//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Stmt nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CGDebugInfo.h" #include "CodeGenModule.h" #include "CodeGenFunction.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/PrettyStackTrace.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/StringExtras.h" #include "llvm/InlineAsm.h" #include "llvm/Intrinsics.h" #include "llvm/Target/TargetData.h" using namespace clang; using namespace CodeGen; //===----------------------------------------------------------------------===// // Statement Emission //===----------------------------------------------------------------------===// void CodeGenFunction::EmitStopPoint(const Stmt *S) { if (CGDebugInfo *DI = getDebugInfo()) { DI->setLocation(S->getLocStart()); DI->EmitStopPoint(CurFn, Builder); } } void CodeGenFunction::EmitStmt(const Stmt *S) { assert(S && "Null statement?"); // Check if we can handle this without bothering to generate an // insert point or debug info. if (EmitSimpleStmt(S)) return; // If we happen to be at an unreachable point just create a dummy // basic block to hold the code. We could change parts of irgen to // simply not generate this code, but this situation is rare and // probably not worth the effort. // FIXME: Verify previous performance/effort claim. EnsureInsertPoint(); // Generate a stoppoint if we are emitting debug info. EmitStopPoint(S); switch (S->getStmtClass()) { default: // Must be an expression in a stmt context. Emit the value (to get // side-effects) and ignore the result. if (const Expr *E = dyn_cast(S)) { EmitAnyExpr(E, 0, false, true); } else { ErrorUnsupported(S, "statement"); } break; case Stmt::IndirectGotoStmtClass: EmitIndirectGotoStmt(cast(*S)); break; case Stmt::IfStmtClass: EmitIfStmt(cast(*S)); break; case Stmt::WhileStmtClass: EmitWhileStmt(cast(*S)); break; case Stmt::DoStmtClass: EmitDoStmt(cast(*S)); break; case Stmt::ForStmtClass: EmitForStmt(cast(*S)); break; case Stmt::ReturnStmtClass: EmitReturnStmt(cast(*S)); break; case Stmt::DeclStmtClass: EmitDeclStmt(cast(*S)); break; case Stmt::SwitchStmtClass: EmitSwitchStmt(cast(*S)); break; case Stmt::AsmStmtClass: EmitAsmStmt(cast(*S)); break; case Stmt::ObjCAtTryStmtClass: EmitObjCAtTryStmt(cast(*S)); break; case Stmt::ObjCAtCatchStmtClass: assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt"); break; case Stmt::ObjCAtFinallyStmtClass: assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt"); break; case Stmt::ObjCAtThrowStmtClass: EmitObjCAtThrowStmt(cast(*S)); break; case Stmt::ObjCAtSynchronizedStmtClass: EmitObjCAtSynchronizedStmt(cast(*S)); break; case Stmt::ObjCForCollectionStmtClass: EmitObjCForCollectionStmt(cast(*S)); break; } } bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { switch (S->getStmtClass()) { default: return false; case Stmt::NullStmtClass: break; case Stmt::CompoundStmtClass: EmitCompoundStmt(cast(*S)); break; case Stmt::LabelStmtClass: EmitLabelStmt(cast(*S)); break; case Stmt::GotoStmtClass: EmitGotoStmt(cast(*S)); break; case Stmt::BreakStmtClass: EmitBreakStmt(cast(*S)); break; case Stmt::ContinueStmtClass: EmitContinueStmt(cast(*S)); break; case Stmt::DefaultStmtClass: EmitDefaultStmt(cast(*S)); break; case Stmt::CaseStmtClass: EmitCaseStmt(cast(*S)); break; } return true; } /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, /// this captures the expression result of the last sub-statement and returns it /// (for use by the statement expression extension). RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, llvm::Value *AggLoc, bool isAggVol) { PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), "LLVM IR generation of compound statement ('{}')"); CGDebugInfo *DI = getDebugInfo(); if (DI) { EnsureInsertPoint(); DI->setLocation(S.getLBracLoc()); // FIXME: The llvm backend is currently not ready to deal with region_end // for block scoping. In the presence of always_inline functions it gets so // confused that it doesn't emit any debug info. Just disable this for now. //DI->EmitRegionStart(CurFn, Builder); } // Keep track of the current cleanup stack depth. size_t CleanupStackDepth = CleanupEntries.size(); bool OldDidCallStackSave = DidCallStackSave; DidCallStackSave = false; for (CompoundStmt::const_body_iterator I = S.body_begin(), E = S.body_end()-GetLast; I != E; ++I) EmitStmt(*I); if (DI) { EnsureInsertPoint(); DI->setLocation(S.getRBracLoc()); // FIXME: The llvm backend is currently not ready to deal with region_end // for block scoping. In the presence of always_inline functions it gets so // confused that it doesn't emit any debug info. Just disable this for now. //DI->EmitRegionEnd(CurFn, Builder); } RValue RV; if (!GetLast) RV = RValue::get(0); else { // We have to special case labels here. They are statements, but when put // at the end of a statement expression, they yield the value of their // subexpression. Handle this by walking through all labels we encounter, // emitting them before we evaluate the subexpr. const Stmt *LastStmt = S.body_back(); while (const LabelStmt *LS = dyn_cast(LastStmt)) { EmitLabel(*LS); LastStmt = LS->getSubStmt(); } EnsureInsertPoint(); RV = EmitAnyExpr(cast(LastStmt), AggLoc); } DidCallStackSave = OldDidCallStackSave; EmitCleanupBlocks(CleanupStackDepth); return RV; } void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { llvm::BranchInst *BI = dyn_cast(BB->getTerminator()); // If there is a cleanup stack, then we it isn't worth trying to // simplify this block (we would need to remove it from the scope map // and cleanup entry). if (!CleanupEntries.empty()) return; // Can only simplify direct branches. if (!BI || !BI->isUnconditional()) return; BB->replaceAllUsesWith(BI->getSuccessor(0)); BI->eraseFromParent(); BB->eraseFromParent(); } void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { // Fall out of the current block (if necessary). EmitBranch(BB); if (IsFinished && BB->use_empty()) { delete BB; return; } // If necessary, associate the block with the cleanup stack size. if (!CleanupEntries.empty()) { // Check if the basic block has already been inserted. BlockScopeMap::iterator I = BlockScopes.find(BB); if (I != BlockScopes.end()) { assert(I->second == CleanupEntries.size() - 1); } else { BlockScopes[BB] = CleanupEntries.size() - 1; CleanupEntries.back().Blocks.push_back(BB); } } CurFn->getBasicBlockList().push_back(BB); Builder.SetInsertPoint(BB); } void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { // Emit a branch from the current block to the target one if this // was a real block. If this was just a fall-through block after a // terminator, don't emit it. llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); if (!CurBB || CurBB->getTerminator()) { // If there is no insert point or the previous block is already // terminated, don't touch it. } else { // Otherwise, create a fall-through branch. Builder.CreateBr(Target); } Builder.ClearInsertionPoint(); } void CodeGenFunction::EmitLabel(const LabelStmt &S) { EmitBlock(getBasicBlockForLabel(&S)); } void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { EmitLabel(S); EmitStmt(S.getSubStmt()); } void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { // If this code is reachable then emit a stop point (if generating // debug info). We have to do this ourselves because we are on the // "simple" statement path. if (HaveInsertPoint()) EmitStopPoint(&S); EmitBranchThroughCleanup(getBasicBlockForLabel(S.getLabel())); } void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { // Emit initial switch which will be patched up later by // EmitIndirectSwitches(). We need a default dest, so we use the // current BB, but this is overwritten. llvm::Value *V = Builder.CreatePtrToInt(EmitScalarExpr(S.getTarget()), llvm::Type::Int32Ty, "addr"); llvm::SwitchInst *I = Builder.CreateSwitch(V, Builder.GetInsertBlock()); IndirectSwitches.push_back(I); // Clear the insertion point to indicate we are in unreachable code. Builder.ClearInsertionPoint(); } void CodeGenFunction::EmitIfStmt(const IfStmt &S) { // C99 6.8.4.1: The first substatement is executed if the expression compares // unequal to 0. The condition must be a scalar type. // If the condition constant folds and can be elided, try to avoid emitting // the condition and the dead arm of the if/else. if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) { // Figure out which block (then or else) is executed. const Stmt *Executed = S.getThen(), *Skipped = S.getElse(); if (Cond == -1) // Condition false? std::swap(Executed, Skipped); // If the skipped block has no labels in it, just emit the executed block. // This avoids emitting dead code and simplifies the CFG substantially. if (!ContainsLabel(Skipped)) { if (Executed) EmitStmt(Executed); return; } } // Otherwise, the