//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Constant Expr nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "CGObjCRuntime.h" #include "clang/AST/APValue.h" #include "clang/AST/ASTContext.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/Builtins.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Target/TargetData.h" using namespace clang; using namespace CodeGen; namespace { class ConstStructBuilder { CodeGenModule &CGM; CodeGenFunction *CGF; bool Packed; unsigned NextFieldOffsetInBytes; unsigned LLVMStructAlignment; std::vector Elements; ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF) : CGM(CGM), CGF(CGF), Packed(false), NextFieldOffsetInBytes(0), LLVMStructAlignment(1) { } bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, const Expr *InitExpr) { uint64_t FieldOffsetInBytes = FieldOffset / 8; assert(NextFieldOffsetInBytes <= FieldOffsetInBytes && "Field offset mismatch!"); // Emit the field. llvm::Constant *C = CGM.EmitConstantExpr(InitExpr, Field->getType(), CGF); if (!C) return false; unsigned FieldAlignment = getAlignment(C); // Round up the field offset to the alignment of the field type. uint64_t AlignedNextFieldOffsetInBytes = llvm::RoundUpToAlignment(NextFieldOffsetInBytes, FieldAlignment); if (AlignedNextFieldOffsetInBytes > FieldOffsetInBytes) { assert(!Packed && "Alignment is wrong even with a packed struct!"); // Convert the struct to a packed struct. ConvertStructToPacked(); AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes; } if (AlignedNextFieldOffsetInBytes < FieldOffsetInBytes) { // We need to append padding. AppendPadding(FieldOffsetInBytes - NextFieldOffsetInBytes); assert(NextFieldOffsetInBytes == FieldOffsetInBytes && "Did not add enough padding!"); AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes; } // Add the field. Elements.push_back(C); NextFieldOffsetInBytes = AlignedNextFieldOffsetInBytes + getSizeInBytes(C); if (Packed) assert(LLVMStructAlignment == 1 && "Packed struct not byte-aligned!"); else LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); return true; } bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, const Expr *InitExpr) { llvm::ConstantInt *CI = cast_or_null(CGM.EmitConstantExpr(InitExpr, Field->getType(), CGF)); // FIXME: Can this ever happen? if (!CI) return false; if (FieldOffset > NextFieldOffsetInBytes * 8) { // We need to add padding. uint64_t NumBytes = llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBytes * 8, 8) / 8; AppendPadding(NumBytes); } uint64_t FieldSize = Field->getBitWidth()->EvaluateAsInt(CGM.getContext()).getZExtValue(); llvm::APInt FieldValue = CI->getValue(); // Promote the size of FieldValue if necessary // FIXME: This should never occur, but currently it can because initializer // constants are cast to bool, and because clang is not enforcing bitfield // width limits. if (FieldSize > FieldValue.getBitWidth()) FieldValue.zext(FieldSize); // Truncate the size of FieldValue to the bit field size. if (FieldSize < FieldValue.getBitWidth()) FieldValue.trunc(FieldSize); if (FieldOffset < NextFieldOffsetInBytes * 8) { // Either part of the field or the entire field can go into the previous // byte. assert(!Elements.empty() && "Elements can't be empty!"); unsigned BitsInPreviousByte = NextFieldOffsetInBytes * 8 - FieldOffset; bool FitsCompletelyInPreviousByte = BitsInPreviousByte >= FieldValue.getBitWidth(); llvm::APInt Tmp = FieldValue; if (!FitsCompletelyInPreviousByte) { unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; if (CGM.getTargetData().isBigEndian()) { Tmp = Tmp.lshr(NewFieldWidth); Tmp.trunc(BitsInPreviousByte); // We want the remaining high bits. FieldValue.trunc(NewFieldWidth); } else { Tmp.trunc(BitsInPreviousByte); // We want the remaining low bits. FieldValue = FieldValue.lshr(BitsInPreviousByte); FieldValue.trunc(NewFieldWidth); } } Tmp.zext(8); if (CGM.getTargetData().isBigEndian()) { if (FitsCompletelyInPreviousByte) Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); } else { Tmp = Tmp.shl(8 - BitsInPreviousByte); } // Or in the bits that go into the previous byte. Tmp |= cast(Elements.back())->getValue(); Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); if (FitsCompletelyInPreviousByte) return true; } while (FieldValue.getBitWidth() > 8) { llvm::APInt Tmp; if (CGM.getTargetData().isBigEndian()) { // We want the high bits. Tmp = FieldValue; Tmp = Tmp.lshr(Tmp.getBitWidth() - 8); Tmp.trunc(8); } else { // We want the low bits. Tmp = FieldValue; Tmp.trunc(8); FieldValue = FieldValue.lshr(8); } Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); NextFieldOffsetInBytes++; FieldValue.trunc(FieldValue.getBitWidth() - 8); } assert(FieldValue.getBitWidth() > 0 && "Should have at least one bit left!"); assert(FieldValue.getBitWidth() <= 8 && "Should not have more than a byte left!"); if (FieldValue.getBitWidth() < 8) { if (CGM.getTargetData().isBigEndian()) { unsigned BitWidth = FieldValue.getBitWidth(); FieldValue.zext(8); FieldValue = FieldValue << (8 - BitWidth); } else FieldValue.zext(8); } // Append the last element. Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), FieldValue)); NextFieldOffsetInBytes++; return true; } void AppendPadding(uint64_t NumBytes) { if (!NumBytes) return; const llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext()); if (NumBytes > 1) Ty = llvm::ArrayType::get(Ty, NumBytes); llvm::Constant *C = llvm::UndefValue::get(Ty); Elements.push_back(C); assert(getAlignment(C) == 1 && "Padding must have 1 byte alignment!"); NextFieldOffsetInBytes += getSizeInBytes(C); } void AppendTailPadding(uint64_t RecordSize) { assert(RecordSize % 8 == 0 && "Invalid record size!"); uint64_t RecordSizeInBytes = RecordSize / 8; assert(NextFieldOffsetInBytes <= RecordSizeInBytes && "Size mismatch!"); unsigned NumPadBytes = RecordSizeInBytes - NextFieldOffsetInBytes; AppendPadding(NumPadBytes); } void ConvertStructToPacked() { std::vector PackedElements; uint64_t ElementOffsetInBytes = 0; for (unsigned i = 0, e = Elements.size(); i != e; ++i) { llvm::Constant *C = Elements[i]; unsigned ElementAlign = CGM.getTargetData().getABITypeAlignment(C->getType()); uint64_t AlignedElementOffsetInBytes = llvm::RoundUpToAlignment(ElementOffsetInBytes, ElementAlign); if (AlignedElementOffsetInBytes > ElementOffsetInBytes) { // We need some padding. uint64_t NumBytes = AlignedElementOffsetInBytes - ElementOffsetInBytes; const llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext()); if (NumBytes > 1) Ty = llvm::ArrayType::get(Ty, NumBytes); llvm::Constant *Padding = llvm::UndefValue::get(Ty); PackedElements.push_back(Padding); ElementOffsetInBytes += getSizeInBytes(Padding); } PackedElements.push_back(C); ElementOffsetInBytes += getSizeInBytes(C); } assert(ElementOffsetInBytes == NextFieldOffsetInBytes && "Packing the struct changed its size!"); Elements = PackedElements; LLVMStructAlignment = 1; Packed = true; } bool Build(InitListExpr *ILE) { RecordDecl *RD = ILE->getType()->getAs()->getDecl(); const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); unsigned FieldNo = 0; unsigned ElementNo = 0; for (RecordDecl::field_iterator Field = RD->field_begin(), FieldEnd = RD->field_end(); ElementNo < ILE->getNumInits() && Field != FieldEnd; ++Field, ++FieldNo) { if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) continue; if (Field->isBitField()) { if (!Field->getIdentifier()) continue; if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo), ILE->getInit(ElementNo))) return false; } else { if (!AppendField(*Field, Layout.getFieldOffset(FieldNo), ILE->getInit(ElementNo))) return false; } ElementNo++; } uint64_t LayoutSizeInBytes = Layout.getSize() / 8; if (NextFieldOffsetInBytes > LayoutSizeInBytes) { // If the struct is bigger than the size of the record type, // we must have a flexible array member at the end. assert(RD->hasFlexibleArrayMember() && "Must have flexible array member if struct is bigger than type!"); // No tail padding is necessary. return true; } uint64_t LLVMSizeInBytes = llvm::RoundUpToAlignment(NextFieldOffsetInBytes, LLVMStructAlignment); // Check if we need to convert the struct to a packed struct. if (NextFieldOffsetInBytes <= LayoutSizeInBytes && LLVMSizeInBytes > LayoutSizeInBytes) { assert(!Packed && "Size mismatch!"); ConvertStructToPacked(); assert(NextFieldOffsetInBytes == LayoutSizeInBytes && "Converting to packed did not help!"); } // Append tail padding if necessary. AppendTailPadding(Layout.getSize()); assert(Layout.getSize() / 8 == NextFieldOffsetInBytes && "Tail padding mismatch!"); return true; } unsigned getAlignment(const llvm::Constant *C) const { if (Packed) return 1; return CGM.getTargetData().getABITypeAlignment(C->getType()); } uint64_t getSizeInBytes(const llvm::Constant *C) const { return CGM.getTargetData().getTypeAllocSize(C->getType()); } public: static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, InitListExpr *ILE) { ConstStructBuilder Builder(CGM, CGF); if (!Builder.Build(ILE)) return 0; llvm::Constant *Result = llvm::ConstantStruct::get(CGM.getLLVMContext(), Builder.Elements, Builder.Packed); assert(llvm::RoundUpToAlignment(Builder.NextFieldOffsetInBytes, Builder.getAlignment(Result)) == Builder.getSizeInBytes(Result) && "Size mismatch!"); return Result; } }; class ConstExprEmitter : public StmtVisitor { CodeGenModule &CGM; CodeGenFunction *CGF; llvm::LLVMContext &VMContext; public: ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf) : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) { } //===--------------------------------------------------------------------===// // Visitor Methods //===--------------------------------------------------------------------===// llvm::Constant *VisitStmt(Stmt *S) { return 0; } llvm::Constant *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); } llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { return Visit(E->getInitializer()); } llvm::Constant *EmitMemberFunctionPointer(CXXMethodDecl *MD) { assert(MD->isInstance() && "Member function must not be static!"); const llvm::Type *PtrDiffTy = CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); llvm::Constant *Values[2]; // Get the function pointer (or index if this is a virtual function). if (MD->isVirtual()) { uint64_t Index = CGM.getVtableInfo().getMethodVtableIndex(MD); // The pointer is 1 + the virtual table offset in bytes. Values[0] = llvm::ConstantInt::get(PtrDiffTy, (Index * 8) + 1); } else { llvm::Constant *FuncPtr = CGM.GetAddrOfFunction(MD); Values[0] = llvm::ConstantExpr::getPtrToInt(FuncPtr, PtrDiffTy); } // The adjustment will always be 0. Values[1] = llvm::ConstantInt::get(PtrDiffTy, 0); return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2, /*Packed=*/false); } llvm::Constant *VisitUnaryAddrOf(UnaryOperator *E) { if (const MemberPointerType *MPT = E->getType()->getAs()) { QualType T = MPT->getPointeeType(); if (T->isFunctionProtoType()) { DeclRefExpr *DRE = cast(E->getSubExpr()); return EmitMemberFunctionPointer(cast(DRE->getDecl())); } // FIXME: Should we handle other member pointer types here too, // or should they be handled by Expr::Evaluate? } return 0; } llvm::Constant *VisitBinSub(BinaryOperator *E) { // This must be a pointer/pointer subtraction. This only happens for // address of label. if (!isa(E->getLHS()->IgnoreParenNoopCasts(CGM.getContext())) || !isa(E->getRHS()->IgnoreParenNoopCasts(CGM.getContext()))) return 0; llvm::Constant *LHS = CGM.EmitConstantExpr(E->getLHS(), E->getLHS()->getType(), CGF); llvm::Constant *RHS = CGM.EmitConstantExpr(E->getRHS(), E->getRHS()->getType(), CGF); const llvm::Type *ResultType = ConvertType(E->getType()); LHS = llvm::ConstantExpr::getPtrToInt(LHS, ResultType); RHS = llvm::ConstantExpr::getPtrToInt(RHS, ResultType); // No need to divide by element size, since addr of label is always void*, // which has size 1 in GNUish. return llvm::ConstantExpr::getSub(LHS, RHS); } llvm::Constant *VisitCastExpr(CastExpr* E) { switch (E->getCastKind()) { case CastExpr::CK_ToUnion: { // GCC cast to union extension assert(E->getType()->isUnionType() && "Destination type is not union type!"); const llvm::Type *Ty = ConvertType(E->getType()); Expr *SubExpr = E->getSubExpr(); llvm::Constant *C = CGM.EmitConstantExpr(SubExpr, SubExpr->getType(), CGF); if (!C) return 0; // Build a struct with the union sub-element as the first member, // and padded to the appropriate size std::vector Elts; std::vector Types; Elts.push_back(C); Types.push_back(C->getType()); unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType()); unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(Ty); assert(CurSize <= TotalSize && "Union size mismatch!"); if (unsigned NumPadBytes = TotalSize - CurSize) { const llvm::Type *Ty = llvm::Type::getInt8Ty(VMContext); if (NumPadBytes > 1) Ty = llvm::ArrayType::get(Ty, NumPadBytes); Elts.push_back(llvm::UndefValue::get(Ty)); Types.push_back(Ty); } llvm::StructType* STy = llvm::StructType::get(C->getType()->getContext(), Types, false); return llvm::ConstantStruct::get(STy, Elts); } case CastExpr::CK_NullToMemberPointer: return CGM.EmitNullConstant(E->getType()); case CastExpr::CK_BaseToDerivedMemberPointer: { Expr *SubExpr = E->getSubExpr(); const MemberPointerType *SrcTy = SubExpr->getType()->getAs(); const MemberPointerType *DestTy = E->getType()->getAs(); const CXXRecordDecl *BaseClass = cast(cast(SrcTy->getClass())->getDecl()); const CXXRecordDecl *DerivedClass = cast(cast(DestTy->getClass())->getDecl()); if (SrcTy->getPointeeType()->isFunctionProtoType()) { llvm::Constant *C = CGM.EmitConstantExpr(SubExpr, SubExpr->getType(), CGF); if (!C) return 0; llvm::ConstantStruct *CS = cast(C); // Check if we need to update the adjustment. if (llvm::Constant *Offset = CGM.GetCXXBaseClassOffset(DerivedClass, BaseClass)) { llvm::Constant *Values[2]; Values[0] = CS->getOperand(0); Values[1] = llvm::ConstantExpr::getAdd(CS->getOperand(1), Offset); return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2, /*Packed=*/false); } return CS; } } case CastExpr::CK_BitCast: // This must be a member function pointer cast. return Visit(E->getSubExpr()); default: { // FIXME: This should be handled by the CK_NoOp cast kind. // Explicit and implicit no-op casts QualType Ty = E->getType(), SubTy = E->getSubExpr()->getType(); if (CGM.getContext().hasSameUnqualifiedType(Ty, SubTy)) return Visit(E->getSubExpr()); // Handle integer->integer casts for address-of-label differences. if (Ty->isIntegerType() && SubTy->isIntegerType() && CGF) { llvm::Value *Src = Visit(E->getSubExpr()); if (Src == 0) return 0; // Use EmitScalarConversion to perform the conversion. return cast(CGF->EmitScalarConversion(Src, SubTy, Ty)); } return 0; } } } llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { return Visit(DAE->getExpr()); } llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) { std::vector Elts; const llvm::ArrayType *AType = cast(ConvertType(ILE->getType())); unsigned NumInitElements = ILE->getNumInits(); // FIXME: Check for wide strings // FIXME: Check for NumInitElements exactly equal to 1?? if (NumInitElements > 0 && (isa(ILE->getInit(0)) || isa(ILE->getInit(0))) && ILE->getType()->getArrayElementTypeNoTypeQual()->isCharType()) return Visit(ILE->getInit(0)); const llvm::Type *ElemTy = AType->getElementType(); unsigned