//===--- CGVtable.cpp - Emit LLVM Code for C++ vtables --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with C++ code generation of virtual tables. // //===----------------------------------------------------------------------===// #include "CodeGenModule.h" #include "CodeGenFunction.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/RecordLayout.h" #include "llvm/ADT/DenseSet.h" #include using namespace clang; using namespace CodeGen; namespace { class VtableBuilder { public: /// Index_t - Vtable index type. typedef uint64_t Index_t; typedef std::vector > > SavedAdjustmentsVectorTy; private: // VtableComponents - The components of the vtable being built. typedef llvm::SmallVector VtableComponentsVectorTy; VtableComponentsVectorTy VtableComponents; const bool BuildVtable; llvm::Type *Ptr8Ty; /// MostDerivedClass - The most derived class that this vtable is being /// built for. const CXXRecordDecl *MostDerivedClass; /// LayoutClass - The most derived class used for virtual base layout /// information. const CXXRecordDecl *LayoutClass; /// LayoutOffset - The offset for Class in LayoutClass. uint64_t LayoutOffset; /// BLayout - Layout for the most derived class that this vtable is being /// built for. const ASTRecordLayout &BLayout; llvm::SmallSet IndirectPrimary; llvm::SmallSet SeenVBase; llvm::Constant *rtti; llvm::LLVMContext &VMContext; CodeGenModule &CGM; // Per-module state. llvm::DenseMap VCall; llvm::DenseMap VCallOffset; // This is the offset to the nearest virtual base llvm::DenseMap NonVirtualOffset; llvm::DenseMap VBIndex; /// PureVirtualFunction - Points to __cxa_pure_virtual. llvm::Constant *PureVirtualFn; /// VtableMethods - A data structure for keeping track of methods in a vtable. /// Can add methods, override methods and iterate in vtable order. class VtableMethods { // MethodToIndexMap - Maps from a global decl to the index it has in the // Methods vector. llvm::DenseMap MethodToIndexMap; /// Methods - The methods, in vtable order. typedef llvm::SmallVector MethodsVectorTy; MethodsVectorTy Methods; MethodsVectorTy OrigMethods; public: /// AddMethod - Add a method to the vtable methods. void AddMethod(GlobalDecl GD) { assert(!MethodToIndexMap.count(GD) && "Method has already been added!"); MethodToIndexMap[GD] = Methods.size(); Methods.push_back(GD); OrigMethods.push_back(GD); } /// OverrideMethod - Replace a method with another. void OverrideMethod(GlobalDecl OverriddenGD, GlobalDecl GD) { llvm::DenseMap::iterator i = MethodToIndexMap.find(OverriddenGD); assert(i != MethodToIndexMap.end() && "Did not find entry!"); // Get the index of the old decl. uint64_t Index = i->second; // Replace the old decl with the new decl. Methods[Index] = GD; // And add the new. MethodToIndexMap[GD] = Index; } /// getIndex - Gives the index of a passed in GlobalDecl. Returns false if /// the index couldn't be found. bool getIndex(GlobalDecl GD, uint64_t &Index) const { llvm::DenseMap::const_iterator i = MethodToIndexMap.find(GD); if (i == MethodToIndexMap.end()) return false; Index = i->second; return true; } GlobalDecl getOrigMethod(uint64_t Index) const { return OrigMethods[Index]; } MethodsVectorTy::size_type size() const { return Methods.size(); } void clear() { MethodToIndexMap.clear(); Methods.clear(); OrigMethods.clear(); } GlobalDecl operator[](uint64_t Index) const { return Methods[Index]; } }; /// Methods - The vtable methods we're currently building. VtableMethods Methods; /// ThisAdjustments - For a given index in the vtable, contains the 'this' /// pointer adjustment needed for a method. typedef llvm::DenseMap ThisAdjustmentsMapTy; ThisAdjustmentsMapTy ThisAdjustments; SavedAdjustmentsVectorTy SavedAdjustments; /// BaseReturnTypes - Contains the base return types of methods who have been /// overridden with methods whose return types require adjustment. Used for /// generating covariant thunk information. typedef llvm::DenseMap BaseReturnTypesMapTy; BaseReturnTypesMapTy BaseReturnTypes; std::vector VCalls; typedef std::pair CtorVtable_t; // subAddressPoints - Used to hold the AddressPoints (offsets) into the built // vtable for use in computing the initializers for the VTT. llvm::DenseMap &subAddressPoints; /// AddressPoints - Address points for this vtable. CGVtableInfo::AddressPointsMapTy& AddressPoints; typedef CXXRecordDecl::method_iterator method_iter; const uint32_t LLVMPointerWidth; Index_t extra; typedef std::vector > Path_t; static llvm::DenseMap& AllocAddressPoint(CodeGenModule &cgm, const CXXRecordDecl *l, const CXXRecordDecl *c) { CGVtableInfo::AddrMap_t *&oref = cgm.getVtableInfo().AddressPoints[l]; if (oref == 0) oref = new CGVtableInfo::AddrMap_t; llvm::DenseMap *&ref = (*oref)[c]; if (ref == 0) ref = new llvm::DenseMap; return *ref; } /// getPureVirtualFn - Return the __cxa_pure_virtual function. llvm::Constant* getPureVirtualFn() { if (!PureVirtualFn) { const llvm::FunctionType *Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), /*isVarArg=*/false); PureVirtualFn = wrap(CGM.CreateRuntimeFunction(Ty, "__cxa_pure_virtual")); } return PureVirtualFn; } public: VtableBuilder(const CXXRecordDecl *MostDerivedClass, const CXXRecordDecl *l, uint64_t lo, CodeGenModule &cgm, bool build, CGVtableInfo::AddressPointsMapTy& AddressPoints) : BuildVtable(build), MostDerivedClass(MostDerivedClass), LayoutClass(l), LayoutOffset(lo), BLayout(cgm.getContext().getASTRecordLayout(l)), rtti(0), VMContext(cgm.getModule().getContext()),CGM(cgm), PureVirtualFn(0), subAddressPoints(AllocAddressPoint(cgm, l, MostDerivedClass)), AddressPoints(AddressPoints), LLVMPointerWidth(cgm.getContext().Target.getPointerWidth(0)) { Ptr8Ty = llvm::PointerType::get(llvm::Type::getInt8Ty(VMContext), 0); if (BuildVtable) { QualType ClassType = CGM.getContext().getTagDeclType(MostDerivedClass); rtti = CGM.GetAddrOfRTTIDescriptor(ClassType); } } // getVtableComponents - Returns a reference to the vtable components. const VtableComponentsVectorTy &getVtableComponents() const { return VtableComponents; } llvm::DenseMap &getVBIndex() { return VBIndex; } SavedAdjustmentsVectorTy &getSavedAdjustments() { return SavedAdjustments; } llvm::Constant *wrap(Index_t i) { llvm::Constant *m; m = llvm::ConstantInt::get(llvm::Type::getInt64Ty(VMContext), i); return llvm::ConstantExpr::getIntToPtr(m, Ptr8Ty); } llvm::Constant *wrap(llvm::Constant *m) { return llvm::ConstantExpr::getBitCast(m, Ptr8Ty); } #define D1(x) //#define D1(X) do { if (getenv("DEBUG")) { X; } } while (0) void GenerateVBaseOffsets(const CXXRecordDecl *RD, uint64_t Offset, bool updateVBIndex, Index_t current_vbindex) { for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), e = RD->bases_end(); i != e; ++i) { const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); Index_t next_vbindex = current_vbindex; if (i->isVirtual() && !SeenVBase.count(Base)) { SeenVBase.insert(Base); if (updateVBIndex) { next_vbindex = (ssize_t)(-(VCalls.size()*LLVMPointerWidth/8) - 3*LLVMPointerWidth/8); VBIndex[Base] = next_vbindex; } int64_t BaseOffset = -(Offset/8) + BLayout.getVBaseClassOffset(Base)/8; VCalls.push_back((0?700:0) + BaseOffset); D1(printf(" vbase for %s at %d delta %d most derived %s\n", Base->getNameAsCString(), (int)-VCalls.size()-3, (int)BaseOffset, Class->getNameAsCString())); } // We also record offsets for non-virtual bases to closest enclosing // virtual base. We do this so that we don't have to search // for the nearst virtual base class when generating thunks. if (updateVBIndex && VBIndex.count(Base) == 0) VBIndex[Base] = next_vbindex; GenerateVBaseOffsets(Base, Offset, updateVBIndex, next_vbindex); } } void StartNewTable() { SeenVBase.clear(); } Index_t getNVOffset_1(const CXXRecordDecl *D, const CXXRecordDecl *B, Index_t Offset = 0) { if (B == D) return Offset; const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(D); for (CXXRecordDecl::base_class_const_iterator i = D->bases_begin(), e = D->bases_end(); i != e; ++i) { const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); int64_t BaseOffset = 0; if (!i->isVirtual()) BaseOffset = Offset + Layout.getBaseClassOffset(Base); int64_t o = getNVOffset_1(Base, B, BaseOffset); if (o >= 0) return o; } return -1; } /// getNVOffset - Returns the non-virtual offset for the given (B) base of the /// derived class D. Index_t getNVOffset(QualType qB, QualType qD) { qD = qD->getPointeeType(); qB = qB->getPointeeType(); CXXRecordDecl *D = cast(qD->getAs()->getDecl()); CXXRecordDecl *B = cast(qB->getAs()->getDecl()); int64_t o = getNVOffset_1(D, B); if (o >= 0) return o; assert(false && "FIXME: non-virtual base not found"); return 0; } /// getVbaseOffset - Returns the index into the vtable for the virtual base /// offset for the given (B) virtual base of the derived class D. Index_t getVbaseOffset(QualType qB, QualType qD) { qD = qD->getPointeeType(); qB = qB->getPointeeType(); CXXRecordDecl *D = cast(qD->getAs()->getDecl()); CXXRecordDecl *B = cast(qB->getAs()->getDecl()); if (D != MostDerivedClass) return CGM.getVtableInfo().getVirtualBaseOffsetIndex(D, B); llvm::DenseMap::iterator i; i = VBIndex.find(B); if (i != VBIndex.end()) return i->second; assert(false && "FIXME: Base not found"); return 0; } bool OverrideMethod(GlobalDecl GD, bool MorallyVirtual, Index_t OverrideOffset, Index_t Offset, int64_t CurrentVBaseOffset); /// AppendMethods - Append the current methods to the vtable. void AppendMethodsToVtable(); llvm::Constant *WrapAddrOf(GlobalDecl GD) { const CXXMethodDecl *MD = cast(GD.getDecl()); const llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVtable(MD); return wrap(CGM.GetAddrOfFunction(GD, Ty)); } void OverrideMethods(Path_t *Path, bool MorallyVirtual, int64_t Offset, int64_t CurrentVBaseOffset) { for (Path_t::reverse_iterator i = Path->rbegin(), e = Path->rend(); i != e; ++i) { const CXXRecordDecl *RD = i->first; int64_t OverrideOffset = i->second; for (method_iter mi = RD->method_begin(), me = RD->method_end(); mi != me; ++mi) { const CXXMethodDecl *MD = *mi; if (!MD->isVirtual()) continue; if (const CXXDestructorDecl *DD = dyn_cast(MD)) { // Override both the complete and the deleting destructor. GlobalDecl CompDtor(DD, Dtor_Complete); OverrideMethod(CompDtor, MorallyVirtual, OverrideOffset, Offset, CurrentVBaseOffset); GlobalDecl DeletingDtor(DD, Dtor_Deleting); OverrideMethod(DeletingDtor, MorallyVirtual, OverrideOffset, Offset, CurrentVBaseOffset); } else { OverrideMethod(MD, MorallyVirtual, OverrideOffset, Offset, CurrentVBaseOffset); } } } } void AddMethod(const GlobalDecl GD, bool MorallyVirtual, Index_t Offset, int64_t CurrentVBaseOffset) { // If we can find a previously allocated slot for this, reuse it. if (OverrideMethod(GD, MorallyVirtual, Offset, Offset, CurrentVBaseOffset)) return; // We didn't find an entry in the vtable that we could use, add a new // entry. Methods.AddMethod(GD); D1(printf(" vfn for %s at %d\n", MD->getNameAsString().c_str(), (int)Index[GD])); VCallOffset[GD] = Offset/8; if (MorallyVirtual) { Index_t &idx = VCall[GD]; // Allocate the first one, after that, we reuse the previous one. if (idx == 0) { NonVirtualOffset[GD] = CurrentVBaseOffset/8 - Offset/8; idx = VCalls.size()+1; VCalls.push_back(0); D1(printf(" vcall for %s at %d with delta %d\n", MD->getNameAsString().c_str(), (int)-VCalls.size()-3, 0)); } } } void AddMethods(const CXXRecordDecl *RD, bool MorallyVirtual, Index_t Offset, int64_t CurrentVBaseOffset) { for (method_iter mi = RD->method_begin(), me = RD->method_end(); mi != me; ++mi) { const CXXMethodDecl *MD = *mi; if (!MD->isVirtual()) continue; if (const CXXDestructorDecl *DD = dyn_cast(MD)) { // For destructors, add