//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with code generation of C++ expressions // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CGObjCRuntime.h" using namespace clang; using namespace CodeGen; RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *VTT, CallExpr::const_arg_iterator ArgBeg, CallExpr::const_arg_iterator ArgEnd) { assert(MD->isInstance() && "Trying to emit a member call expr on a static method!"); const FunctionProtoType *FPT = MD->getType()->getAs(); CallArgList Args; // Push the this ptr. Args.push_back(std::make_pair(RValue::get(This), MD->getThisType(getContext()))); // If there is a VTT parameter, emit it. if (VTT) { QualType T = getContext().getPointerType(getContext().VoidPtrTy); Args.push_back(std::make_pair(RValue::get(VTT), T)); } // And the rest of the call args EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); QualType ResultType = FPT->getResultType(); return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args, FPT->getExtInfo()), Callee, ReturnValue, Args, MD); } /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given /// expr can be devirtualized. static bool canDevirtualizeMemberFunctionCalls(const Expr *Base) { if (const DeclRefExpr *DRE = dyn_cast(Base)) { if (const VarDecl *VD = dyn_cast(DRE->getDecl())) { // This is a record decl. We know the type and can devirtualize it. return VD->getType()->isRecordType(); } return false; } // We can always devirtualize calls on temporary object expressions. if (isa(Base)) return true; // And calls on bound temporaries. if (isa(Base)) return true; // Check if this is a call expr that returns a record type. if (const CallExpr *CE = dyn_cast(Base)) return CE->getCallReturnType()->isRecordType(); // We can't devirtualize the call. return false; } RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, ReturnValueSlot ReturnValue) { if (isa(CE->getCallee()->IgnoreParens())) return EmitCXXMemberPointerCallExpr(CE, ReturnValue); const MemberExpr *ME = cast(CE->getCallee()->IgnoreParens()); const CXXMethodDecl *MD = cast(ME->getMemberDecl()); if (MD->isStatic()) { // The method is static, emit it as we would a regular call. llvm::Value *Callee = CGM.GetAddrOfFunction(MD); return EmitCall(getContext().getPointerType(MD->getType()), Callee, ReturnValue, CE->arg_begin(), CE->arg_end()); } const FunctionProtoType *FPT = MD->getType()->getAs(); const llvm::Type *Ty = CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD), FPT->isVariadic()); llvm::Value *This; if (ME->isArrow()) This = EmitScalarExpr(ME->getBase()); else { LValue BaseLV = EmitLValue(ME->getBase()); This = BaseLV.getAddress(); } if (MD->isCopyAssignment() && MD->isTrivial()) { // We don't like to generate the trivial copy assignment operator when // it isn't necessary; just produce the proper effect here. llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); EmitAggregateCopy(This, RHS, CE->getType()); return RValue::get(This); } // C++ [class.virtual]p12: // Explicit qualification with the scope operator (5.1) suppresses the // virtual call mechanism. // // We also don't emit a virtual call if the base expression has a record type // because then we know what the type is. llvm::Value *Callee; if (const CXXDestructorDecl *Destructor = dyn_cast(MD)) { if (Destructor->isTrivial()) return RValue::get(0); if (MD->isVirtual() && !ME->hasQualifier() && !canDevirtualizeMemberFunctionCalls(ME->getBase())) { Callee = BuildVirtualCall(Destructor, Dtor_Complete, This, Ty); } else { Callee = CGM.GetAddrOfFunction(GlobalDecl(Destructor, Dtor_Complete), Ty); } } else if (MD->isVirtual() && !ME->hasQualifier() && !canDevirtualizeMemberFunctionCalls(ME->getBase())) { Callee = BuildVirtualCall(MD, This, Ty); } else { Callee = CGM.GetAddrOfFunction(MD, Ty); } return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, CE->arg_begin(), CE->arg_end()); } RValue CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue) { const