NumElements = AType->getNumElements(); // Initialising an array requires us to automatically // initialise any elements that have not been initialised explicitly unsigned NumInitableElts = std::min(NumInitElements, NumElements); // Copy initializer elements. unsigned i = 0; bool RewriteType = false; for (; i < NumInitableElts; ++i) { Expr *Init = ILE->getInit(i); llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); if (!C) return 0; RewriteType |= (C->getType() != ElemTy); Elts.push_back(C); } // Initialize remaining array elements. // FIXME: This doesn't handle member pointers correctly! for (; i < NumElements; ++i) Elts.push_back(llvm::Constant::getNullValue(ElemTy)); if (RewriteType) { // FIXME: Try to avoid packing the array std::vector Types; for (unsigned i = 0; i < Elts.size(); ++i) Types.push_back(Elts[i]->getType()); const llvm::StructType *SType = llvm::StructType::get(AType->getContext(), Types, true); return llvm::ConstantStruct::get(SType, Elts); } return llvm::ConstantArray::get(AType, Elts); } llvm::Constant *EmitStructInitialization(InitListExpr *ILE) { return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); } llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) { return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); } llvm::Constant *EmitVectorInitialization(InitListExpr *ILE) { const llvm::VectorType *VType = cast(ConvertType(ILE->getType())); const llvm::Type *ElemTy = VType->getElementType(); std::vector Elts; unsigned NumElements = VType->getNumElements(); unsigned NumInitElements = ILE->getNumInits(); unsigned NumInitableElts = std::min(NumInitElements, NumElements); // Copy initializer elements. unsigned i = 0; for (; i < NumInitableElts; ++i) { Expr *Init = ILE->getInit(i); llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); if (!C) return 0; Elts.push_back(C); } for (; i < NumElements; ++i) Elts.push_back(llvm::Constant::getNullValue(ElemTy)); return llvm::ConstantVector::get(VType, Elts); } llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) { return CGM.EmitNullConstant(E->getType()); } llvm::Constant *VisitInitListExpr(InitListExpr *ILE) { if (ILE->getType()->isScalarType()) { // We have a scalar in braces. Just use the first element. if (ILE->getNumInits() > 0) { Expr *Init = ILE->getInit(0); return CGM.EmitConstantExpr(Init, Init->getType(), CGF); } return CGM.EmitNullConstant(ILE->getType()); } if (ILE->getType()->isArrayType()) return EmitArrayInitialization(ILE); if (ILE->getType()->isRecordType()) return EmitStructInitialization(ILE); if (ILE->getType()->isUnionType()) return EmitUnionInitialization(ILE); if (ILE->getType()->isVectorType()) return EmitVectorInitialization(ILE); assert(0 && "Unable to handle InitListExpr"); // Get rid of control reaches end of void function warning. // Not reached. return 0; } llvm::Constant *VisitStringLiteral(StringLiteral *E) { assert(!E->getType()->isPointerType() && "Strings are always arrays"); // This must be a string initializing an array in a static initializer. // Don't emit it as the address of the string, emit the string data itself // as an inline array. return llvm::ConstantArray::get(VMContext, CGM.GetStringForStringLiteral(E), false); } llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) { // This must be an @encode initializing an array in a static initializer. // Don't emit it as the address of the string, emit the string data itself // as an inline array. std::string Str; CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); const ConstantArrayType *CAT = cast(E->getType()); // Resize the string to the right size, adding zeros at the end, or // truncating as needed. Str.resize(CAT->getSize().getZExtValue(), '\0'); return llvm::ConstantArray::get(VMContext, Str, false); } llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) { return