condition did not fold, or we couldn't elide it. Just emit // the conditional branch. llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); llvm::BasicBlock *ElseBlock = ContBlock; if (S.getElse()) ElseBlock = createBasicBlock("if.else"); EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock); // Emit the 'then' code. EmitBlock(ThenBlock); EmitStmt(S.getThen()); EmitBranch(ContBlock); // Emit the 'else' code if present. if (const Stmt *Else = S.getElse()) { EmitBlock(ElseBlock); EmitStmt(Else); EmitBranch(ContBlock); } // Emit the continuation block for code after the if. EmitBlock(ContBlock, true); } void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { // Emit the header for the loop, insert it, which will create an uncond br to // it. llvm::BasicBlock *LoopHeader = createBasicBlock("while.cond"); EmitBlock(LoopHeader); // Create an exit block for when the condition fails, create a block for the // body of the loop. llvm::BasicBlock *ExitBlock = createBasicBlock("while.end"); llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); // Store the blocks to use for break and continue. BreakContinueStack.push_back(BreakContinue(ExitBlock, LoopHeader)); // Evaluate the conditional in the while header. C99 6.8.5.1: The // evaluation of the controlling expression takes place before each // execution of the loop body. llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); // while(1) is common, avoid extra exit blocks. Be sure // to correctly handle break/continue though. bool EmitBoolCondBranch = true; if (llvm::ConstantInt *C = dyn_cast(BoolCondVal)) if (C->isOne()) EmitBoolCondBranch = false; // As long as the condition is true, go to the loop body. if (EmitBoolCondBranch) Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); // Emit the loop body. EmitBlock(LoopBody); EmitStmt(S.getBody()); BreakContinueStack.pop_back(); // Cycle to the condition. EmitBranch(LoopHeader); // Emit the exit block. EmitBlock(ExitBlock, true); // The LoopHeader typically is just a branch if we skipped emitting // a branch, try to erase it. if (!EmitBoolCondBranch) SimplifyForwardingBlocks(LoopHeader); } void CodeGenFunction::EmitDoStmt(const DoStmt &S) { // Emit the body for the loop, insert it, which will create an uncond br to // it. llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); llvm::BasicBlock *AfterDo = createBasicBlock("do.end"); EmitBlock(LoopBody); llvm::BasicBlock *DoCond = createBasicBlock("do.cond"); // Store the blocks to use for break and continue. BreakContinueStack.push_back(BreakContinue(AfterDo, DoCond)); // Emit the body of the loop into the block. EmitStmt(S.getBody()); BreakContinueStack.pop_back(); EmitBlock(DoCond); // C99 6.8.5.2: "The evaluation of the controlling expression takes place // after each execution of the loop body." // Evaluate the conditional in the while header. // C99 6.8.5p2/p4: The first substatement is executed if the expression // compares unequal to 0. The condition must be a scalar type. llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); // "do {} while (0)" is common in macros, avoid extra blocks. Be sure // to correctly handle break/continue though. bool EmitBoolCondBranch = true; if (llvm::ConstantInt *C = dyn_cast(BoolCondVal)) if (C->isZero()) EmitBoolCondBranch = false; // As long as the condition is true, iterate the loop. if (EmitBoolCondBranch) Builder.CreateCondBr(BoolCondVal, LoopBody, AfterDo); // Emit the exit block. EmitBlock(AfterDo); // The DoCond block typically is just a branch if we skipped // emitting a branch, try to erase it. if (!EmitBoolCondBranch) SimplifyForwardingBlocks(DoCond); } void CodeGenFunction::EmitForStmt(const ForStmt &S) { // FIXME: What do we do if the increment (f.e.) contains a stmt expression, // which contains a continue/break? // Evaluate the first part before the loop. if (S.getInit()) EmitStmt(S.getInit()); // Start the loop with a block that tests the condition. llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); llvm::BasicBlock *AfterFor = createBasicBlock("for.end"); EmitBlock(CondBlock); // Evaluate the condition if present. If not, treat it as a // non-zero-constant according to 6.8.5.3p2, aka, true. if (S.getCond()) { // As long as the condition is true, iterate the loop. llvm::BasicBlock *ForBody = createBasicBlock("for.body"); // C99 6.8.5p2/p4: The first substatement is executed if the expression // compares unequal to 0. The condition must be a scalar type. EmitBranchOnBoolExpr(S.getCond(), ForBody, AfterFor); EmitBlock(ForBody); } else { // Treat it as a non-zero constant. Don't even create a new block for the // body, just fall into it. } // If the for loop doesn't have an increment we can just use the // condition as the continue block. llvm::BasicBlock *ContinueBlock; if (S.getInc()) ContinueBlock = createBasicBlock("for.inc"); else ContinueBlock = CondBlock; // Store the blocks to use for break and continue. BreakContinueStack.push_back(BreakContinue(AfterFor, ContinueBlock)); // If the condition is true, execute the body of the for stmt. EmitStmt(S.getBody()); BreakContinueStack.pop_back(); // If there is an increment, emit it next. if (S.getInc()) { EmitBlock(ContinueBlock); EmitStmt(S.getInc()); } // Finally, branch back up to the condition for the next iteration. EmitBranch(CondBlock); // Emit the fall-through block. EmitBlock(AfterFor, true); } void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { if (RV.isScalar()) { Builder.CreateStore(RV.getScalarVal(), ReturnValue); } else if (RV.isAggregate()) { EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); } else { StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false); } EmitBranchThroughCleanup(ReturnBlock); } /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand /// if the function returns void, or may be missing one if the function returns /// non-void. Fun stuff :). void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { // Emit the result value, even if unused, to evalute the side effects. const Expr *RV = S.getRetValue(); // FIXME: Clean this up by using an LValue for ReturnTemp, // EmitStoreThroughLValue, and EmitAnyExpr. if (!ReturnValue) { // Make sure not to return anything, but evaluate the expression // for side effects. if (RV) EmitAnyExpr(RV); } else if (RV == 0) { // Do nothing (return value is left uninitialized) } else if (FnRetTy->isReferenceType()) { // If this function returns a reference, take the address of the expression // rather than the value. Builder.CreateStore(EmitLValue(RV).getAddress(), ReturnValue); } else if (!hasAggregateLLVMType(RV->getType())) { Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); } else if (RV->getType()->isAnyComplexType()) { EmitComplexExprIntoAddr(RV, ReturnValue, false); } else { EmitAggExpr(RV, ReturnValue, false); } EmitBranchThroughCleanup(ReturnBlock); } void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end(); I != E; ++I) EmitDecl(**I); } void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); // If this code is reachable then emit a stop point (if generating // debug info). We have to do this ourselves because we are on the // "simple" statement path. if (HaveInsertPoint()) EmitStopPoint(&S); llvm::BasicBlock *Block = BreakContinueStack.back().BreakBlock; EmitBranchThroughCleanup(Block); } void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); // If this code is reachable then emit a stop point (if generating // debug info). We have to do this ourselves because we are on the // "simple" statement path. if (HaveInsertPoint()) EmitStopPoint(&S); llvm::BasicBlock *Block = BreakContinueStack.back().ContinueBlock; EmitBranchThroughCleanup(Block); } /// EmitCaseStmtRange - If case statement range is not too big then /// add multiple cases to switch instruction, one for each value within /// the range. If range is too big then emit "if" condition check. void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { assert(S.getRHS() && "Expected RHS value in CaseStmt"); llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext()); llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext()); // Emit the code for this case. We do this first to make sure it is // properly chained from our predecessor before generating the // switch machinery to enter this block. EmitBlock(createBasicBlock("sw.bb")); llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); EmitStmt(S.getSubStmt()); // If range is empty, do nothing. if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) return; llvm::APInt Range = RHS - LHS; // FIXME: parameters such as this should not be hardcoded. if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { // Range is small enough to add multiple switch instruction