BinaryOperator *BO = cast(E->getCallee()->IgnoreParens()); const Expr *BaseExpr = BO->getLHS(); const Expr *MemFnExpr = BO->getRHS(); const MemberPointerType *MPT = MemFnExpr->getType()->getAs(); const FunctionProtoType *FPT = MPT->getPointeeType()->getAs(); const CXXRecordDecl *RD = cast(MPT->getClass()->getAs()->getDecl()); const llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(RD, FPT), FPT->isVariadic()); const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext); // Get the member function pointer. llvm::Value *MemFnPtr = CreateMemTemp(MemFnExpr->getType(), "mem.fn"); EmitAggExpr(MemFnExpr, MemFnPtr, /*VolatileDest=*/false); // Emit the 'this' pointer. llvm::Value *This; if (BO->getOpcode() == BinaryOperator::PtrMemI) This = EmitScalarExpr(BaseExpr); else This = EmitLValue(BaseExpr).getAddress(); // Adjust it. llvm::Value *Adj = Builder.CreateStructGEP(MemFnPtr, 1); Adj = Builder.CreateLoad(Adj, "mem.fn.adj"); llvm::Value *Ptr = Builder.CreateBitCast(This, Int8PtrTy, "ptr"); Ptr = Builder.CreateGEP(Ptr, Adj, "adj"); This = Builder.CreateBitCast(Ptr, This->getType(), "this"); llvm::Value *FnPtr = Builder.CreateStructGEP(MemFnPtr, 0, "mem.fn.ptr"); const llvm::Type *PtrDiffTy = ConvertType(getContext().getPointerDiffType()); llvm::Value *FnAsInt = Builder.CreateLoad(FnPtr, "fn"); // If the LSB in the function pointer is 1, the function pointer points to // a virtual function. llvm::Value *IsVirtual = Builder.CreateAnd(FnAsInt, llvm::ConstantInt::get(PtrDiffTy, 1), "and"); IsVirtual = Builder.CreateTrunc(IsVirtual, llvm::Type::getInt1Ty(VMContext)); llvm::BasicBlock *FnVirtual = createBasicBlock("fn.virtual"); llvm::BasicBlock *FnNonVirtual = createBasicBlock("fn.nonvirtual"); llvm::BasicBlock *FnEnd = createBasicBlock("fn.end"); Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual); EmitBlock(FnVirtual); const llvm::Type *VTableTy = FTy->getPointerTo()->getPointerTo(); llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo()); VTable = Builder.CreateLoad(VTable); VTable = Builder.CreateBitCast(VTable, Int8PtrTy); llvm::Value *VTableOffset = Builder.CreateSub(FnAsInt, llvm::ConstantInt::get(PtrDiffTy, 1)); VTable = Builder.CreateGEP(VTable, VTableOffset, "fn"); VTable = Builder.CreateBitCast(VTable, VTableTy); llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "virtualfn"); EmitBranch(FnEnd); EmitBlock(FnNonVirtual); // If the function is not virtual, just load the pointer. llvm::Value *NonVirtualFn = Builder.CreateLoad(FnPtr, "fn"); NonVirtualFn = Builder.CreateIntToPtr(NonVirtualFn, FTy->getPointerTo()); EmitBlock(FnEnd); llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo()); Callee->reserveOperandSpace(2); Callee->addIncoming(VirtualFn, FnVirtual); Callee->addIncoming(NonVirtualFn, FnNonVirtual); CallArgList Args; QualType ThisType = getContext().getPointerType(getContext().getTagDeclType(RD)); // Push the this ptr. Args.push_back(std::make_pair(RValue::get(This), ThisType)); // And the rest of the call args EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); const FunctionType *BO_FPT = BO->getType()->getAs(); return EmitCall(CGM.getTypes().getFunctionInfo(Args, BO_FPT), Callee, ReturnValue, Args); } RValue CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue) { assert(MD->isInstance() && "Trying to emit a member call expr on a static method!"); if (MD->isCopyAssignment()) { const CXXRecordDecl *ClassDecl = cast(MD->getDeclContext()); if (ClassDecl->hasTrivialCopyAssignment()) { assert(!ClassDecl->hasUserDeclaredCopyAssignment() && "EmitCXXOperatorMemberCallExpr - user declared copy assignment"); LValue LV = EmitLValue(E->getArg(0)); llvm::Value *This; if (LV.isPropertyRef()) { llvm::Value *AggLoc = CreateMemTemp(E->getArg(1)->getType()); EmitAggExpr(E->getArg(1), AggLoc, false /*VolatileDest*/); EmitObjCPropertySet(LV.getPropertyRefExpr(), RValue::getAggregate(AggLoc, false /*VolatileDest*/)); return