both the complete and the deleting destructor // to the vtable. AddMethod(GlobalDecl(DD, Dtor_Complete), MorallyVirtual, Offset, CurrentVBaseOffset); AddMethod(GlobalDecl(DD, Dtor_Deleting), MorallyVirtual, Offset, CurrentVBaseOffset); } else AddMethod(MD, MorallyVirtual, Offset, CurrentVBaseOffset); } } void NonVirtualBases(const CXXRecordDecl *RD, const ASTRecordLayout &Layout, const CXXRecordDecl *PrimaryBase, bool PrimaryBaseWasVirtual, bool MorallyVirtual, int64_t Offset, int64_t CurrentVBaseOffset, Path_t *Path) { Path->push_back(std::make_pair(RD, Offset)); for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), e = RD->bases_end(); i != e; ++i) { if (i->isVirtual()) continue; const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); if (Base != PrimaryBase || PrimaryBaseWasVirtual) { uint64_t o = Offset + Layout.getBaseClassOffset(Base); StartNewTable(); GenerateVtableForBase(Base, o, MorallyVirtual, false, CurrentVBaseOffset, Path); } } Path->pop_back(); } // #define D(X) do { X; } while (0) #define D(X) void insertVCalls(int InsertionPoint) { D1(printf("============= combining vbase/vcall\n")); D(VCalls.insert(VCalls.begin(), 673)); D(VCalls.push_back(672)); VtableComponents.insert(VtableComponents.begin() + InsertionPoint, VCalls.size(), 0); if (BuildVtable) { // The vcalls come first... for (std::vector::reverse_iterator i = VCalls.rbegin(), e = VCalls.rend(); i != e; ++i) VtableComponents[InsertionPoint++] = wrap((0?600:0) + *i); } VCalls.clear(); VCall.clear(); } void AddAddressPoints(const CXXRecordDecl *RD, uint64_t Offset, Index_t AddressPoint) { D1(printf("XXX address point for %s in %s layout %s at offset %d is %d\n", RD->getNameAsCString(), Class->getNameAsCString(), LayoutClass->getNameAsCString(), (int)Offset, (int)AddressPoint)); subAddressPoints[std::make_pair(RD, Offset)] = AddressPoint; AddressPoints[BaseSubobject(RD, Offset)] = AddressPoint; // Now also add the address point for all our primary bases. while (1) { const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); RD = Layout.getPrimaryBase(); const bool PrimaryBaseWasVirtual = Layout.getPrimaryBaseWasVirtual(); // FIXME: Double check this. if (RD == 0) break; if (PrimaryBaseWasVirtual && BLayout.getVBaseClassOffset(RD) != Offset) break; D1(printf("XXX address point for %s in %s layout %s at offset %d is %d\n", RD->getNameAsCString(), Class->getNameAsCString(), LayoutClass->getNameAsCString(), (int)Offset, (int)AddressPoint)); subAddressPoints[std::make_pair(RD, Offset)] = AddressPoint; AddressPoints[BaseSubobject(RD, Offset)] = AddressPoint; } } void FinishGenerateVtable(const CXXRecordDecl *RD, const ASTRecordLayout &Layout, const CXXRecordDecl *PrimaryBase, bool PrimaryBaseWasVirtual, bool MorallyVirtual, int64_t Offset, bool ForVirtualBase, int64_t CurrentVBaseOffset, Path_t *Path) { bool alloc = false; if (Path == 0) { alloc = true; Path = new Path_t; } StartNewTable(); extra = 0; bool DeferVCalls = MorallyVirtual || ForVirtualBase; int VCallInsertionPoint = VtableComponents.size(); if (!DeferVCalls) { insertVCalls(VCallInsertionPoint); } else // FIXME: just for extra, or for all uses of VCalls.size post this? extra = -VCalls.size(); // Add the offset to top. VtableComponents.push_back(BuildVtable ? wrap(-((Offset-LayoutOffset)/8)) : 0); // Add the RTTI information. VtableComponents.push_back(rtti); Index_t AddressPoint = VtableComponents.size(); AppendMethodsToVtable(); // and then the non-virtual bases. NonVirtualBases(RD, Layout, PrimaryBase, PrimaryBaseWasVirtual, MorallyVirtual, Offset, CurrentVBaseOffset, Path); if (ForVirtualBase) { // FIXME: We're adding to VCalls in callers, we need to do the overrides // in the inner part, so that we know the complete set of vcalls during // the build and don't have to insert into methods. Saving out the // AddressPoint here, would need to be fixed, if we didn't do that. Also // retroactively adding vcalls for overrides later wind up in the wrong // place, the vcall slot has to be alloted during the walk of the base // when the function is first introduces. AddressPoint += VCalls.size(); insertVCalls(VCallInsertionPoint); } AddAddressPoints(RD, Offset, AddressPoint); if (alloc) { delete Path; } } void Primaries(const CXXRecordDecl *RD, bool MorallyVirtual, int64_t Offset, bool updateVBIndex, Index_t current_vbindex, int64_t CurrentVBaseOffset) { if (!RD->isDynamicClass()) return; const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); const bool PrimaryBaseWasVirtual = Layout.getPrimaryBaseWasVirtual(); // vtables are composed from the chain of primaries. if (PrimaryBase && !PrimaryBaseWasVirtual) { D1(printf(" doing primaries for %s most derived %s\n", RD->getNameAsCString(), Class->getNameAsCString())); Primaries(PrimaryBase, PrimaryBaseWasVirtual|MorallyVirtual, Offset, updateVBIndex, current_vbindex, CurrentVBaseOffset); } D1(printf(" doing vcall entries for %s most derived %s\n", RD->getNameAsCString(), Class->getNameAsCString())); // And add the virtuals for the class to the primary vtable. AddMethods(RD, MorallyVirtual, Offset, CurrentVBaseOffset); } void VBPrimaries(const CXXRecordDecl *RD, bool MorallyVirtual, int64_t Offset, bool updateVBIndex, Index_t current_vbindex, bool RDisVirtualBase, int64_t CurrentVBaseOffset, bool bottom) { if (!RD->isDynamicClass()) return; const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); const bool PrimaryBaseWasVirtual = Layout.getPrimaryBaseWasVirtual(); // vtables are composed from the chain of primaries. if (PrimaryBase) { int BaseCurrentVBaseOffset = CurrentVBaseOffset; if (PrimaryBaseWasVirtual) { IndirectPrimary.insert(PrimaryBase); BaseCurrentVBaseOffset = BLayout.getVBaseClassOffset(PrimaryBase); } D1(printf(" doing primaries for %s most derived %s\n", RD->getNameAsCString(), Class->getNameAsCString())); VBPrimaries(PrimaryBase, PrimaryBaseWasVirtual|MorallyVirtual, Offset, updateVBIndex, current_vbindex, PrimaryBaseWasVirtual, BaseCurrentVBaseOffset, false); } D1(printf(" doing vbase entries for %s most derived %s\n", RD->getNameAsCString(), Class->getNameAsCString())); GenerateVBaseOffsets(RD, Offset, updateVBIndex, current_vbindex); if (RDisVirtualBase || bottom) { Primaries(RD, MorallyVirtual, Offset, updateVBIndex, current_vbindex, CurrentVBaseOffset); } } void GenerateVtableForBase(const CXXRecordDecl *RD, int64_t Offset = 0, bool MorallyVirtual = false, bool ForVirtualBase = false, int CurrentVBaseOffset = 0, Path_t *Path = 0) { if (!RD->isDynamicClass()) return; // Construction vtable don't need parts that have no virtual bases and // aren't morally virtual. if ((LayoutClass != MostDerivedClass) && RD->getNumVBases() == 0 && !MorallyVirtual) return; const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); const bool PrimaryBaseWasVirtual = Layout.getPrimaryBaseWasVirtual(); extra = 0; D1(printf("building entries for base %s most derived %s\n", RD->getNameAsCString(), Class->getNameAsCString())); if (ForVirtualBase) extra = VCalls.size(); VBPrimaries(RD, MorallyVirtual, Offset, !ForVirtualBase, 0, ForVirtualBase, CurrentVBaseOffset, true); if (Path) OverrideMethods(Path, MorallyVirtual, Offset, CurrentVBaseOffset); FinishGenerateVtable(RD, Layout, PrimaryBase, PrimaryBaseWasVirtual, MorallyVirtual, Offset, ForVirtualBase, CurrentVBaseOffset, Path); } void GenerateVtableForVBases(const CXXRecordDecl *RD, int64_t Offset = 0, Path_t *Path = 0) { bool alloc = false; if (Path == 0) { alloc = true; Path = new Path_t; } // FIXME: We also need to override using all paths to a virtual base, // right now, we just process the first path Path->push_back(std::make_pair(RD, Offset)); for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), e = RD->bases_end(); i != e; ++i) { const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); if (i->isVirtual() && !IndirectPrimary.count(Base)) { // Mark it so we don't output it twice. IndirectPrimary.insert(Base); StartNewTable(); VCall.clear(); int64_t BaseOffset = BLayout.getVBaseClassOffset(Base); int64_t CurrentVBaseOffset = BaseOffset; D1(printf("vtable %s virtual base %s\n", Class->getNameAsCString(), Base->getNameAsCString())); GenerateVtableForBase(Base, BaseOffset, true, true, CurrentVBaseOffset, Path); } int64_t BaseOffset; if (i->isVirtual()) BaseOffset = BLayout.getVBaseClassOffset(Base); else { const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); BaseOffset = Offset + Layout.getBaseClassOffset(Base); } if (Base->getNumVBases()) { GenerateVtableForVBases(Base, BaseOffset, Path); } } Path->pop_back(); if (alloc) delete Path; } }; } // end anonymous namespace /// TypeConversionRequiresAdjustment - Returns whether conversion from a /// derived type to a base type requires adjustment. static bool TypeConversionRequiresAdjustment(ASTContext &Ctx, const CXXRecordDecl *DerivedDecl, const CXXRecordDecl *BaseDecl) { CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true, /*DetectVirtual=*/true); if (!const_cast(DerivedDecl)-> isDerivedFrom(const_cast(BaseDecl), Paths)) { assert(false && "Class must be derived from the passed in base class!"); return false; } // If we found a virtual base we always want to require adjustment. if (Paths.getDetectedVirtual()) return true; const CXXBasePath &Path = Paths.front(); for (size_t Start = 0, End = Path.size(); Start != End; ++Start) { const CXXBasePathElement &Element = Path[Start]; // Check the base class offset. const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Element.Class); const RecordType *BaseType = Element.Base->getType()->getAs(); const CXXRecordDecl *Base = cast(BaseType->getDecl()); if (Layout.getBaseClassOffset(Base) != 0) { // This requires an adjustment. return true; } } return false; } static bool TypeConversionRequiresAdjustment(ASTContext &Ctx, QualType DerivedType, QualType BaseType) { // Canonicalize the types. QualType CanDerivedType = Ctx.getCanonicalType(DerivedType); QualType CanBaseType = Ctx.getCanonicalType(BaseType); assert(CanDerivedType->getTypeClass() == CanBaseType->getTypeClass() && "Types must have same type class!"); if (CanDerivedType == CanBaseType) { // No adjustment needed. return false; } if (const ReferenceType *RT = dyn_cast(CanDerivedType)) { CanDerivedType = RT->getPointeeType(); CanBaseType = cast(CanBaseType)->getPointeeType(); } else if (const PointerType *PT = dyn_cast(CanDerivedType)) { CanDerivedType = PT->getPointeeType(); CanBaseType = cast(CanBaseType)->getPointeeType(); } else { assert(false && "Unexpected return type!"); } if (CanDerivedType == CanBaseType) { // No adjustment needed. return false; } const CXXRecordDecl *DerivedDecl = cast(cast(CanDerivedType)->getDecl()); const CXXRecordDecl *BaseDecl = cast(cast(CanBaseType)->getDecl()); return TypeConversionRequiresAdjustment(Ctx, DerivedDecl, BaseDecl); } bool VtableBuilder::OverrideMethod(GlobalDecl GD, bool MorallyVirtual, Index_t OverrideOffset, Index_t Offset, int64_t CurrentVBaseOffset) { const CXXMethodDecl *MD = cast(GD.getDecl()); const bool isPure = MD->isPure(); // FIXME: Should OverrideOffset's be Offset? for (CXXMethodDecl::method_iterator mi = MD->begin_overridden_methods(), e = MD->end_overridden_methods(); mi != e; ++mi) { GlobalDecl OGD; const CXXMethodDecl *OMD = *mi; if (const CXXDestructorDecl *DD = dyn_cast(OMD)) OGD = GlobalDecl(DD, GD.getDtorType()); else OGD = OMD; // Check whether this is the method being overridden in this section of // the vtable. uint64_t Index; if (!Methods.getIndex(OGD, Index)) continue; // Get the original method, which we should be computing thunks, etc, // against. OGD = Methods.getOrigMethod(Index); OMD = cast(OGD.getDecl()); QualType ReturnType = MD->getType()->getAs()->getResultType(); QualType OverriddenReturnType = OMD->getType()->getAs()->getResultType(); // Check if we need a return type adjustment. if (TypeConversionRequiresAdjustment(CGM.getContext(), ReturnType, OverriddenReturnType)) { CanQualType &BaseReturnType = BaseReturnTypes[Index]; // Insert the base return type. if (BaseReturnType.isNull()) BaseReturnType = CGM.getContext().getCanonicalType(OverriddenReturnType); } Methods.OverrideMethod(OGD, GD); ThisAdjustments.erase(Index); if (MorallyVirtual || VCall.count(OGD)) { Index_t &idx = VCall[OGD]; if (idx == 0) { NonVirtualOffset[GD] = -OverrideOffset/8 + CurrentVBaseOffset/8; VCallOffset[GD] = OverrideOffset/8; idx = VCalls.size()+1; VCalls.push_back(0); D1(printf(" vcall for %s at %d with delta %d most derived %s\n", MD->getNameAsString().c_str(), (int)-idx-3, (int)VCalls[idx-1], Class->getNameAsCString())); } else { NonVirtualOffset[GD] = NonVirtualOffset[OGD]; VCallOffset[GD] = VCallOffset[OGD]; VCalls[idx-1] = -VCallOffset[OGD] + OverrideOffset/8; D1(printf(" vcall patch for %s at %d with delta %d most derived %s\n", MD->getNameAsString().c_str(), (int)-idx-3, (int)VCalls[idx-1], Class->getNameAsCString())); } int64_t NonVirtualAdjustment = NonVirtualOffset[GD]; int64_t VirtualAdjustment = -((idx + extra + 2) * LLVMPointerWidth / 8); // Optimize out virtual adjustments of 0. if (VCalls[idx-1] == 0) VirtualAdjustment = 0; ThunkAdjustment ThisAdjustment(NonVirtualAdjustment, VirtualAdjustment); if (!isPure && !ThisAdjustment.isEmpty()) { ThisAdjustments[Index] = ThisAdjustment; SavedAdjustments.push_back( std::make_pair(GD, std::make_pair(OGD, ThisAdjustment))); } VCall[GD] = idx; return true; } int64_t NonVirtualAdjustment = -VCallOffset[OGD] + OverrideOffset/8; if (NonVirtualAdjustment) { ThunkAdjustment ThisAdjustment(NonVirtualAdjustment, 0); if (!isPure) { ThisAdjustments[Index] = ThisAdjustment; SavedAdjustments.push_back( std::make_pair(GD, std::make_pair(OGD, ThisAdjustment))); } } return true; } return false; } void VtableBuilder::AppendMethodsToVtable() { if (!BuildVtable) { VtableComponents.insert(VtableComponents.end(), Methods.size(), (llvm::Constant *)0); ThisAdjustments.clear(); BaseReturnTypes.clear(); Methods.clear(); return; } // Reserve room in the vtable for our new methods. VtableComponents.reserve(VtableComponents.size() + Methods.size()); for (unsigned i = 0, e = Methods.size(); i != e; ++i) { GlobalDecl GD = Methods[i]; const CXXMethodDecl *MD = cast(GD.getDecl()); // Get the 'this' pointer adjustment. ThunkAdjustment ThisAdjustment = ThisAdjustments.lookup(i); // Construct the return type adjustment. ThunkAdjustment ReturnAdjustment; QualType BaseReturnType = BaseReturnTypes.lookup(i); if (!BaseReturnType.isNull() && !MD->isPure()) { QualType DerivedType = MD->getType()->getAs()->getResultType(); int64_t NonVirtualAdjustment = getNVOffset(BaseReturnType, DerivedType) / 8; int64_t VirtualAdjustment = getVbaseOffset(BaseReturnType, DerivedType); ReturnAdjustment = ThunkAdjustment(NonVirtualAdjustment, VirtualAdjustment); } llvm::Constant *Method = 0; if (!ReturnAdjustment.isEmpty()) { // Build a covariant thunk. CovariantThunkAdjustment Adjustment(ThisAdjustment, ReturnAdjustment); Method = wrap(CGM.GetAddrOfCovariantThunk(GD, Adjustment)); } else if (!ThisAdjustment.isEmpty()) { // Build a "regular" thunk. Method = wrap(CGM.GetAddrOfThunk(GD, ThisAdjustment)); } else if (MD->isPure()) { // We have a pure virtual method. Method = getPureVirtualFn(); } else { // We have a good old regular method. Method = WrapAddrOf(GD); } // Add the method to the vtable. VtableComponents.push_back(Method); } ThisAdjustments.clear(); BaseReturnTypes.clear(); Methods.clear(); } void CGVtableInfo::ComputeMethodVtableIndices(const CXXRecordDecl *RD) { // Itanium C++ ABI 2.5.2: // The order of the virtual function pointers in a virtual table is the // order of declaration of the corresponding member functions in the class. // // There is an entry for any virtual function declared in a class, // whether it is a new function or overrides a base class function, // unless it overrides a function from the primary base, and conversion // between their return types does not require an adjustment. int64_t CurrentIndex = 0; const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); if (PrimaryBase) { assert(PrimaryBase->isDefinition() && "Should have the definition decl of the primary base!"); // Since the record decl shares its vtable pointer with the primary base // we need to start counting at the end of the primary base's vtable. CurrentIndex = getNumVirtualFunctionPointers(PrimaryBase); } // Collect all the primary bases, so we can check whether methods override // a method from the base. llvm::SmallPtrSet PrimaryBases; for (ASTRecordLayout::primary_base_info_iterator I = Layout.primary_base_begin(), E = Layout.primary_base_end(); I != E; ++I) PrimaryBases.insert((*I).getBase()); const CXXDestructorDecl *ImplicitVirtualDtor = 0; for (CXXRecordDecl::method_iterator i = RD->method_begin(), e = RD->method_end(); i != e; ++i) { const CXXMethodDecl *MD = *i; // We only want virtual methods. if (!MD->isVirtual()) continue; bool ShouldAddEntryForMethod = true; // Check if this method overrides a method in the primary base. for (CXXMethodDecl::method_iterator i = MD->begin_overridden_methods(), e = MD->end_overridden_methods(); i != e; ++i) { const CXXMethodDecl *OverriddenMD = *i; const CXXRecordDecl *OverriddenRD = OverriddenMD->getParent(); assert(OverriddenMD->isCanonicalDecl() && "Should have the canonical decl of the overridden RD!"); if (PrimaryBases.count(OverriddenRD)) { // Check if converting from the return type of the method to the // return type of the overridden method requires