//===--- CGCXXRTTI.cpp - Emit LLVM Code for C++ RTTI descriptors ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with C++ code generation of RTTI descriptors. // //===----------------------------------------------------------------------===// #include "clang/AST/Type.h" #include "clang/AST/RecordLayout.h" #include "CodeGenModule.h" using namespace clang; using namespace CodeGen; namespace { class RTTIBuilder { CodeGenModule &CGM; // Per-module state. llvm::LLVMContext &VMContext; const llvm::Type *Int8PtrTy; /// Fields - The fields of the RTTI descriptor currently being built. llvm::SmallVector Fields; /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI /// descriptor of the given type. llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty); /// BuildVtablePointer - Build the vtable pointer for the given type. void BuildVtablePointer(const Type *Ty); /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b. void BuildSIClassTypeInfo(const CXXRecordDecl *RD); /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for /// classes with bases that do not satisfy the abi::__si_class_type_info /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. void BuildVMIClassTypeInfo(const CXXRecordDecl *RD); /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used /// for pointer types. void BuildPointerTypeInfo(const PointerType *Ty); /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info /// struct, used for member pointer types. void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty); public: RTTIBuilder(CodeGenModule &cgm) : CGM(cgm), VMContext(cgm.getModule().getContext()), Int8PtrTy(llvm::Type::getInt8PtrTy(VMContext)) { } llvm::Constant *BuildName(QualType Ty, bool Hidden, llvm::GlobalVariable::LinkageTypes Linkage) { llvm::SmallString<256> OutName; CGM.getMangleContext().mangleCXXRTTIName(Ty, OutName); llvm::StringRef Name = OutName.str(); llvm::GlobalVariable *OGV = CGM.getModule().getNamedGlobal(Name); if (OGV && !OGV->isDeclaration()) return llvm::ConstantExpr::getBitCast(OGV, Int8PtrTy); llvm::Constant *C = llvm::ConstantArray::get(VMContext, Name.substr(4)); llvm::GlobalVariable *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), true, Linkage, C, Name); if (OGV) { GV->takeName(OGV); llvm::Constant *NewPtr = llvm::ConstantExpr::getBitCast(GV, OGV->getType()); OGV->replaceAllUsesWith(NewPtr); OGV->eraseFromParent(); } if (Hidden) GV->setVisibility(llvm::GlobalVariable::HiddenVisibility); return llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); } // FIXME: unify with DecideExtern bool DecideHidden(QualType Ty) { // For this type, see if all components are never hidden. if (const MemberPointerType *MPT = Ty->getAs()) return (DecideHidden(MPT->getPointeeType()) && DecideHidden(QualType(MPT->getClass(), 0))); if (const PointerType *PT = Ty->getAs()) return DecideHidden(PT->getPointeeType()); if (const FunctionType *FT = Ty->getAs()) { if (DecideHidden(FT->getResultType()) == false) return false; if (const FunctionProtoType *FPT = Ty->getAs()) { for (unsigned i = 0; i getNumArgs(); ++i) if (DecideHidden(FPT->getArgType(i)) == false) return false; for (unsigned i = 0; i getNumExceptions(); ++i) if (DecideHidden(FPT->getExceptionType(i)) == false) return false; return true; } } if (const RecordType *RT = Ty->getAs()) if (const CXXRecordDecl *RD = dyn_cast(RT->getDecl())) return CGM.getDeclVisibilityMode(RD) == LangOptions::Hidden; return false; } // Pointer type info flags. enum { /// PTI_Const - Type has const qualifier. PTI_Const = 0x1, /// PTI_Volatile - Type has volatile qualifier. PTI_Volatile = 0x2, /// PTI_Restrict - Type has restrict qualifier. PTI_Restrict = 0x4, /// PTI_Incomplete - Type is incomplete. PTI_Incomplete = 0x8, /// PTI_ContainingClassIncomplete - Containing class is incomplete. /// (in pointer to member). PTI_ContainingClassIncomplete = 0x10 }; // VMI type info flags. enum { /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance. VMI_NonDiamondRepeat = 0x1, /// VMI_DiamondShaped - Class is diamond shaped. VMI_DiamondShaped = 0x2 }; // Base class type info flags. enum { /// BCTI_Virtual - Base class is virtual. BCTI_Virtual = 0x1, /// BCTI_Public - Base class is public. BCTI_Public = 0x2 }; /// BuildTypeInfo - Build the RTTI type info struct for the given type. llvm::Constant *BuildTypeInfo(QualType Ty); }; } llvm::Constant *RTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) { // Mangle the RTTI name. llvm::SmallString<256> OutName; CGM.getMangleContext().mangleCXXRTTI(Ty, OutName); llvm::StringRef Name = OutName.str(); // Look for an existing global. llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name); if (!GV) { // Create a new global variable. GV = new llvm::GlobalVariable(CGM.getModule(), Int8PtrTy, /*Constant=*/true, llvm::GlobalValue::ExternalLinkage, 0, Name); } return llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); } /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type /// info for that type is defined in the standard library. static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) { // Itanium C++ ABI 2.9.2: // Basic type information (e.g. for "int", "bool", etc.) will be kept in // the run-time support library. Specifically, the run-time support // library should contain type_info objects for the types X, X* and // X const*, for every X in: void, bool, wchar_t, char, unsigned char, // signed char, short, unsigned short, int, unsigned int, long, // unsigned long, long long, unsigned long long, float, double, long double, // char16_t, char32_t, and the IEEE 754r decimal and half-precision // floating point types. switch (Ty->getKind()) { case BuiltinType::Void: case BuiltinType::Bool: case BuiltinType::WChar: case BuiltinType::Char_U: case BuiltinType::Char_S: case BuiltinType::UChar: case BuiltinType::SChar: case BuiltinType::Short: case BuiltinType::UShort: case BuiltinType::Int: case BuiltinType::UInt: case BuiltinType::Long: case BuiltinType::ULong: case BuiltinType::LongLong: case BuiltinType::ULongLong: case BuiltinType::Float: case BuiltinType::Double: case BuiltinType::LongDouble: case BuiltinType::Char16: case BuiltinType::Char32: case BuiltinType::Int128: case BuiltinType::UInt128: return true; case BuiltinType::Overload: case BuiltinType::Dependent: case BuiltinType::UndeducedAuto: assert(false && "Should not see this type here!"); case BuiltinType::NullPtr: assert(false && "FIXME: nullptr_t is not handled!"); case BuiltinType::ObjCId: case BuiltinType::ObjCClass: case BuiltinType::ObjCSel: assert(false && "FIXME: Objective-C types are unsupported!"); } // Silent gcc. return false; } static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) { QualType PointeeTy = PointerTy->getPointeeType(); const BuiltinType *BuiltinTy = dyn_cast(PointeeTy); if (!BuiltinTy) return false; // Check the qualifiers. Qualifiers Quals = PointeeTy.getQualifiers(); Quals.removeConst(); if (!Quals.empty()) return false; return TypeInfoIsInStandardLibrary(BuiltinTy); } /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for /// the given type exists somewhere else, and that we should not emit the typ /// information in this translation unit. bool ShouldUseExternalRTTIDescriptor(QualType Ty) { // Type info for builtin types is defined in the standard library. if (const BuiltinType *BuiltinTy = dyn_cast(Ty)) return TypeInfoIsInStandardLibrary(BuiltinTy); // Type info for some pointer types to builtin types is defined in the // standard library. if (const PointerType *PointerTy = dyn_cast(Ty)) return TypeInfoIsInStandardLibrary(PointerTy); if (const RecordType *RecordTy = dyn_cast(Ty)) { const CXXRecordDecl *RD = cast(RecordTy->getDecl()); if (!RD->hasDefinition()) return false; if (!RD->isDynamicClass()) return false; // Get the key function. const CXXMethodDecl *KeyFunction = RD->getASTContext().getKeyFunction(RD); if (KeyFunction && !KeyFunction->getBody()) { // The class has a key function, but it is not defined in this translation // unit, so we should use the external descriptor for it. return true; } } return false; } /// IsIncompleteClassType - Returns whether the given record type is incomplete. static bool IsIncompleteClassType(const RecordType *RecordTy) { return !RecordTy->getDecl()->isDefinition(); } /// ContainsIncompleteClassType - Returns whether the given type contains an /// incomplete class type. This is true if /// /// * The given type is an incomplete class type. /// * The given type is a pointer