RValue::getAggregate(0, false); } else This = LV.getAddress(); llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); QualType Ty = E->getType(); EmitAggregateCopy(This, Src, Ty); return RValue::get(This); } } const FunctionProtoType *FPT = MD->getType()->getAs(); const llvm::Type *Ty = CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD), FPT->isVariadic()); LValue LV = EmitLValue(E->getArg(0)); llvm::Value *This; if (LV.isPropertyRef()) { RValue RV = EmitLoadOfPropertyRefLValue(LV, E->getArg(0)->getType()); assert (!RV.isScalar() && "EmitCXXOperatorMemberCallExpr"); This = RV.getAggregateAddr(); } else This = LV.getAddress(); llvm::Value *Callee; if (MD->isVirtual() && !canDevirtualizeMemberFunctionCalls(E->getArg(0))) Callee = BuildVirtualCall(MD, This, Ty); else Callee = CGM.GetAddrOfFunction(MD, Ty); return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0, E->arg_begin() + 1, E->arg_end()); } void CodeGenFunction::EmitCXXConstructExpr(llvm::Value *Dest, const CXXConstructExpr *E) { assert(Dest && "Must have a destination!"); const CXXConstructorDecl *CD = E->getConstructor(); const ConstantArrayType *Array = getContext().getAsConstantArrayType(E->getType()); // For a copy constructor, even if it is trivial, must fall thru so // its argument is code-gen'ed. if (!CD->isCopyConstructor()) { QualType InitType = E->getType(); if (Array) InitType = getContext().getBaseElementType(Array); const CXXRecordDecl *RD = cast(InitType->getAs()->getDecl()); if (RD->hasTrivialConstructor()) return; } // Code gen optimization to eliminate copy constructor and return // its first argument instead, if in fact that argument is a temporary // object. if (getContext().getLangOptions().ElideConstructors && E->isElidable()) { if (const Expr *Arg = E->getArg(0)->getTemporaryObject()) { EmitAggExpr(Arg, Dest, false); return; } } if (Array) { QualType BaseElementTy = getContext().getBaseElementType(Array); const llvm::Type *BasePtr = ConvertType(BaseElementTy); BasePtr = llvm::PointerType::getUnqual(BasePtr); llvm::Value *BaseAddrPtr = Builder.CreateBitCast(Dest, BasePtr); EmitCXXAggrConstructorCall(CD, Array, BaseAddrPtr, E->arg_begin(), E->arg_end()); } else { CXXCtorType Type = (E->getConstructionKind() == CXXConstructExpr::CK_Complete) ? Ctor_Complete : Ctor_Base; bool ForVirtualBase = E->getConstructionKind() == CXXConstructExpr::CK_VirtualBase; // Call the constructor. EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest, E->arg_begin(), E->arg_end()); } } static CharUnits CalculateCookiePadding(ASTContext &Ctx, QualType ElementType) { const RecordType *RT = ElementType->getAs(); if (!RT) return CharUnits::Zero(); const CXXRecordDecl *RD = dyn_cast(RT->getDecl()); if (!RD) return CharUnits::Zero(); // Check if the class has a trivial destructor. if (RD->hasTrivialDestructor()) { // Check if the usual deallocation function takes two arguments. const CXXMethodDecl *UsualDeallocationFunction = 0; DeclarationName OpName = Ctx.DeclarationNames.getCXXOperatorName(OO_Array_Delete); DeclContext::lookup_const_iterator Op, OpEnd; for (llvm::tie(Op, OpEnd) = RD->lookup(OpName); Op != OpEnd; ++Op) { const CXXMethodDecl *Delete = cast(*Op); if (Delete->isUsualDeallocationFunction()) { UsualDeallocationFunction = Delete; break; } } // No usual deallocation function, we don't need a cookie. if (!UsualDeallocationFunction) return CharUnits::Zero(); // The usual deallocation function doesn't take a size_t argument, so we // don't need a cookie. if (UsualDeallocationFunction->getNumParams() == 1) return CharUnits::Zero(); assert(UsualDeallocationFunction->getNumParams() == 2 && "Unexpected deallocation function type!"); } // Padding is the maximum of sizeof(size_t) and alignof(ElementType) return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), Ctx.getTypeAlignInChars(ElementType)); } static CharUnits CalculateCookiePadding(ASTContext &Ctx, const CXXNewExpr *E) { if (!E->isArray()) return