cases. for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) { SwitchInsn->addCase(llvm::ConstantInt::get(LHS), CaseDest); LHS++; } return; } // The range is too big. Emit "if" condition into a new block, // making sure to save and restore the current insertion point. llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); // Push this test onto the chain of range checks (which terminates // in the default basic block). The switch's default will be changed // to the top of this chain after switch emission is complete. llvm::BasicBlock *FalseDest = CaseRangeBlock; CaseRangeBlock = createBasicBlock("sw.caserange"); CurFn->getBasicBlockList().push_back(CaseRangeBlock); Builder.SetInsertPoint(CaseRangeBlock); // Emit range check. llvm::Value *Diff = Builder.CreateSub(SwitchInsn->getCondition(), llvm::ConstantInt::get(LHS), "tmp"); llvm::Value *Cond = Builder.CreateICmpULE(Diff, llvm::ConstantInt::get(Range), "tmp"); Builder.CreateCondBr(Cond, CaseDest, FalseDest); // Restore the appropriate insertion point. if (RestoreBB) Builder.SetInsertPoint(RestoreBB); else Builder.ClearInsertionPoint(); } void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { if (S.getRHS()) { EmitCaseStmtRange(S); return; } EmitBlock(createBasicBlock("sw.bb")); llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext()); SwitchInsn->addCase(llvm::ConstantInt::get(CaseVal), CaseDest); // Recursively emitting the statement is acceptable, but is not wonderful for // code where we have many case statements nested together, i.e.: // case 1: // case 2: // case 3: etc. // Handling this recursively will create a new block for each case statement // that falls through to the next case which is IR intensive. It also causes // deep recursion which can run into stack depth limitations. Handle // sequential non-range case statements specially. const CaseStmt *CurCase = &S; const CaseStmt *NextCase = dyn_cast(S.getSubStmt()); // Otherwise, iteratively add consequtive cases to this switch stmt. while (NextCase && NextCase->getRHS() == 0) { CurCase = NextCase; CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext()); SwitchInsn->addCase(llvm::ConstantInt::get(CaseVal), CaseDest); NextCase = dyn_cast(CurCase->getSubStmt()); } // Normal default recursion for non-cases. EmitStmt(CurCase->getSubStmt()); } void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); assert(DefaultBlock->empty() && "EmitDefaultStmt: Default block already defined?"); EmitBlock(DefaultBlock); EmitStmt(S.getSubStmt()); } void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { llvm::Value *CondV = EmitScalarExpr(S.getCond()); // Handle nested switch statements. llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; // Create basic block to hold stuff that comes after switch // statement. We also need to create a default block now so that // explicit case ranges tests can have a place to jump to on // failure. llvm::BasicBlock *NextBlock = createBasicBlock("sw.epilog"); llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); CaseRangeBlock = DefaultBlock; // Clear the insertion point to indicate we are in unreachable code. Builder.ClearInsertionPoint(); // All break statements jump to NextBlock. If BreakContinueStack is non empty // then reuse last ContinueBlock. llvm::BasicBlock *ContinueBlock = 0; if (!BreakContinueStack.empty()) ContinueBlock = BreakContinueStack.back().ContinueBlock; // Ensure any vlas created between there and here, are undone BreakContinueStack.push_back(BreakContinue(NextBlock, ContinueBlock)); // Emit switch body. EmitStmt(S.getBody()); BreakContinueStack.pop_back(); // Update the default block in case explicit case range tests have // been chained on top. SwitchInsn->setSuccessor(0, CaseRangeBlock); // If a default was never emitted then reroute any jumps to it and // discard. if (!DefaultBlock->getParent()) { DefaultBlock->replaceAllUsesWith(NextBlock); delete DefaultBlock; } // Emit continuation. EmitBlock(NextBlock, true); SwitchInsn = SavedSwitchInsn; CaseRangeBlock = SavedCRBlock; } static std::string SimplifyConstraint(const char *Constraint, TargetInfo &Target, llvm::SmallVectorImpl *OutCons=0) { std::string Result; while (*Constraint) { switch (*Constraint) { default: Result += Target.convertConstraint(*Constraint); break; // Ignore these case '*': case '?': case '!': break; case 'g': Result += "imr"; break; case '[': { assert(OutCons && "Must pass output names to constraints with a symbolic name"); unsigned Index; bool result = Target.resolveSymbolicName(Constraint, &(*OutCons)[0], OutCons->size(), Index); assert(result && "Could not resolve symbolic name"); result=result; Result += llvm::utostr(Index); break; } } Constraint++; } return Result; } llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S, const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, std::string &ConstraintStr) { llvm::Value *Arg; if (Info.allowsRegister() || !Info.allowsMemory()) { const llvm::Type *Ty = ConvertType(InputExpr->getType()); if (Ty->isSingleValueType()) { Arg = EmitScalarExpr(InputExpr); } else { InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); LValue Dest = EmitLValue(InputExpr); uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty); if (Size <= 64 && llvm::isPowerOf2_64(Size)) { Ty = llvm::IntegerType::get(Size); Ty = llvm::PointerType::getUnqual(Ty); Arg = Builder.CreateLoad(Builder.CreateBitCast(Dest.getAddress(), Ty)); } else { Arg = Dest.getAddress(); ConstraintStr += '*'; } } } else { InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); LValue Dest = EmitLValue(InputExpr); Arg = Dest.getAddress(); ConstraintStr += '*'; } return Arg; } void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { // Analyze the asm string to decompose it into its pieces. We know that Sema // has already done this, so it is guaranteed to be successful. llvm::SmallVector Pieces; unsigned DiagOffs; S.AnalyzeAsmString(Pieces, getContext(), DiagOffs); // Assemble the pieces into the final asm string. std::string AsmString; for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { if (Pieces[i].isString()) AsmString += Pieces[i].getString(); else if (Pieces[i].getModifier() == '\0') AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo()); else AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' + Pieces[i].getModifier() + '}'; } // Get all the output and input constraints together. llvm::SmallVector OutputConstraintInfos; llvm::SmallVector InputConstraintInfos; for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), S.getOutputName(i)); bool result = Target.validateOutputConstraint(Info); assert(result && "Failed to parse output constraint"); result=result; OutputConstraintInfos.push_back(Info); } for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), S.getInputName(i)); bool result = Target.validateInputConstraint(OutputConstraintInfos.data(), S.getNumOutputs(), Info); result=result; assert(result && "Failed to parse input constraint"); InputConstraintInfos.push_back(Info); } std::string Constraints; std::vector ResultRegDests; std::vector ResultRegQualTys; std::vector ResultRegTypes; std::vector ResultTruncRegTypes; std::vector ArgTypes; std::vector Args; // Keep track of inout constraints. std::string InOutConstraints; std::vector InOutArgs; std::vector InOutArgTypes; for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; // Simplify the output constraint. std::string OutputConstraint(S.getOutputConstraint(i)); OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target); const Expr *OutExpr = S.getOutputExpr(i); OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); LValue Dest = EmitLValue(OutExpr); if (!Constraints.empty()) Constraints += ','; // If this is a register output, then make the inline asm return it // by-value. If this is a memory result, return the value by-reference. if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) { Constraints += "=" + OutputConstraint; ResultRegQualTys.push_back(OutExpr->getType()); ResultRegDests.push_back(Dest); ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); ResultTruncRegTypes.push_back(ResultRegTypes.back()); // If this output is tied to an input, and if the input is larger, then // we need to set the actual result type of the inline asm node to be the // same as the input type. if (Info.hasMatchingInput()) { unsigned InputNo; for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; if (Input.hasTiedOperand() && Input.getTiedOperand() == i) break; } assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); QualType InputTy = S.getInputExpr(InputNo)->getType(); QualType OutputTy = OutExpr->getType(); uint64_t InputSize = getContext().getTypeSize(InputTy); if (getContext().getTypeSize(OutputTy) < InputSize) { // Form