type whose pointee type contains an /// incomplete class type. /// * The given type is a member pointer type whose class is an incomplete /// class type. /// * The given type is a member pointer type whoise pointee type contains an /// incomplete class type. /// is an indirect or direct pointer to an incomplete class type. static bool ContainsIncompleteClassType(QualType Ty) { if (const RecordType *RecordTy = dyn_cast(Ty)) { if (IsIncompleteClassType(RecordTy)) return true; } if (const PointerType *PointerTy = dyn_cast(Ty)) return ContainsIncompleteClassType(PointerTy->getPointeeType()); if (const MemberPointerType *MemberPointerTy = dyn_cast(Ty)) { // Check if the class type is incomplete. const RecordType *ClassType = cast(MemberPointerTy->getClass()); if (IsIncompleteClassType(ClassType)) return true; return ContainsIncompleteClassType(MemberPointerTy->getPointeeType()); } return false; } /// getTypeInfoLinkage - Return the linkage that the type info and type info /// name constants should have for the given type. static llvm::GlobalVariable::LinkageTypes getTypeInfoLinkage(QualType Ty) { // Itanium C++ ABI 2.9.5p7: // In addition, it and all of the intermediate abi::__pointer_type_info // structs in the chain down to the abi::__class_type_info for the // incomplete class type must be prevented from resolving to the // corresponding type_info structs for the complete class type, possibly // by making them local static objects. Finally, a dummy class RTTI is // generated for the incomplete type that will not resolve to the final // complete class RTTI (because the latter need not exist), possibly by // making it a local static object. if (ContainsIncompleteClassType(Ty)) return llvm::GlobalValue::InternalLinkage; switch (Ty->getTypeClass()) { default: // FIXME: We need to add code to handle all types. assert(false && "Unhandled type!"); break; case Type::Pointer: { const PointerType *PointerTy = cast(Ty); // If the pointee type has internal linkage, then the pointer type needs to // have it as well. if (getTypeInfoLinkage(PointerTy->getPointeeType()) == llvm::GlobalVariable::InternalLinkage) return llvm::GlobalVariable::InternalLinkage; return llvm::GlobalVariable::WeakODRLinkage; } case Type::Enum: { const EnumType *EnumTy = cast(Ty); const EnumDecl *ED = EnumTy->getDecl(); // If we're in an anonymous namespace, then we always want internal linkage. if (ED->isInAnonymousNamespace() || !ED->hasLinkage()) return llvm::GlobalVariable::InternalLinkage; return llvm::GlobalValue::WeakODRLinkage; } case Type::Record: { const RecordType *RecordTy = cast(Ty); const CXXRecordDecl *RD = cast(RecordTy->getDecl()); // If we're in an anonymous namespace, then we always want internal linkage. if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) return llvm::GlobalVariable::InternalLinkage; // If this class does not have a vtable, we want weak linkage. if (!RD->isDynamicClass()) return llvm::GlobalValue::WeakODRLinkage; return CodeGenModule::getVtableLinkage(RD); } case Type::Vector: case Type::ExtVector: case Type::Builtin: return llvm::GlobalValue::WeakODRLinkage; case Type::FunctionProto: { const FunctionProtoType *FPT = cast(Ty); // Check the return type. if (getTypeInfoLinkage(FPT->getResultType()) == llvm::GlobalValue::InternalLinkage) return llvm::GlobalValue::InternalLinkage; // Check the parameter types. for (unsigned i = 0; i != FPT->getNumArgs(); ++i) { if (getTypeInfoLinkage(FPT->getArgType(i)) == llvm::GlobalValue::InternalLinkage) return llvm::GlobalValue::InternalLinkage; } return llvm::GlobalValue::WeakODRLinkage; } case Type::ConstantArray: case Type::IncompleteArray: { const ArrayType *AT = cast(Ty); // Check the element type. if (getTypeInfoLinkage(AT->getElementType()) == llvm::GlobalValue::InternalLinkage) return llvm::GlobalValue::InternalLinkage; } } return llvm::GlobalValue::WeakODRLinkage; } // CanUseSingleInheritance - Return whether the given record decl has a "single, // public, non-virtual base at offset zero (i.e. the derived class is dynamic // iff the base is)", according to Itanium C++ ABI, 2.95p6b. static bool CanUseSingleInheritance(const CXXRecordDecl *RD) { // Check the number of bases. if (RD->getNumBases() != 1) return