CharUnits::Zero(); // No cookie is required if the new operator being used is // ::operator new[](size_t, void*). const FunctionDecl *OperatorNew = E->getOperatorNew(); if (OperatorNew->getDeclContext()->getLookupContext()->isFileContext()) { if (OperatorNew->getNumParams() == 2) { CanQualType ParamType = Ctx.getCanonicalType(OperatorNew->getParamDecl(1)->getType()); if (ParamType == Ctx.VoidPtrTy) return CharUnits::Zero(); } } return CalculateCookiePadding(Ctx, E->getAllocatedType()); } static llvm::Value *EmitCXXNewAllocSize(ASTContext &Context, CodeGenFunction &CGF, const CXXNewExpr *E, llvm::Value *& NumElements) { QualType Type = E->getAllocatedType(); CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(Type); const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); if (!E->isArray()) return llvm::ConstantInt::get(SizeTy, TypeSize.getQuantity()); CharUnits CookiePadding = CalculateCookiePadding(CGF.getContext(), E); Expr::EvalResult Result; if (E->getArraySize()->Evaluate(Result, CGF.getContext()) && !Result.HasSideEffects && Result.Val.isInt()) { CharUnits AllocSize = Result.Val.getInt().getZExtValue() * TypeSize + CookiePadding; NumElements = llvm::ConstantInt::get(SizeTy, Result.Val.getInt().getZExtValue()); while (const ArrayType *AType = Context.getAsArrayType(Type)) { const llvm::ArrayType *llvmAType = cast(CGF.ConvertType(Type)); NumElements = CGF.Builder.CreateMul(NumElements, llvm::ConstantInt::get( SizeTy, llvmAType->getNumElements())); Type = AType->getElementType(); } return llvm::ConstantInt::get(SizeTy, AllocSize.getQuantity()); } // Emit the array size expression. NumElements = CGF.EmitScalarExpr(E->getArraySize()); // Multiply with the type size. llvm::Value *V = CGF.Builder.CreateMul(NumElements, llvm::ConstantInt::get(SizeTy, TypeSize.getQuantity())); while (const ArrayType *AType = Context.getAsArrayType(Type)) { const llvm::ArrayType *llvmAType = cast(CGF.ConvertType(Type)); NumElements = CGF.Builder.CreateMul(NumElements, llvm::ConstantInt::get( SizeTy, llvmAType->getNumElements())); Type = AType->getElementType(); } // And add the cookie padding if necessary. if (!CookiePadding.isZero()) V = CGF.Builder.CreateAdd(V, llvm::ConstantInt::get(SizeTy, CookiePadding.getQuantity())); return V; } static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E, llvm::Value *NewPtr) { assert(E->getNumConstructorArgs() == 1 && "Can only have one argument to initializer of POD type."); const Expr *Init = E->getConstructorArg(0); QualType AllocType = E->getAllocatedType(); if (!CGF.hasAggregateLLVMType(AllocType)) CGF.EmitStoreOfScalar(CGF.EmitScalarExpr(Init), NewPtr, AllocType.isVolatileQualified(), AllocType); else if (AllocType->isAnyComplexType()) CGF.EmitComplexExprIntoAddr(Init, NewPtr, AllocType.isVolatileQualified()); else CGF.EmitAggExpr(Init, NewPtr, AllocType.isVolatileQualified()); } void CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr, llvm::Value *NumElements) { // We have a POD type. if (E->getNumConstructorArgs() == 0) return; const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); // Create a temporary for the loop index and initialize it with 0. llvm::Value *IndexPtr = CreateTempAlloca(SizeTy, "loop.index"); llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy); Builder.CreateStore(Zero, IndexPtr); // Start the loop with a block that tests the condition. llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); llvm::BasicBlock *AfterFor = createBasicBlock("for.end"); EmitBlock(CondBlock); llvm::BasicBlock *ForBody = createBasicBlock("for.body"); // Generate: if (loop-index < number-of-elements fall to the loop body, // otherwise, go to the block after the for-loop. llvm::Value *Counter = Builder.CreateLoad(IndexPtr); llvm::Value *IsLess = Builder.CreateICmpULT(Counter, NumElements, "isless"); // If the condition is true, execute the body. Builder.CreateCondBr(IsLess, ForBody, AfterFor); EmitBlock(ForBody); llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc"); // Inside