Visit(E->getSubExpr()); } // Utility methods const llvm::Type *ConvertType(QualType T) { return CGM.getTypes().ConvertType(T); } public: llvm::Constant *EmitLValue(Expr *E) { switch (E->getStmtClass()) { default: break; case Expr::CompoundLiteralExprClass: { // Note that due to the nature of compound literals, this is guaranteed // to be the only use of the variable, so we just generate it here. CompoundLiteralExpr *CLE = cast(E); llvm::Constant* C = Visit(CLE->getInitializer()); // FIXME: "Leaked" on failure. if (C) C = new llvm::GlobalVariable(CGM.getModule(), C->getType(), E->getType().isConstant(CGM.getContext()), llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", 0, false, E->getType().getAddressSpace()); return C; } case Expr::DeclRefExprClass: { NamedDecl *Decl = cast(E)->getDecl(); if (const FunctionDecl *FD = dyn_cast(Decl)) return CGM.GetAddrOfFunction(FD); if (const VarDecl* VD = dyn_cast(Decl)) { // We can never refer to a variable with local storage. if (!VD->hasLocalStorage()) { if (VD->isFileVarDecl() || VD->hasExternalStorage()) return CGM.GetAddrOfGlobalVar(VD); else if (VD->isBlockVarDecl()) { assert(CGF && "Can't access static local vars without CGF"); return CGF->GetAddrOfStaticLocalVar(VD); } } } break; } case Expr::StringLiteralClass: return CGM.GetAddrOfConstantStringFromLiteral(cast(E)); case Expr::ObjCEncodeExprClass: return CGM.GetAddrOfConstantStringFromObjCEncode(cast(E)); case Expr::ObjCStringLiteralClass: { ObjCStringLiteral* SL = cast(E); llvm::Constant *C = CGM.getObjCRuntime().GenerateConstantString(SL); return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); } case Expr::PredefinedExprClass: { unsigned Type = cast(E)->getIdentType(); if (CGF) { LValue Res = CGF->EmitPredefinedFunctionName(Type); return cast(Res.getAddress()); } else if (Type == PredefinedExpr::PrettyFunction) { return CGM.GetAddrOfConstantCString("top level", ".tmp"); } return CGM.GetAddrOfConstantCString("", ".tmp"); } case Expr::AddrLabelExprClass: { assert(CGF && "Invalid address of label expression outside function."); llvm::Constant *Ptr = CGF->GetAddrOfLabel(cast(E)->getLabel()); return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType())); } case Expr::CallExprClass: { CallExpr* CE = cast(E); if (CE->isBuiltinCall(CGM.getContext()) != Builtin::BI__builtin___CFStringMakeConstantString) break; const Expr *Arg = CE->getArg(0)->IgnoreParenCasts(); const StringLiteral *Literal = cast(Arg); // FIXME: need to deal with UCN conversion issues. return CGM.GetAddrOfConstantCFString(Literal); } case Expr::BlockExprClass: { std::string FunctionName; if (CGF) FunctionName = CGF->CurFn->getName(); else FunctionName = "global"; return CGM.GetAddrOfGlobalBlock(cast(E), FunctionName.c_str()); } } return 0; } }; } // end anonymous namespace. llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E, QualType DestType, CodeGenFunction *CGF) { Expr::EvalResult Result; bool Success = false; if (DestType->isReferenceType()) Success = E->EvaluateAsLValue(Result, Context); else Success = E->Evaluate(Result, Context); if (Success && !Result.HasSideEffects) { switch (Result.Val.getKind()) { case APValue::Uninitialized: assert(0 && "Constant expressions should be initialized."); return 0; case APValue::LValue: { const llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType); llvm::Constant *Offset = llvm::ConstantInt::get(llvm::Type::getInt64Ty(VMContext), Result.Val.getLValueOffset()); llvm::Constant *C; if (const Expr *LVBase = Result.Val.getLValueBase()) { C = ConstExprEmitter(*this, CGF).EmitLValue(const_cast(LVBase)); // Apply offset if necessary. if (!Offset->isNullValue()) { const llvm::Type *Type = llvm::Type::getInt8PtrTy(VMContext); llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Type); Casted = llvm::ConstantExpr::getGetElementPtr(Casted, &Offset, 1); C = llvm::ConstantExpr::getBitCast(Casted, C->getType()); } // Convert to the appropriate type; this could be an lvalue for // an integer. if (isa(DestTy)) return llvm::ConstantExpr::getBitCast(C, DestTy); return llvm::ConstantExpr::getPtrToInt(C, DestTy); } else { C = Offset; // Convert to the appropriate type; this could be an lvalue for // an integer. if (isa(DestTy)) return llvm::ConstantExpr::getIntToPtr(C, DestTy); // If the types don't match this should only be a truncate. if (C->getType() != DestTy) return llvm::ConstantExpr::getTrunc(C, DestTy); return C; } } case APValue::Int: { llvm::Constant *C = llvm::ConstantInt::get(VMContext, Result.Val.getInt()); if (C->getType() == llvm::Type::getInt1Ty(VMContext)) { const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); C = llvm::ConstantExpr::getZExt(C, BoolTy); } return C; } case APValue::ComplexInt: { llvm::Constant *Complex[2]; Complex[0] = llvm::ConstantInt::get(VMContext, Result.Val.getComplexIntReal()); Complex[1] = llvm::ConstantInt::get(VMContext, Result.Val.getComplexIntImag()); // FIXME: the target may want to specify that this is packed. return llvm::ConstantStruct::get(VMContext, Complex, 2, false); } case APValue::Float: return llvm::ConstantFP::get(VMContext, Result.Val.getFloat()); case APValue::ComplexFloat: { llvm::Constant *Complex[2]; Complex[0] = llvm::ConstantFP::get(VMContext, Result.Val.getComplexFloatReal()); Complex[1] = llvm::ConstantFP::get(VMContext, Result.Val.getComplexFloatImag()); // FIXME: the target may want to specify that this is packed. return llvm::ConstantStruct::get(VMContext, Complex, 2, false); } case APValue::Vector: { llvm::SmallVector Inits; unsigned NumElts = Result.Val.getVectorLength(); for (unsigned i = 0; i != NumElts; ++i) { APValue &Elt = Result.Val.getVectorElt(i); if (Elt.isInt()) Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt())); else Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat())); } return llvm::ConstantVector::get(&Inits[0], Inits.size()); } } } llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast(E)); if (C && C->getType() == llvm::Type::getInt1Ty(VMContext)) { const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); C = llvm::ConstantExpr::getZExt(C, BoolTy); } return C; } static inline bool isDataMemberPointerType(QualType T) { if (const MemberPointerType *MPT = T->getAs()) return !MPT->getPointeeType()->isFunctionType(); return false; } llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { // No need to check for member pointers when not compiling C++. if (!getContext().getLangOptions().CPlusPlus) return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { QualType ElementTy = CAT->getElementType(); // FIXME: Handle arrays of structs that contain member pointers. if (isDataMemberPointerType(Context.getBaseElementType(ElementTy))) { llvm::Constant *Element = EmitNullConstant(ElementTy); uint64_t NumElements = CAT->getSize().getZExtValue(); std::vector Array(NumElements); for (uint64_t i = 0; i != NumElements; ++i) Array[i] = Element; const llvm::ArrayType *ATy = cast(getTypes().ConvertTypeForMem(T)); return llvm::ConstantArray::get(ATy, Array); } } if (const RecordType *RT = T->getAs()) { const RecordDecl *RD = RT->getDecl(); // FIXME: It would be better if there was a way to explicitly compute the // record layout instead of converting to a type. Types.ConvertTagDeclType(RD); const CGRecordLayout &Layout = Types.getCGRecordLayout(RD); if (Layout.containsMemberPointer()) { assert(0 && "FIXME: No support for structs with member pointers yet!"); } } // FIXME: Handle structs that contain member pointers. if (isDataMemberPointerType(T)) return llvm::Constant::getAllOnesValue(getTypes().ConvertTypeForMem(T)); return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); }