false; // Get the base. CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(); // Check that the base is not virtual. if (Base->isVirtual()) return false; // Check that the base is public. if (Base->getAccessSpecifier() != AS_public) return false; // Check that the class is dynamic iff the base is. const CXXRecordDecl *BaseDecl = cast(Base->getType()->getAs()->getDecl()); if (!BaseDecl->isEmpty() && BaseDecl->isDynamicClass() != RD->isDynamicClass()) return false; return true; } void RTTIBuilder::BuildVtablePointer(const Type *Ty) { const char *VtableName; switch (Ty->getTypeClass()) { default: assert(0 && "Unhandled type!"); // GCC treats vector types as fundamental types. case Type::Vector: case Type::ExtVector: // abi::__fundamental_type_info. VtableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE"; break; case Type::ConstantArray: case Type::IncompleteArray: // abi::__array_type_info. VtableName = "_ZTVN10__cxxabiv117__array_type_infoE"; break; case Type::FunctionNoProto: case Type::FunctionProto: // abi::__function_type_info. VtableName = "_ZTVN10__cxxabiv120__function_type_infoE"; break; case Type::Enum: // abi::__enum_type_info. VtableName = "_ZTVN10__cxxabiv116__enum_type_infoE"; break; case Type::Record: { const CXXRecordDecl *RD = cast(cast(Ty)->getDecl()); if (!RD->hasDefinition() || !RD->getNumBases()) { // abi::__class_type_info. VtableName = "_ZTVN10__cxxabiv117__class_type_infoE"; } else if (CanUseSingleInheritance(RD)) { // abi::__si_class_type_info. VtableName = "_ZTVN10__cxxabiv120__si_class_type_infoE"; } else { // abi::__vmi_class_type_info. VtableName = "_ZTVN10__cxxabiv121__vmi_class_type_infoE"; } break; } case Type::Pointer: // abi::__pointer_type_info. VtableName = "_ZTVN10__cxxabiv119__pointer_type_infoE"; break; case Type::MemberPointer: // abi::__pointer_to_member_type_info. VtableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE"; break; } llvm::Constant *Vtable = CGM.getModule().getOrInsertGlobal(VtableName, Int8PtrTy); const llvm::Type *PtrDiffTy = CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); // The vtable address point is 2. llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2); Vtable = llvm::ConstantExpr::getInBoundsGetElementPtr(Vtable, &Two, 1); Vtable = llvm::ConstantExpr::getBitCast(Vtable, Int8PtrTy); Fields.push_back(Vtable); } llvm::Constant *RTTIBuilder::BuildTypeInfo(QualType Ty) { // We want to operate on the canonical type. Ty = CGM.getContext().getCanonicalType(Ty); // Check if we've already emitted an RTTI descriptor for this type. llvm::SmallString<256> OutName; CGM.getMangleContext().mangleCXXRTTI(Ty, OutName); llvm::StringRef Name = OutName.str(); llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name); if (OldGV && !OldGV->isDeclaration()) return llvm::ConstantExpr::getBitCast(OldGV, Int8PtrTy); // Check if there is already an external RTTI descriptor for this type. if (ShouldUseExternalRTTIDescriptor(Ty)) return GetAddrOfExternalRTTIDescriptor(Ty); llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(Ty); // Add the vtable pointer. BuildVtablePointer(cast(Ty)); // And the name. Fields.push_back(BuildName(Ty, DecideHidden(Ty), Linkage)); switch (Ty->getTypeClass()) { default: assert(false && "Unhandled type class!"); case Type::Builtin: assert(false && "Builtin type info must be in the standard library!"); break; // GCC treats vector types as fundamental types. case Type::Vector: case Type::ExtVector: // Itanium C++ ABI 2.9.5p4: // abi::__fundamental_type_info adds no data members to std::type_info. break; case Type::ConstantArray: case Type::IncompleteArray: // Itanium C++ ABI 2.9.5p5: // abi::__array_type_info adds no data members to std::type_info. break; case Type::FunctionNoProto: case Type::FunctionProto: // Itanium C++ ABI 2.9.5p5: // abi::__function_type_info adds no data members to std::type_info. break; case Type::Enum: // Itanium C++ ABI 2.9.5p5: // abi::__enum_type_info adds no data members to std::type_info. break; case Type::Record: { const CXXRecordDecl *RD = cast(cast(Ty)->getDecl()); if (!RD->hasDefinition() || !RD->getNumBases()) { // We don't need to emit any fields. break; } if (CanUseSingleInheritance(RD)) BuildSIClassTypeInfo(RD); else