conversion. QualType ReturnType = MD->getType()->getAs()->getResultType(); QualType OverriddenReturnType = OverriddenMD->getType()->getAs()->getResultType(); if (!TypeConversionRequiresAdjustment(CGM.getContext(), ReturnType, OverriddenReturnType)) { // This index is shared between the index in the vtable of the primary // base class. if (const CXXDestructorDecl *DD = dyn_cast(MD)) { const CXXDestructorDecl *OverriddenDD = cast(OverriddenMD); // Add both the complete and deleting entries. MethodVtableIndices[GlobalDecl(DD, Dtor_Complete)] = getMethodVtableIndex(GlobalDecl(OverriddenDD, Dtor_Complete)); MethodVtableIndices[GlobalDecl(DD, Dtor_Deleting)] = getMethodVtableIndex(GlobalDecl(OverriddenDD, Dtor_Deleting)); } else { MethodVtableIndices[MD] = getMethodVtableIndex(OverriddenMD); } // We don't need to add an entry for this method. ShouldAddEntryForMethod = false; break; } } } if (!ShouldAddEntryForMethod) continue; if (const CXXDestructorDecl *DD = dyn_cast(MD)) { if (MD->isImplicit()) { assert(!ImplicitVirtualDtor && "Did already see an implicit virtual dtor!"); ImplicitVirtualDtor = DD; continue; } // Add the complete dtor. MethodVtableIndices[GlobalDecl(DD, Dtor_Complete)] = CurrentIndex++; // Add the deleting dtor. MethodVtableIndices[GlobalDecl(DD, Dtor_Deleting)] = CurrentIndex++; } else { // Add the entry. MethodVtableIndices[MD] = CurrentIndex++; } } if (ImplicitVirtualDtor) { // Itanium C++ ABI 2.5.2: // If a class has an implicitly-defined virtual destructor, // its entries come after the declared virtual function pointers. // Add the complete dtor. MethodVtableIndices[GlobalDecl(ImplicitVirtualDtor, Dtor_Complete)] = CurrentIndex++; // Add the deleting dtor. MethodVtableIndices[GlobalDecl(ImplicitVirtualDtor, Dtor_Deleting)] = CurrentIndex++; } NumVirtualFunctionPointers[RD] = CurrentIndex; } uint64_t CGVtableInfo::getNumVirtualFunctionPointers(const CXXRecordDecl *RD) { llvm::DenseMap::iterator I = NumVirtualFunctionPointers.find(RD); if (I != NumVirtualFunctionPointers.end()) return I->second; ComputeMethodVtableIndices(RD); I = NumVirtualFunctionPointers.find(RD); assert(I != NumVirtualFunctionPointers.end() && "Did not find entry!"); return I->second; } uint64_t CGVtableInfo::getMethodVtableIndex(GlobalDecl GD) { MethodVtableIndicesTy::iterator I = MethodVtableIndices.find(GD); if (I != MethodVtableIndices.end()) return I->second; const CXXRecordDecl *RD = cast(GD.getDecl())->getParent(); ComputeMethodVtableIndices(RD); I = MethodVtableIndices.find(GD); assert(I != MethodVtableIndices.end() && "Did not find index!"); return I->second; } CGVtableInfo::AdjustmentVectorTy* CGVtableInfo::getAdjustments(GlobalDecl GD) { SavedAdjustmentsTy::iterator I = SavedAdjustments.find(GD); if (I != SavedAdjustments.end()) return &I->second; const CXXRecordDecl *RD = cast(GD.getDecl()->getDeclContext()); if (!SavedAdjustmentRecords.insert(RD).second) return 0; AddressPointsMapTy AddressPoints; VtableBuilder b(RD, RD, 0, CGM, false, AddressPoints); D1(printf("vtable %s\n", RD->getNameAsCString())); b.GenerateVtableForBase(RD); b.GenerateVtableForVBases(RD); for (VtableBuilder::SavedAdjustmentsVectorTy::iterator i = b.getSavedAdjustments().begin(), e = b.getSavedAdjustments().end(); i != e; i++) SavedAdjustments[i->first].push_back(i->second); I = SavedAdjustments.find(GD); if (I != SavedAdjustments.end()) return &I->second; return 0; } int64_t CGVtableInfo::getVirtualBaseOffsetIndex(const CXXRecordDecl *RD, const CXXRecordDecl *VBase) { ClassPairTy ClassPair(RD, VBase); VirtualBaseClassIndiciesTy::iterator I = VirtualBaseClassIndicies.find(ClassPair); if (I != VirtualBaseClassIndicies.end()) return I->second; // FIXME: This seems expensive. Can we do a partial job to get // just this data. AddressPointsMapTy AddressPoints; VtableBuilder b(RD, RD, 0, CGM, false, AddressPoints); D1(printf("vtable %s\n", RD->getNameAsCString())); b.GenerateVtableForBase(RD); b.GenerateVtableForVBases(RD); for (llvm::DenseMap::iterator I = b.getVBIndex().begin(), E = b.getVBIndex().end(); I != E; ++I) { // Insert all types. ClassPairTy ClassPair(RD, I->first); VirtualBaseClassIndicies.insert(std::make_pair(ClassPair, I->second)); } I = VirtualBaseClassIndicies.find(ClassPair); assert(I != VirtualBaseClassIndicies.end() && "Did not find index!"); return I->second; } uint64_t CGVtableInfo::getVtableAddressPoint(const CXXRecordDecl *RD) { uint64_t AddressPoint = (*(*(CGM.getVtableInfo().AddressPoints[RD]))[RD])[std::make_pair(RD, 0)]; return AddressPoint; } llvm::GlobalVariable * CGVtableInfo::GenerateVtable(llvm::GlobalVariable::LinkageTypes Linkage, bool GenerateDefinition, const CXXRecordDecl *LayoutClass, const CXXRecordDecl *RD, uint64_t Offset, AddressPointsMapTy& AddressPoints) { llvm::SmallString<256> OutName; if (LayoutClass != RD) CGM.getMangleContext().mangleCXXCtorVtable(LayoutClass, Offset / 8, RD, OutName); else CGM.getMangleContext().mangleCXXVtable(RD, OutName); llvm::StringRef Name = OutName.str(); llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); if (GV == 0 || CGM.getVtableInfo().AddressPoints[LayoutClass] == 0 || GV->isDeclaration()) { VtableBuilder b(RD, LayoutClass, Offset, CGM, GenerateDefinition, AddressPoints); D1(printf("vtable %s\n", RD->getNameAsCString())); // First comes the vtables for all the non-virtual bases... b.GenerateVtableForBase(RD, Offset); // then the vtables for all the virtual bases. b.GenerateVtableForVBases(RD, Offset); llvm::Constant *Init = 0; const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext()); llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, b.getVtableComponents().size()); if (GenerateDefinition) Init = llvm::ConstantArray::get(ArrayType, &b.getVtableComponents()[0], b.getVtableComponents().size()); llvm::GlobalVariable *OGV = GV; GV = new