the loop body, emit the constructor call on the array element. Counter = Builder.CreateLoad(IndexPtr); llvm::Value *Address = Builder.CreateInBoundsGEP(NewPtr, Counter, "arrayidx"); StoreAnyExprIntoOneUnit(*this, E, Address); EmitBlock(ContinueBlock); // Emit the increment of the loop counter. llvm::Value *NextVal = llvm::ConstantInt::get(SizeTy, 1); Counter = Builder.CreateLoad(IndexPtr); NextVal = Builder.CreateAdd(Counter, NextVal, "inc"); Builder.CreateStore(NextVal, IndexPtr); // Finally, branch back up to the condition for the next iteration. EmitBranch(CondBlock); // Emit the fall-through block. EmitBlock(AfterFor, true); } static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, llvm::Value *NewPtr, llvm::Value *NumElements) { if (E->isArray()) { if (CXXConstructorDecl *Ctor = E->getConstructor()) { if (!Ctor->getParent()->hasTrivialConstructor()) CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, E->constructor_arg_begin(), E->constructor_arg_end()); return; } else { CGF.EmitNewArrayInitializer(E, NewPtr, NumElements); return; } } if (CXXConstructorDecl *Ctor = E->getConstructor()) { // Per C++ [expr.new]p15, if we have an initializer, then we're performing // direct initialization. C++ [dcl.init]p5 requires that we // zero-initialize storage if there are no user-declared constructors. if (E->hasInitializer() && !Ctor->getParent()->hasUserDeclaredConstructor() && !Ctor->getParent()->isEmpty()) CGF.EmitNullInitialization(NewPtr, E->getAllocatedType()); CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, NewPtr, E->constructor_arg_begin(), E->constructor_arg_end()); return; } // We have a POD type. if (E->getNumConstructorArgs() == 0) return; StoreAnyExprIntoOneUnit(CGF, E, NewPtr); } llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { QualType AllocType = E->getAllocatedType(); FunctionDecl *NewFD = E->getOperatorNew(); const FunctionProtoType *NewFTy = NewFD->getType()->getAs(); CallArgList NewArgs; // The allocation size is the first argument. QualType SizeTy = getContext().getSizeType(); llvm::Value *NumElements = 0; llvm::Value *AllocSize = EmitCXXNewAllocSize(getContext(), *this, E, NumElements); NewArgs.push_back(std::make_pair(RValue::get(AllocSize), SizeTy)); // Emit the rest of the arguments. // FIXME: Ideally, this should just use EmitCallArgs. CXXNewExpr::const_arg_iterator NewArg = E->placement_arg_begin(); // First, use the types from the function type. // We start at 1 here because the first argument (the allocation size) // has already been emitted. for (unsigned i = 1, e = NewFTy->getNumArgs(); i != e; ++i, ++NewArg) { QualType ArgType = NewFTy->getArgType(i); assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). getTypePtr() == getContext().getCanonicalType(NewArg->getType()).getTypePtr() && "type mismatch in call argument!"); NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType), ArgType)); } // Either we've emitted all the call args, or we have a call to a // variadic function. assert((NewArg == E->placement_arg_end() || NewFTy->isVariadic()) && "Extra arguments in non-variadic function!"); // If we still have any arguments, emit them using the type of the argument. for (CXXNewExpr::const_arg_iterator NewArgEnd = E->placement_arg_end(); NewArg != NewArgEnd; ++NewArg) { QualType ArgType = NewArg->getType(); NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType), ArgType)); } // Emit the call to new. RValue RV = EmitCall(CGM.getTypes().getFunctionInfo(NewArgs, NewFTy), CGM.GetAddrOfFunction(NewFD), ReturnValueSlot(), NewArgs, NewFD); // If an allocation function is declared with an empty exception specification // it returns null to indicate failure to allocate storage. [expr.new]p13. // (We don't need to check for null when there's no new initializer and // we're allocating a POD type). bool NullCheckResult = NewFTy->hasEmptyExceptionSpec() && !