BuildVMIClassTypeInfo(RD); break; } case Type::Pointer: BuildPointerTypeInfo(cast(Ty)); break; case Type::MemberPointer: BuildPointerToMemberTypeInfo(cast(Ty)); break; } llvm::Constant *Init = llvm::ConstantStruct::get(VMContext, &Fields[0], Fields.size(), /*Packed=*/false); llvm::GlobalVariable *GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), /*Constant=*/true, Linkage, Init, Name); // If there's already an old global variable, replace it with the new one. if (OldGV) { GV->takeName(OldGV); llvm::Constant *NewPtr = llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); OldGV->replaceAllUsesWith(NewPtr); OldGV->eraseFromParent(); } return llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); } /// ComputeQualifierFlags - Compute the pointer type info flags from the /// given qualifier. static unsigned ComputeQualifierFlags(Qualifiers Quals) { unsigned Flags = 0; if (Quals.hasConst()) Flags |= RTTIBuilder::PTI_Const; if (Quals.hasVolatile()) Flags |= RTTIBuilder::PTI_Volatile; if (Quals.hasRestrict()) Flags |= RTTIBuilder::PTI_Restrict; return Flags; } /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single /// inheritance, according to the Itanium C++ ABI, 2.95p6b. void RTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) { // Itanium C++ ABI 2.9.5p6b: // It adds to abi::__class_type_info a single member pointing to the // type_info structure for the base type, llvm::Constant *BaseTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(RD->bases_begin()->getType()); Fields.push_back(BaseTypeInfo); } /// SeenBases - Contains virtual and non-virtual bases seen when traversing /// a class hierarchy. struct SeenBases { llvm::SmallPtrSet NonVirtualBases; llvm::SmallPtrSet VirtualBases; }; /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in /// abi::__vmi_class_type_info. /// static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base, SeenBases &Bases) { unsigned Flags = 0; const CXXRecordDecl *BaseDecl = cast(Base->getType()->getAs()->getDecl()); if (Base->isVirtual()) { if (Bases.VirtualBases.count(BaseDecl)) { // If this virtual base has been seen before, then the class is diamond // shaped. Flags |= RTTIBuilder::VMI_DiamondShaped; } else { if (Bases.NonVirtualBases.count(BaseDecl)) Flags |= RTTIBuilder::VMI_NonDiamondRepeat; // Mark the virtual base as seen. Bases.VirtualBases.insert(BaseDecl); } } else { if (Bases.NonVirtualBases.count(BaseDecl)) { // If this non-virtual base has been seen before, then the class has non- // diamond shaped repeated inheritance. Flags |= RTTIBuilder::VMI_NonDiamondRepeat; } else { if (Bases.VirtualBases.count(BaseDecl)) Flags |= RTTIBuilder::VMI_NonDiamondRepeat; // Mark the non-virtual base as seen. Bases.NonVirtualBases.insert(BaseDecl); } } // Walk all bases. for (CXXRecordDecl::base_class_const_iterator I = BaseDecl->bases_begin(), E = BaseDecl->bases_end(); I != E; ++I) Flags |= ComputeVMIClassTypeInfoFlags(I, Bases); return Flags; } static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) { unsigned Flags = 0; SeenBases Bases; // Walk all bases. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) Flags |= ComputeVMIClassTypeInfoFlags(I, Bases); return Flags; } /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for /// classes with bases that do not satisfy the abi::__si_class_type_info /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. void RTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) { const llvm::Type *UnsignedIntLTy = CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); // Itanium C++ ABI 2.9.5p6c: // __flags is a word with flags describing details about the class // structure, which may be referenced by using the __flags_masks // enumeration. These flags refer to both direct and indirect bases. unsigned Flags = ComputeVMIClassTypeInfoFlags(RD); Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); // Itanium C++ ABI 2.9.5p6c: // __base_count is a word with the number of direct proper base class // descriptions that follow. Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases())); if (!RD->getNumBases()) return; const llvm::Type *LongLTy = CGM.getTypes().ConvertType(CGM.getContext().LongTy); // Now add the base class descriptions. // Itanium C++ ABI 2.9.5p6c: // __base_info[] is an array of base class descriptions -- one for every // direct proper base. Each description is of the type: // // struct abi::__base_class_type_info { // public: // const __class_type_info *__base_type; // long __offset_flags; // // enum __offset_flags_masks { // __virtual_mask = 0x1, // __public_mask = 0x2, // __offset_shift = 8 // }; // }; for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { const CXXBaseSpecifier *Base = I; // The __base_type member points to the RTTI for the base type. Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(Base->getType())); const CXXRecordDecl *BaseDecl = cast(Base->getType()->getAs()->getDecl()); int64_t OffsetFlags = 0; // All but the lower 8 bits of __offset_flags are a signed offset. // For a non-virtual base, this is the offset in the object of the base // subobject. For a virtual base, this is the offset in the virtual table of // the virtual base offset for the virtual base referenced (negative). if (Base->isVirtual()) OffsetFlags = CGM.getVtableInfo().getVirtualBaseOffsetIndex(RD, BaseDecl); else { const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); OffsetFlags = Layout.getBaseClassOffset(BaseDecl) / 8; }; OffsetFlags <<= 8; // The low-order byte of __offset_flags contains flags, as given by the // masks from the enumeration __offset_flags_masks. if (Base->isVirtual()) OffsetFlags |= BCTI_Virtual; if (Base->getAccessSpecifier() == AS_public) OffsetFlags |= BCTI_Public; Fields.push_back(llvm::ConstantInt::get(LongLTy, OffsetFlags)); } } /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, /// used for pointer types. void RTTIBuilder::BuildPointerTypeInfo(const PointerType *Ty) { QualType PointeeTy = Ty->getPointeeType(); // Itanium C++ ABI 2.9.5p7: // __flags is a flag word describing the cv-qualification and other // attributes of the type pointed to unsigned Flags = ComputeQualifierFlags(PointeeTy.getQualifiers()); // Itanium C++ ABI 2.9.5p7: // When the abi::__pbase_type_info is for a direct or indirect pointer to an // incomplete class type, the incomplete target type flag is set. if (ContainsIncompleteClassType(PointeeTy)) Flags |= PTI_Incomplete; const llvm::Type *UnsignedIntLTy = CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); // Itanium C++ ABI 2.9.5p7: // __pointee is a pointer to the std::type_info derivation for the // unqualified type being pointed to. llvm::Constant *PointeeTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(PointeeTy.getUnqualifiedType()); Fields.push_back(PointeeTypeInfo); } /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info /// struct, used for member pointer types. void RTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) { QualType PointeeTy = Ty->getPointeeType(); // Itanium C++ ABI 2.9.5p7: // __flags is a flag word describing the cv-qualification and other // attributes of the type pointed to. unsigned Flags = ComputeQualifierFlags(PointeeTy.getQualifiers()); const RecordType *ClassType = cast(Ty->getClass()); // Itanium C++ ABI 2.9.5p7: // When the abi::__pbase_type_info is for a direct or indirect pointer to an // incomplete class type, the incomplete target type flag is set. if (ContainsIncompleteClassType(PointeeTy)) Flags |= PTI_Incomplete; if (IsIncompleteClassType(ClassType)) Flags |= PTI_ContainingClassIncomplete; const llvm::Type *UnsignedIntLTy = CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); // Itanium C++ ABI 2.9.5p7: // __pointee is a pointer to the std::type_info derivation for the // unqualified type being pointed to. llvm::Constant *PointeeTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(PointeeTy.getUnqualifiedType()); Fields.push_back(PointeeTypeInfo); // Itanium C++ ABI 2.9.5p9: // __context is a pointer to an abi::__class_type_info corresponding to the // class type containing the member pointed to // (e.g., the "A" in "int A::*"). Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(QualType(ClassType, 0))); } llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty) { if (!getContext().getLangOptions().RTTI) { const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext); return llvm::Constant::getNullValue(Int8PtrTy); } return RTTIBuilder(*this).BuildTypeInfo(Ty); }