlock *Dest = BranchFixups[i]->getSuccessor(0); BlockScopeMap::iterator I = BlockScopes.find(Dest); if (I == BlockScopes.end()) continue; assert(I->second <= CleanupEntries.size() && "Invalid branch fixup!"); if (I->second == CleanupEntries.size()) { // We don't need to do this branch fixup. BranchFixups[i] = BranchFixups.back(); BranchFixups.pop_back(); i--; e--; continue; } } llvm::BasicBlock *SwitchBlock = 0; llvm::BasicBlock *EndBlock = 0; if (!BranchFixups.empty()) { SwitchBlock = createBasicBlock("cleanup.switch"); EndBlock = createBasicBlock("cleanup.end"); llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); Builder.SetInsertPoint(SwitchBlock); llvm::Value *DestCodePtr = CreateTempAlloca(llvm::Type::Int32Ty, "cleanup.dst"); llvm::Value *DestCode = Builder.CreateLoad(DestCodePtr, "tmp"); // Create a switch instruction to determine where to jump next. llvm::SwitchInst *SI = Builder.CreateSwitch(DestCode, EndBlock, BranchFixups.size()); // Restore the current basic block (if any) if (CurBB) { Builder.SetInsertPoint(CurBB); // If we had a current basic block, we also need to emit an instruction // to initialize the cleanup destination. Builder.CreateStore(llvm::Constant::getNullValue(llvm::Type::Int32Ty), DestCodePtr); } else Builder.ClearInsertionPoint(); for (size_t i = 0, e = BranchFixups.size(); i != e; ++i) { llvm::BranchInst *BI = BranchFixups[i]; llvm::BasicBlock *Dest = BI->getSuccessor(0); // Fixup the branch instruction to point to the cleanup block. BI->setSuccessor(0, CleanupBlock); if (CleanupEntries.empty()) { llvm::ConstantInt *ID; // Check if we already have a destination for this block. if (Dest == SI->getDefaultDest()) ID = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); else { ID = SI->findCaseDest(Dest); if (!ID) { // No code found, get a new unique one by using the number of // switch successors. ID = llvm::ConstantInt::get(llvm::Type::Int32Ty, SI->getNumSuccessors()); SI->addCase(ID, Dest); } } // Store the jump destination before the branch instruction. new llvm::StoreInst(ID, DestCodePtr, BI); } else { // We need to jump through another cleanup block. Create a pad block // with a branch instruction that jumps to the final destination and // add it as a branch fixup to the current cleanup scope. // Create the pad block. llvm::BasicBlock *CleanupPad = createBasicBlock("cleanup.pad", CurFn); // Create a unique case ID. llvm::ConstantInt *ID = llvm::ConstantInt::get(llvm::Type::Int32Ty, SI->getNumSuccessors()); // Store the jump destination before the branch instruction. new llvm::StoreInst(ID, DestCodePtr, BI); // Add it as the destination. SI->addCase(ID, CleanupPad); // Create the branch to the final destination. llvm::BranchInst *BI = llvm::BranchInst::Create(Dest); CleanupPad->getInstList().push_back(BI); // And add it as a branch fixup. CleanupEntries.back().BranchFixups.push_back(BI); } } } // Remove all blocks from the block scope map. for (size_t i = 0, e = Blocks.size(); i != e; ++i) { assert(BlockScopes.count(Blocks[i]) && "Did not find block in scope map!"); BlockScopes.erase(Blocks[i]); } return CleanupBlockInfo(CleanupBlock, SwitchBlock, EndBlock); } void CodeGenFunction::EmitCleanupBlock() { CleanupBlockInfo Info = PopCleanupBlock(); llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); if (CurBB && !CurBB->getTerminator() && Info.CleanupBlock->getNumUses() == 0) { CurBB->getInstList().splice(CurBB->end(), Info.CleanupBlock->getInstList()); delete Info.CleanupBlock; } else EmitBlock(Info.CleanupBlock); if (Info.SwitchBlock) EmitBlock(Info.SwitchBlock); if (Info.EndBlock) EmitBlock(Info.EndBlock); } void CodeGenFunction::AddBranchFixup(llvm::BranchInst *BI) { assert(!CleanupEntries.empty() && "Trying to add branch fixup without cleanup block!"); // FIXME: We could be more clever here and check if there's already a branch // fixup for this destination and recycle it. CleanupEntries.back().BranchFixups.push_back(BI); } void CodeGenFunction::EmitBranchThroughCleanup(llvm::BasicBlock *Dest) { if (!HaveInsertPoint()) return; llvm::BranchInst* BI = Builder.CreateBr(Dest); Builder.ClearInsertionPoint(); // The stack is empty, no need to do any cleanup. if (CleanupEntries.empty()) return; if (!Dest->getParent()) { // We are trying to branch to a block that hasn't been inserted yet. AddBranchFixup(BI); return; } BlockScopeMap::iterator I = BlockScopes.find(Dest); if (I == BlockScopes.end()) { // We are trying to jump to a block that is outside of any cleanup scope. AddBranchFixup(BI); return; } assert(I->second < CleanupEntries.size() && "Trying to branch into cleanup region"); if (I->second == CleanupEntries.size() - 1) { // We have a branch to a block in the same scope. return; } AddBranchFixup(BI); }