(AllocType->isPODType() && !E->hasInitializer()); llvm::BasicBlock *NewNull = 0; llvm::BasicBlock *NewNotNull = 0; llvm::BasicBlock *NewEnd = 0; llvm::Value *NewPtr = RV.getScalarVal(); if (NullCheckResult) { NewNull = createBasicBlock("new.null"); NewNotNull = createBasicBlock("new.notnull"); NewEnd = createBasicBlock("new.end"); llvm::Value *IsNull = Builder.CreateICmpEQ(NewPtr, llvm::Constant::getNullValue(NewPtr->getType()), "isnull"); Builder.CreateCondBr(IsNull, NewNull, NewNotNull); EmitBlock(NewNotNull); } CharUnits CookiePadding = CalculateCookiePadding(getContext(), E); if (!CookiePadding.isZero()) { CharUnits CookieOffset = CookiePadding - getContext().getTypeSizeInChars(SizeTy); llvm::Value *NumElementsPtr = Builder.CreateConstInBoundsGEP1_64(NewPtr, CookieOffset.getQuantity()); NumElementsPtr = Builder.CreateBitCast(NumElementsPtr, ConvertType(SizeTy)->getPointerTo()); Builder.CreateStore(NumElements, NumElementsPtr); // Now add the padding to the new ptr. NewPtr = Builder.CreateConstInBoundsGEP1_64(NewPtr, CookiePadding.getQuantity()); } if (AllocType->isArrayType()) { while (const ArrayType *AType = getContext().getAsArrayType(AllocType)) AllocType = AType->getElementType(); NewPtr = Builder.CreateBitCast(NewPtr, ConvertType(getContext().getPointerType(AllocType))); EmitNewInitializer(*this, E, NewPtr, NumElements); NewPtr = Builder.CreateBitCast(NewPtr, ConvertType(E->getType())); } else { NewPtr = Builder.CreateBitCast(NewPtr, ConvertType(E->getType())); EmitNewInitializer(*this, E, NewPtr, NumElements); } if (NullCheckResult) { Builder.CreateBr(NewEnd); NewNotNull = Builder.GetInsertBlock(); EmitBlock(NewNull); Builder.CreateBr(NewEnd); EmitBlock(NewEnd); llvm::PHINode *PHI = Builder.CreatePHI(NewPtr->getType()); PHI->reserveOperandSpace(2); PHI->addIncoming(NewPtr, NewNotNull); PHI->addIncoming(llvm::Constant::getNullValue(NewPtr->getType()), NewNull); NewPtr = PHI; } return NewPtr; } static std::pair GetAllocatedObjectPtrAndNumElements(CodeGenFunction &CGF, llvm::Value *Ptr, QualType DeleteTy) { QualType SizeTy = CGF.getContext().getSizeType(); const llvm::Type *SizeLTy = CGF.ConvertType(SizeTy); CharUnits DeleteTypeAlign = CGF.getContext().getTypeAlignInChars(DeleteTy); CharUnits CookiePadding = std::max(CGF.getContext().getTypeSizeInChars(SizeTy), DeleteTypeAlign); assert(!CookiePadding.isZero() && "CookiePadding should not be 0."); const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); CharUnits CookieOffset = CookiePadding - CGF.getContext().getTypeSizeInChars(SizeTy); llvm::Value *AllocatedObjectPtr = CGF.Builder.CreateBitCast(Ptr, Int8PtrTy); AllocatedObjectPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocatedObjectPtr, -CookiePadding.getQuantity()); llvm::Value *NumElementsPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocatedObjectPtr, CookieOffset.getQuantity()); NumElementsPtr = CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo()); llvm::Value *NumElements = CGF.Builder.CreateLoad(NumElementsPtr); NumElements = CGF.Builder.CreateIntCast(NumElements, SizeLTy, /*isSigned=*/false); return std::make_pair(AllocatedObjectPtr, NumElements); } void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy) { const FunctionProtoType *DeleteFTy = DeleteFD->getType()->getAs(); CallArgList DeleteArgs; // Check if we need to pass the size to the delete operator. llvm::Value *Size = 0; QualType SizeTy; if (DeleteFTy->getNumArgs() == 2) { SizeTy = DeleteFTy->getArgType(1); CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); Size = llvm::ConstantInt::get(ConvertType(SizeTy), DeleteTypeSize.getQuantity()); } if (DeleteFD->getOverloadedOperator() == OO_Array_Delete && !CalculateCookiePadding(getContext(), DeleteTy).isZero()) { // We need to get the number of elements in the array from the cookie. llvm::Value *AllocatedObjectPtr; llvm::Value *NumElements; llvm::tie(AllocatedObjectPtr, NumElements) = GetAllocatedObjectPtrAndNumElements(*this, Ptr, DeleteTy); // Multiply