llvm::GlobalVariable(CGM.getModule(), ArrayType, /*isConstant=*/true, Linkage, Init, Name); CGM.setGlobalVisibility(GV, RD); if (OGV) { GV->takeName(OGV); llvm::Constant *NewPtr = llvm::ConstantExpr::getBitCast(GV, OGV->getType()); OGV->replaceAllUsesWith(NewPtr); OGV->eraseFromParent(); } } return GV; } namespace { class VTTBuilder { /// Inits - The list of values built for the VTT. std::vector &Inits; /// Class - The most derived class that this vtable is being built for. const CXXRecordDecl *Class; CodeGenModule &CGM; // Per-module state. llvm::SmallSet SeenVBase; /// BLayout - Layout for the most derived class that this vtable is being /// built for. const ASTRecordLayout &BLayout; CGVtableInfo::AddrMap_t &AddressPoints; // vtbl - A pointer to the vtable for Class. llvm::Constant *ClassVtbl; llvm::LLVMContext &VMContext; llvm::DenseMap SubVTTIndicies; bool GenerateDefinition; llvm::DenseMap CtorVtables; llvm::DenseMap, uint64_t> CtorVtableAddressPoints; llvm::Constant *getCtorVtable(const BaseSubobject &Base) { if (!GenerateDefinition) return 0; llvm::Constant *&CtorVtable = CtorVtables[Base]; if (!CtorVtable) { // Build the vtable. CGVtableInfo::CtorVtableInfo Info = CGM.getVtableInfo().getCtorVtable(Class, Base); CtorVtable = Info.Vtable; // Add the address points for this base. for (CGVtableInfo::AddressPointsMapTy::const_iterator I = Info.AddressPoints.begin(), E = Info.AddressPoints.end(); I != E; ++I) { uint64_t &AddressPoint = CtorVtableAddressPoints[std::make_pair(Base.getBase(), I->first)]; // Check if we already have the address points for this base. if (AddressPoint) break; // Otherwise, insert it. AddressPoint = I->second; } } return CtorVtable; } /// BuildVtablePtr - Build up a referene to the given secondary vtable llvm::Constant *BuildVtablePtr(llvm::Constant *Vtable, const CXXRecordDecl *VtableClass, const CXXRecordDecl *RD, uint64_t Offset) { int64_t AddressPoint = (*AddressPoints[VtableClass])[std::make_pair(RD, Offset)]; // FIXME: We can never have 0 address point. Do this for now so gepping // retains the same structure. Later we'll just assert. if (AddressPoint == 0) AddressPoint = 1; D1(printf("XXX address point for %s in %s layout %s at offset %d was %d\n", RD->getNameAsCString(), VtblClass->getNameAsCString(), Class->getNameAsCString(), (int)Offset, (int)AddressPoint)); llvm::Value *Idxs[] = { llvm::ConstantInt::get(llvm::Type::getInt64Ty(VMContext), 0), llvm::ConstantInt::get(llvm::Type::getInt64Ty(VMContext), AddressPoint) }; llvm::Constant *Init = llvm::ConstantExpr::getInBoundsGetElementPtr(Vtable, Idxs, 2); const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext); return llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); } /// Secondary - Add the secondary vtable pointers to Inits. Offset is the /// current offset in bits to the object we're working on. void Secondary(const CXXRecordDecl *RD, llvm::Constant *vtbl, const CXXRecordDecl *VtblClass, uint64_t Offset=0, bool MorallyVirtual=false) { if (RD->getNumVBases() == 0 && ! MorallyVirtual) return; for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), e = RD->bases_end(); i != e; ++i) { const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); const bool PrimaryBaseWasVirtual = Layout.getPrimaryBaseWasVirtual(); bool NonVirtualPrimaryBase; NonVirtualPrimaryBase = !PrimaryBaseWasVirtual && Base == PrimaryBase; bool BaseMorallyVirtual = MorallyVirtual | i->isVirtual(); uint64_t BaseOffset; if (!i->isVirtual()) { const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); BaseOffset = Offset + Layout.getBaseClassOffset(Base); } else BaseOffset = BLayout.getVBaseClassOffset(Base); llvm::Constant *subvtbl = vtbl; const CXXRecordDecl *subVtblClass = VtblClass; if ((Base->getNumVBases() || BaseMorallyVirtual) && !NonVirtualPrimaryBase) { // FIXME: Slightly too many of these for __ZTT8test8_B2 llvm::Constant *init; if (BaseMorallyVirtual) init = GenerateDefinition ? BuildVtablePtr(vtbl, VtblClass, RD, Offset) : 0; else { init = GenerateDefinition ? getCtorVtable(BaseSubobject(Base, BaseOffset)) : 0; subvtbl = init; subVtblClass = Base; init = GenerateDefinition ? BuildVtablePtr(init, Class, Base, BaseOffset) : 0; } Inits.push_back(init); } Secondary(Base, subvtbl, subVtblClass, BaseOffset, BaseMorallyVirtual); } } /// BuiltVTT - Add the VTT to Inits. Offset is the offset in bits to the /// currnet object we're working on. void BuildVTT(const CXXRecordDecl *RD, uint64_t Offset, bool MorallyVirtual) { if (RD->getNumVBases() == 0 && !MorallyVirtual) return; llvm::Constant *Vtable; const CXXRecordDecl *VtableClass; // First comes the primary virtual table pointer... if (MorallyVirtual) { Vtable = GenerateDefinition ? ClassVtbl : 0; VtableClass = Class; } else { Vtable = GenerateDefinition ? getCtorVtable(BaseSubobject(RD, Offset)) : 0; VtableClass = RD; } llvm::Constant *Init = GenerateDefinition ? BuildVtablePtr(Vtable, VtableClass, RD, Offset) : 0; Inits.push_back(Init); // then the secondary VTTs.... SecondaryVTTs(RD, Offset, MorallyVirtual); // and last the secondary vtable pointers. Secondary(RD, Vtable, VtableClass, Offset, MorallyVirtual); } /// SecondaryVTTs - Add the secondary VTTs to Inits. The secondary VTTs are /// built from each direct non-virtual proper base that requires a VTT in /// declaration order. void SecondaryVTTs(const CXXRecordDecl *RD, uint64_t Offset=0, bool MorallyVirtual=false) { for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), e = RD->bases_end(); i != e; ++i) { const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); if (i->isVirtual()) continue; const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); uint64_t BaseOffset = Offset + Layout.getBaseClassOffset(Base); // Remember the sub-VTT index. SubVTTIndicies[Base] = Inits.size(); BuildVTT(Base, BaseOffset, MorallyVirtual); } } /// VirtualVTTs - Add the VTT for each proper virtual base in inheritance /// graph preorder. void VirtualVTTs(const CXXRecordDecl *RD) { for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), e = RD->bases_end(); i != e; ++i) { const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); if (i->isVirtual() && !SeenVBase.count(Base)) { // Remember the sub-VTT index. SubVTTIndicies[Base] = Inits.size(); SeenVBase.insert(Base); uint64_t BaseOffset = BLayout.getVBaseClassOffset(Base); BuildVTT(Base, BaseOffset, true); } VirtualVTTs(Base); } } public: VTTBuilder(std::vector &inits, const CXXRecordDecl *c, CodeGenModule &cgm, bool GenerateDefinition) : Inits(inits), Class(c), CGM(cgm), BLayout(cgm.getContext().getASTRecordLayout(c)), AddressPoints(*cgm.getVtableInfo().AddressPoints[c]), VMContext(cgm.getModule().getContext()), GenerateDefinition(GenerateDefinition) { // First comes the primary virtual table pointer for the complete class... ClassVtbl = CGM.getVtableInfo().getVtable(Class); llvm::Constant *Init = GenerateDefinition ? BuildVtablePtr(ClassVtbl, Class, Class, 0) : 0; Inits.push_back(Init); // then the secondary VTTs... SecondaryVTTs(Class); // then the secondary vtable pointers... Secondary(Class, ClassVtbl, Class); // and last, the virtual VTTs. VirtualVTTs(Class); } llvm::DenseMap &getSubVTTIndicies() { return SubVTTIndicies; } }; } llvm::GlobalVariable * CGVtableInfo::GenerateVTT(llvm::GlobalVariable::LinkageTypes Linkage, bool GenerateDefinition, const CXXRecordDecl *RD) { // Only classes that have virtual bases need a VTT. if (RD->getNumVBases() == 0) return 0; llvm::SmallString<256> OutName; CGM.getMangleContext().mangleCXXVTT(RD, OutName); llvm::StringRef Name = OutName.str(); D1(printf("vtt %s\n", RD->getNameAsCString())); llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); if (GV == 0 || GV->isDeclaration()) { const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext()); std::vector inits; VTTBuilder b(inits, RD, CGM, GenerateDefinition); const llvm::ArrayType *Type = llvm::ArrayType::get(Int8PtrTy, inits.size()); llvm::Constant *Init = 0; if (GenerateDefinition) Init = llvm::ConstantArray::get(Type, inits); llvm::GlobalVariable *OldGV = GV; GV = new llvm::GlobalVariable(CGM.getModule(), Type, /*isConstant=*/true, Linkage, Init, Name); CGM.setGlobalVisibility(GV, RD); if (OldGV) { GV->takeName(OldGV); llvm::Constant *NewPtr = llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); OldGV->replaceAllUsesWith(NewPtr); OldGV->eraseFromParent(); } } return GV; } void CGVtableInfo::GenerateClassData(llvm::GlobalVariable::LinkageTypes Linkage, const CXXRecordDecl *RD) { llvm::GlobalVariable *&Vtable = Vtables[RD]; if (Vtable) { assert(Vtable->getInitializer() && "Vtable doesn't have a definition!"); return; } AddressPointsMapTy AddressPoints; Vtable = GenerateVtable(Linkage, /*GenerateDefinition=*/true, RD, RD, 0, AddressPoints); GenerateVTT(Linkage, /*GenerateDefinition=*/true, RD); } llvm::GlobalVariable *CGVtableInfo::getVtable(const CXXRecordDecl *RD) { llvm::GlobalVariable *Vtable = Vtables.lookup(RD); if (!Vtable) { AddressPointsMapTy AddressPoints; Vtable = GenerateVtable(llvm::GlobalValue::ExternalLinkage, /*GenerateDefinition=*/false, RD, RD, 0, AddressPoints); } return Vtable; } CGVtableInfo::CtorVtableInfo CGVtableInfo::getCtorVtable(const CXXRecordDecl *RD, const BaseSubobject &Base) { CtorVtableInfo Info; Info.Vtable = GenerateVtable(llvm::GlobalValue::InternalLinkage, /*GenerateDefinition=*/true, RD, Base.getBase(), Base.getBaseOffset(), Info.AddressPoints); return Info; } llvm::GlobalVariable *CGVtableInfo::getVTT(const CXXRecordDecl *RD) { return GenerateVTT(llvm::GlobalValue::ExternalLinkage, /*GenerateDefinition=*/false, RD); } void CGVtableInfo::MaybeEmitVtable(GlobalDecl GD) { const CXXMethodDecl *MD = cast(GD.getDecl()); const CXXRecordDecl *RD = MD->getParent(); // If the class doesn't have a vtable we don't need to emit one. if (!RD->isDynamicClass()) return; // Get the key function. const CXXMethodDecl *KeyFunction = CGM.getContext().getKeyFunction(RD); if (KeyFunction) { // We don't have the right key function. if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl()) return; } // Emit the data. GenerateClassData(CGM.getVtableLinkage(RD), RD); for (CXXRecordDecl::method_iterator i = RD->method_begin(), e = RD->method_end(); i != e; ++i) { if ((*i)->isVirtual() && ((*i)->hasInlineBody() || (*i)->isImplicit())) { if (const CXXDestructorDecl *DD = dyn_cast(*i)) { CGM.BuildThunksForVirtual(GlobalDecl(DD, Dtor_Complete)); CGM.BuildThunksForVirtual(GlobalDecl(DD, Dtor_Deleting)); } else { CGM.BuildThunksForVirtual(GlobalDecl(*i)); } } } } bool CGVtableInfo::needsVTTParameter(GlobalDecl GD) { const CXXMethodDecl *MD = cast(GD.getDecl()); // We don't have any virtual bases, just return early. if (!MD->getParent()->getNumVBases()) return false; // Check if we have a base constructor. if (isa(MD) && GD.getCtorType() == Ctor_Base) return true; // Check if we have a base destructor. if (isa(MD) && GD.getDtorType() == Dtor_Base) return true; return false; } uint64_t CGVtableInfo::getSubVTTIndex(const CXXRecordDecl *RD, const CXXRecordDecl *Base) { ClassPairTy ClassPair(RD, Base); SubVTTIndiciesTy::iterator I = SubVTTIndicies.find(ClassPair); if (I != SubVTTIndicies.end()) return I->second; std::vector inits; VTTBuilder Builder(inits, RD, CGM, /*GenerateDefinition=*/false); for (llvm::DenseMap::iterator I = Builder.getSubVTTIndicies().begin(), E = Builder.getSubVTTIndicies().end(); I != E; ++I) { // Insert all indices. ClassPairTy ClassPair(RD, I->first); SubVTTIndicies.insert(std::make_pair(ClassPair, I->second)); } I = SubVTTIndicies.find(ClassPair); assert(I != SubVTTIndicies.end() && "Did not find index!"); return I->second; }