the asm to return the value as a larger integer type. ResultRegTypes.back() = llvm::IntegerType::get((unsigned)InputSize); } } } else { ArgTypes.push_back(Dest.getAddress()->getType()); Args.push_back(Dest.getAddress()); Constraints += "=*"; Constraints += OutputConstraint; } if (Info.isReadWrite()) { InOutConstraints += ','; const Expr *InputExpr = S.getOutputExpr(i); llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, InOutConstraints); if (Info.allowsRegister()) InOutConstraints += llvm::utostr(i); else InOutConstraints += OutputConstraint; InOutArgTypes.push_back(Arg->getType()); InOutArgs.push_back(Arg); } } unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { const Expr *InputExpr = S.getInputExpr(i); TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; if (!Constraints.empty()) Constraints += ','; // Simplify the input constraint. std::string InputConstraint(S.getInputConstraint(i)); InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target, &OutputConstraintInfos); llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints); // If this input argument is tied to a larger output result, extend the // input to be the same size as the output. The LLVM backend wants to see // the input and output of a matching constraint be the same size. Note // that GCC does not define what the top bits are here. We use zext because // that is usually cheaper, but LLVM IR should really get an anyext someday. if (Info.hasTiedOperand()) { unsigned Output = Info.getTiedOperand(); QualType OutputTy = S.getOutputExpr(Output)->getType(); QualType InputTy = InputExpr->getType(); if (getContext().getTypeSize(OutputTy) > getContext().getTypeSize(InputTy)) { // Use ptrtoint as appropriate so that we can do our extension. if (isa(Arg->getType())) Arg = Builder.CreatePtrToInt(Arg, llvm::IntegerType::get(LLVMPointerWidth)); unsigned OutputSize = (unsigned)getContext().getTypeSize(OutputTy); Arg = Builder.CreateZExt(Arg, llvm::IntegerType::get(OutputSize)); } } ArgTypes.push_back(Arg->getType()); Args.push_back(Arg); Constraints += InputConstraint; } // Append the "input" part of inout constraints last. for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { ArgTypes.push_back(InOutArgTypes[i]); Args.push_back(InOutArgs[i]); } Constraints += InOutConstraints; // Clobbers for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { std::string Clobber(S.getClobber(i)->getStrData(), S.getClobber(i)->getByteLength()); Clobber = Target.getNormalizedGCCRegisterName(Clobber.c_str()); if (i != 0 || NumConstraints != 0) Constraints += ','; Constraints += "~{"; Constraints += Clobber; Constraints += '}'; } // Add machine specific clobbers std::string MachineClobbers = Target.getClobbers(); if (!MachineClobbers.empty()) { if (!Constraints.empty()) Constraints += ','; Constraints += MachineClobbers; } const llvm::Type *ResultType; if (ResultRegTypes.empty()) ResultType = llvm::Type::VoidTy; else if (ResultRegTypes.size() == 1) ResultType = ResultRegTypes[0]; else ResultType = llvm::StructType::get(ResultRegTypes); const llvm::FunctionType *FTy = llvm::FunctionType::get(ResultType, ArgTypes, false); llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, AsmString, Constraints, S.isVolatile() || S.getNumOutputs() == 0); llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end()); Result->addAttribute(~0, llvm::Attribute::NoUnwind); // Extract all of the register value results from the asm. std::vector RegResults; if (ResultRegTypes.size() == 1) { RegResults.push_back(Result); } else { for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); RegResults.push_back(Tmp); } } for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { llvm::Value *Tmp = RegResults[i]; // If the result type of the LLVM IR asm doesn't match the result type of // the expression, do the conversion. if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { const llvm::Type *TruncTy = ResultTruncRegTypes[i]; // Truncate the integer result to the right size, note that // ResultTruncRegTypes can be a pointer. uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy); Tmp = Builder.CreateTrunc(Tmp, llvm::IntegerType::get((unsigned)ResSize)); if (Tmp->getType() != TruncTy) { assert(isa(TruncTy)); Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); } } EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i], ResultRegQualTys[i]); } }