the size with the number of elements. if (Size) Size = Builder.CreateMul(NumElements, Size); Ptr = AllocatedObjectPtr; } QualType ArgTy = DeleteFTy->getArgType(0); llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); DeleteArgs.push_back(std::make_pair(RValue::get(DeletePtr), ArgTy)); if (Size) DeleteArgs.push_back(std::make_pair(RValue::get(Size), SizeTy)); // Emit the call to delete. EmitCall(CGM.getTypes().getFunctionInfo(DeleteArgs, DeleteFTy), CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), DeleteArgs, DeleteFD); } void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { // Get at the argument before we performed the implicit conversion // to void*. const Expr *Arg = E->getArgument(); while (const ImplicitCastExpr *ICE = dyn_cast(Arg)) { if (ICE->getCastKind() != CastExpr::CK_UserDefinedConversion && ICE->getType()->isVoidPointerType()) Arg = ICE->getSubExpr(); else break; } QualType DeleteTy = Arg->getType()->getAs()->getPointeeType(); llvm::Value *Ptr = EmitScalarExpr(Arg); // Null check the pointer. llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); llvm::Value *IsNull = Builder.CreateICmpEQ(Ptr, llvm::Constant::getNullValue(Ptr->getType()), "isnull"); Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); EmitBlock(DeleteNotNull); bool ShouldCallDelete = true; // Call the destructor if necessary. if (const RecordType *RT = DeleteTy->getAs()) { if (CXXRecordDecl *RD = dyn_cast(RT->getDecl())) { if (!RD->hasTrivialDestructor()) { const CXXDestructorDecl *Dtor = RD->getDestructor(); if (E->isArrayForm()) { llvm::Value *AllocatedObjectPtr; llvm::Value *NumElements; llvm::tie(AllocatedObjectPtr, NumElements) = GetAllocatedObjectPtrAndNumElements(*this, Ptr, DeleteTy); EmitCXXAggrDestructorCall(Dtor, NumElements, Ptr); } else if (Dtor->isVirtual()) { const llvm::Type *Ty = CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(Dtor), /*isVariadic=*/false); llvm::Value *Callee = BuildVirtualCall(Dtor, Dtor_Deleting, Ptr, Ty); EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0, 0, 0); // The dtor took care of deleting the object. ShouldCallDelete = false; } else EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, Ptr); } } } if (ShouldCallDelete) EmitDeleteCall(E->getOperatorDelete(), Ptr, DeleteTy); EmitBlock(DeleteEnd); } llvm::Value * CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { QualType Ty = E->getType(); const llvm::Type *LTy = ConvertType(Ty)->getPointerTo(); if (E->isTypeOperand()) { llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); return Builder.CreateBitCast(TypeInfo, LTy); } Expr *subE = E->getExprOperand(); Ty = subE->getType(); CanQualType CanTy = CGM.getContext().getCanonicalType(Ty); Ty = CanTy.getUnqualifiedType().getNonReferenceType(); if (const RecordType *RT = Ty->getAs()) { const CXXRecordDecl *RD = cast(RT->getDecl()); if (RD->isPolymorphic()) { // FIXME: if subE is an lvalue do LValue Obj = EmitLValue(subE); llvm::Value *This = Obj.getAddress(); LTy = LTy->getPointerTo()->getPointerTo(); llvm::Value *V = Builder.CreateBitCast(This, LTy); // We need to do a zero check for *p, unless it has NonNullAttr. // FIXME: PointerType->hasAttr() bool CanBeZero = false; if (UnaryOperator *UO = dyn_cast(subE->IgnoreParens())) if (UO->getOpcode() == UnaryOperator::Deref) CanBeZero = true; if (CanBeZero) { llvm::BasicBlock *NonZeroBlock = createBasicBlock(); llvm::BasicBlock *ZeroBlock = createBasicBlock(); llvm::Value *Zero = llvm::Constant::getNullValue(LTy); Builder.CreateCondBr(Builder.CreateICmpNE(V, Zero), NonZeroBlock, ZeroBlock); EmitBlock(ZeroBlock); /// Call __cxa_bad_typeid const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); const llvm::FunctionType *FTy; FTy = llvm::FunctionType::get(ResultType, false); llvm::Value *F = CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); Builder.CreateCall(F)->setDoesNotReturn(); Builder.CreateUnreachable(); EmitBlock(NonZeroBlock); } V = Builder.CreateLoad(V, "vtable"); V = Builder.CreateConstInBoundsGEP1_64(V, -1ULL); V = Builder.CreateLoad(V); return V; } } return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(Ty), LTy); } llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE) { QualType SrcTy = DCE->getSubExpr()->getType(); QualType DestTy = DCE->getTypeAsWritten(); QualType InnerType = DestTy->getPointeeType(); const llvm::Type *LTy = ConvertType(DCE->getType()); bool CanBeZero = false; bool ToVoid = false; bool ThrowOnBad = false; if (DestTy->isPointerType()) { // FIXME: if PointerType->hasAttr(), we don't set this CanBeZero = true; if (InnerType->isVoidType()) ToVoid = true; } else { LTy = LTy->getPointerTo(); // FIXME: What if exceptions are disabled? ThrowOnBad = true; } if (SrcTy->isPointerType() || SrcTy->isReferenceType()) SrcTy = SrcTy->getPointeeType(); SrcTy = SrcTy.getUnqualifiedType(); if (DestTy->isPointerType() || DestTy->isReferenceType()) DestTy = DestTy->getPointeeType(); DestTy = DestTy.getUnqualifiedType(); llvm::BasicBlock *ContBlock = createBasicBlock(); llvm::BasicBlock *NullBlock = 0; llvm::BasicBlock *NonZeroBlock = 0; if (CanBeZero) { NonZeroBlock = createBasicBlock(); NullBlock = createBasicBlock(); Builder.CreateCondBr(Builder.CreateIsNotNull(V), NonZeroBlock, NullBlock); EmitBlock(NonZeroBlock); } llvm::BasicBlock *BadCastBlock = 0; const llvm::Type *PtrDiffTy = ConvertType(getContext().getPointerDiffType()); // See if this is a dynamic_cast(void*) if (ToVoid) { llvm::Value *This = V; V = Builder.CreateBitCast(This, PtrDiffTy->getPointerTo()->getPointerTo()); V = Builder.CreateLoad(V, "vtable"); V = Builder.CreateConstInBoundsGEP1_64(V, -2ULL); V = Builder.CreateLoad(V, "offset to top"); This = Builder.CreateBitCast(This, llvm::Type::getInt8PtrTy(VMContext)); V = Builder.CreateInBoundsGEP(This, V); V = Builder.CreateBitCast(V, LTy); } else { /// Call __dynamic_cast const llvm::Type *ResultType = llvm::Type::getInt8PtrTy(VMContext); const llvm::FunctionType *FTy; std::vector ArgTys; const llvm::Type *PtrToInt8Ty = llvm::Type::getInt8Ty(VMContext)->getPointerTo(); ArgTys.push_back(PtrToInt8Ty); ArgTys.push_back(PtrToInt8Ty); ArgTys.push_back(PtrToInt8Ty); ArgTys.push_back(PtrDiffTy); FTy = llvm::FunctionType::get(ResultType, ArgTys, false); // FIXME: Calculate better hint. llvm::Value *hint = llvm::ConstantInt::get(PtrDiffTy, -1ULL); assert(SrcTy->isRecordType() && "Src type must be record type!"); assert(DestTy->isRecordType() && "Dest type must be record type!"); llvm::Value *SrcArg = CGM.GetAddrOfRTTIDescriptor(SrcTy.getUnqualifiedType()); llvm::Value *DestArg = CGM.GetAddrOfRTTIDescriptor(DestTy.getUnqualifiedType()); V = Builder.CreateBitCast(V, PtrToInt8Ty); V = Builder.CreateCall4(CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"), V, SrcArg, DestArg, hint); V = Builder.CreateBitCast(V, LTy); if (ThrowOnBad) { BadCastBlock = createBasicBlock(); Builder.CreateCondBr(Builder.CreateIsNotNull(V), ContBlock, BadCastBlock); EmitBlock(BadCastBlock); /// Invoke __cxa_bad_cast ResultType = llvm::Type::getVoidTy(VMContext); const llvm::FunctionType *FBadTy; FBadTy = llvm::FunctionType::get(ResultType, false); llvm::Value *F = CGM.CreateRuntimeFunction(FBadTy, "__cxa_bad_cast"); if (llvm::BasicBlock *InvokeDest = getInvokeDest()) { llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); Builder.CreateInvoke(F, Cont, InvokeDest)->setDoesNotReturn(); EmitBlock(Cont); } else { // FIXME: Does this ever make sense? Builder.CreateCall(F)->setDoesNotReturn(); } Builder.CreateUnreachable(); } } if (CanBeZero) { Builder.CreateBr(ContBlock); EmitBlock(NullBlock); Builder.CreateBr(ContBlock); } EmitBlock(ContBlock); if (CanBeZero) { llvm::PHINode *PHI = Builder.CreatePHI(LTy); PHI->reserveOperandSpace(2); PHI->addIncoming(V, NonZeroBlock); PHI->addIncoming(llvm::Constant::getNullValue(LTy), NullBlock); V = PHI; } return V; }